Feasibility analysis of retrieving sea ice concentration by multi-incidence angle brightness temperature at 89 GHz
- Vol. 26, Issue 11, Pages: 2174-2191(2022)
Published: 07 November 2022
DOI: 10.11834/jrs.20210088
扫 描 看 全 文
浏览全部资源
扫码关注微信
Published: 07 November 2022 ,
扫 描 看 全 文
吴若男,刘浩,吴季.2022.89 GHz多入射角亮温差反演海冰密集度的可行性分析.遥感学报,26(11): 2174-2191
Wu R N,Liu H and Wu J. 2022. Feasibility analysis of retrieving sea ice concentration by multi-incidence angle brightness temperature at 89 GHz. National Remote Sensing Bulletin, 26(11):2174-2191
被动微波遥感是目前进行海冰密集度观测的重要方式,ASI (ARTIST Sea Ice algorithm)算法利用AMSR-E的89 GHz双极化亮温可获得目前海冰密集度(SIC)产品中最高空间分辨率6.25 km,但是需要低频数据进行大气校正。本文提出一种基于89 GHz综合孔径辐射计单频多角度观测亮温反演海冰密集度的新方法,并开展了可行性分析。该方法利用多入射角亮温信息弥补观测过程中海冰与海水亮温信息的混淆,提高SIC的反演精度,并且可以实现高空间分辨率。首先构建了星载观测海冰辐射亮温仿真系统,利用仿真亮温数据及FY-3C星微波湿度计89 GHz通道实测亮温数据,开展89 GHz亮温角度敏感性分析;其次,推导建立了基于89 GHz角度亮温差的SIC反演算法,结合欧洲中期天气预报中心(ECMWF)的SIC产品及亮温仿真系统完成了初步反演验证。验证结果表明,利用入射角亮温差可以实现海冰密集度的反演,利用多组入射角组合进行最小均方根加权平均后处理可以最大程度的降低SIC的反演误差。输入的高斯白噪声为2 K时,可以获得5%的SIC误差。最终结果证明利用连续角度亮温差进行SIC反演,可以充分扩大海水与海冰的区分。
Passive microwave remote sensing is an important method for observing the sea ice concentration (SIC). The ASI (ARTIST Sea Ice algorithm) can obtain the highest spatial resolution of 6.25 km
2
in the current SIC products by using the dual-polarized brightness temperature of AMSR-E at 89 GHz. However
additional auxiliary low-frequency band data are still needed for weather filter. In this work
a new SIC retrieving algorithm based on single-frequency multi-incident angle brightness temperature data has been proposed and studied
which can be applied on an 89 GHz synthetic aperture radiometer. Fully utilizing the multi-incident angle brightness temperature with a synthetic aperture radiometer can separate the information of sea ice and seawater
improve the precision of SIC retrieving
and achieve high spatial resolution. The first step involves creating a simulation system for space-borne observation of sea–ice radiant brightness temperature and using the measured data of the 89 GHz channel from the FY-3C/MWHS to carry out the sensitivity analysis between brightness temperature and angle at 89 GHz. The second step consists of developing an SIC retrieving algorithm based on the angle brightness temperature difference at 89 GHz and completing the preliminary retrieving verification by combining the SIC product of ECMWF and the brightness temperature simulation system. The results show that the SIC retrieval can be realized by using the incident angle brightness temperature difference. Moreover
the minimum root mean square weighted average post-processing by using the combination of multi-incidence angle can minimize the retrieving error of SIC. When the input Gaussian white noise is 2 K
5% SIC error can be obtained. The final results show that the SIC retrieval with the combination of multi-incidence angle can fully expand the distinction between sea water and sea ice.
多入射角海冰密集度89 GHz南北极亮温综合孔径微波辐射计
multi-incident anglesea ice concentration89 GHz AntarcticArctic brightness temperaturesynthetic aperture microwave radiometer
Budikova D. 2009. Role of Arctic sea ice in global atmospheric circulation: a review. Global and Planetary Change, 68(3): 149-163 [DOI: 10.1016/j.gloplacha.2009.04.001http://dx.doi.org/10.1016/j.gloplacha.2009.04.001]
Cavalieri D J, Gloersen P and Campbell W J. 1984. Determination of sea ice parameters with the NIMBUS 7 SMMR. Journal of Geophysical Research: Atmospheres, 89(D4): 5355-5369 [DOI: 10.1029/JD089iD04p05355http://dx.doi.org/10.1029/JD089iD04p05355]
Cheung H H N, Keenlyside N, Omrani N E, et al. 2018. Remarkable link between projected uncertainties of Arctic sea-ice decline and winter Eurasian climate[J]. Advances in Atmospheric Sciences, 35(1): 38-51[DOI: 10.1007/s00376-017-7156-5http://dx.doi.org/10.1007/s00376-017-7156-5]
Cohen J, Screen J A, Furtado J C, Barlow M, Whittleston D, Coumou D, Francis J, Dethloff K, Entekhabi D, Overland J and Jones J. 2014. Recent Arctic amplification and extreme mid-latitude weather. Nature Geoscience, 7(9): 627-637 [DOI: 10.1038/ngeo2234http://dx.doi.org/10.1038/ngeo2234]
Comiso J C. 1986. Characteristics of Arctic winter sea ice from satellite multispectral microwave observations. Journal of Geophysical Research: Oceans, 91(C1): 975-994 [DOI: 10.1029/JC091iC01p00975http://dx.doi.org/10.1029/JC091iC01p00975]
Comiso J C. 1995. SSM/I Sea Ice Concentrations Using the Bootstrap Algorithm. Greenbelt, Maryland. The NASA Center for Aerospace Information: 2-10 [ ISBN-10: 0875902634 ]
Comiso J C. 2012. Large decadal decline of the Arctic multiyear ice cover. Journal of Climate, 25(4): 1176-1193 [DOI: 10.1175/JCLI-D-11-00113.1http://dx.doi.org/10.1175/JCLI-D-11-00113.1]
Comiso J C, Cavalieri D J, Parkinson C L and Gloersen P. 1997. Passive microwave algorithms for sea ice concentration: a comparison of two techniques. Remote Sensing of Environment, 60(3): 357-384 [DOI: 10.1016/S0034-4257(96)00220-9http://dx.doi.org/10.1016/S0034-4257(96)00220-9]
Cox G F N and Weeks W F. 1983. Equations for determining the gas and brine volumes in sea-ice samples. Journal of Glaciology, 29(102): 306-316 [DOI: 10.3189/s0022143000008364http://dx.doi.org/10.3189/s0022143000008364]
Ellison W. J, English S. J, Lamkaouchi K, Balana A, Obligis E, Deblonde G, Hewison T. J, Bauer P, Kelly G and Eymard L. 2003. A comparison of ocean emissivity models using the Advanced Microwave Sounding Unit, the Special Sensor Microwave Imager, the TRMM Microwave Imager, and airborne radiometer observations. Journal of Geophysical Research Atmospheres, 108(D21): 4663[DOI: 10.1029/2002JD003213http://dx.doi.org/10.1029/2002JD003213]
Gabarro C, Turiel A, Elosegui P, Pla-Resina J A and Portabella M. 2017. New methodology to estimate Arctic sea ice concentration from SMOS combining brightness temperature differences in a maximum-likelihood estimator. The Cryosphere, 11(4): 1987-2002 [DOI: 10.5194/tc-11-1987-2017http://dx.doi.org/10.5194/tc-11-1987-2017]
Guo X, Liu H, Niu L J, Zhang C, Lu H, Huo C X, Wang T and Wu J. 2018. Data processing and experimental performance of GIMS-Ⅱ (geostationary interferometric microwave sounder-second generation) demonstrator//Proceedings of 2018 IEEE 15th Specialist Meeting on Microwave Radiometry and Remote Sensing of the Environment. Cambridge: IEEE: 1-4 [DOI: 10.1109/MICRORAD.2018.8430718http://dx.doi.org/10.1109/MICRORAD.2018.8430718]
He J Y and Chen H N. 2019. Atmospheric retrievals and assessment for microwave observations from Chinese FY-3C satellite during hurricane Matthew. Remote Sensing, 11(8): 896-899 [DOI: 10.3390/rs11080896http://dx.doi.org/10.3390/rs11080896]
Holland M M and Bitz C M. 2003. Polar amplification of climate change in coupled models. Climate Dynamics, 21(3/4): 221-232 [DOI: 10.1007/s00382-003-0332-6http://dx.doi.org/10.1007/s00382-003-0332-6]
Huang J X,Sun Y H,Wang L,Cao Y F and Yang L S. 2020. Analysis on the lag effect of temperature - sea ice concentration in key Arctic Straits. Journal of Remote Sensing,24(11):1419-1432
) (黄季夏,孙宇晗,王利,曹云锋,杨林生. 2020. 北极重要海峡气温—海冰密集度影响滞后效应分析. 遥感学报,24(11):1419-1432 [DOI: 10.11834/jrs.20209066http://dx.doi.org/10.11834/jrs.20209066]
Kaleschke L, Lüpkes C, Vihma T, Haarpaintner J, Bochert A, Hartmann J and Heygster G. 2001. SSM/I sea ice remote sensing for mesoscale ocean-atmosphere interaction analysis. Canadian Journal of Remote Sensing, 27(5): 526-537 [DOI: 10.1080/07038992.2001.10854892http://dx.doi.org/10.1080/07038992.2001.10854892]
Kaleschke L, Maaß N, Haas C, Hendricks S, Heygster G and Tonboe R T. 2010. A sea-ice thickness retrieval model for 1.4 GHz radiometry and application to airborne measurements over low salinity sea-ice. The Cryosphere, 4: 583-592 [DOI:10.5194/tc-4-583-2010http://dx.doi.org/10.5194/tc-4-583-2010]
Kaleschke L, Tian-Kunze X, Maaß N, Mäkynen M and Drusch M. 2012. Sea ice thickness retrieval from SMOS brightness temperatures during the Arctic freeze-up period. Geophysical Research Letters, 39(L05501): 1-5 [DOI:10.1029/2012GL050916http://dx.doi.org/10.1029/2012GL050916]
Kilic L, Prigent C, Aires F, Boutin J, Heygster G, Tonboe R T, Roquet H, Jimenez C and Donlon C. 2018. Expected performances of the Copernicus imaging microwave radiometer (CIMR) for an all-weather and high spatial resolution estimation of ocean and sea ice parameters. Journal of Geophysical Research: Oceans, 123(10): 7564-7580 [DOI: 10.1029/2018JC014408http://dx.doi.org/10.1029/2018JC014408]
Liebe H J. 1989. MPM—An atmospheric millimeter-wave propagation model. International Journal of Infrared and Millimeter Waves, 10(6): 631-650 [DOI: 10.1007/bf01009565http://dx.doi.org/10.1007/bf01009565]
Liu Q H, Weng F Z and English S J. 2011. An improved fast microwave water emissivity model. IEEE Transactions on Geoscience and Remote Sensing, 49(4): 1238-1250 [DOI: 10.1109/TGRS.2010.2064779http://dx.doi.org/10.1109/TGRS.2010.2064779]
Markus T and Cavalieri D J. 2000. An enhancement of the NASA team sea ice algorithm. IEEE Transactions on Geoscience and Remote Sensing, 38(3): 1387-1398 [DOI: 10.1109/36.843033http://dx.doi.org/10.1109/36.843033]
Mätzler C. 1998. Improved Born approximation for scattering of radiation in a granular medium. Journal of Applied Physics, 83(11): 6111-6117 [DOI: 10.1063/1.367496http://dx.doi.org/10.1063/1.367496]
Mätzler C. 2002. Relation between grain-size and correlation length of snow. Journal of Glaciology, 48(162): 461-466 [DOI: 10.3189/172756502781831287http://dx.doi.org/10.3189/172756502781831287]
Mätzler C. 2006. Thermal Microwave Radiation: Applications for Remote Sensing. London: Institution of Engineering and Technology: 225-401 [ISBN-10: 0863415733]
Mills P and Heygster G. 2011. Retrieving ice concentration from SMOS. IEEE Geoscience and Remote Sensing Letters, 8(2): 283-287 [DOI: 10.1109/LGRS.2010.2064157http://dx.doi.org/10.1109/LGRS.2010.2064157]
Parkinson C L, Comiso J C, Zwally H J, Cavalieri D J, Gloersen P and Campbell W J. 1987. Arctic Sea Ice, 1973—1976: Satellite Passive-Microwave Observations. Washington: Scientific and Technical Information Branch, National Aeronautics and Space Administration: 21-64 [NAS 1.21:489]
Schulte R M, Kummerow C D, Berg W, Reising S C, Brown S T, Gaier T C, Lim B H and Padmanabhan S. 2020. A passive microwave retrieval algorithm with minimal view-angle bias: application to the TEMPEST-D CubeSat mission. Journal of Atmospheric and Oceanic Technology, 37(2): 197-210 [DOI: 10.1175/JTECH-D-19-0163.1http://dx.doi.org/10.1175/JTECH-D-19-0163.1]
Shokr M E. 1998. Field observations and model calculations of dielectric properties of Arctic sea ice in the microwave C-band. IEEE Transactions on Geoscience and Remote Sensing, 36(2): 463-478 [DOI: 10.1109/36.662730http://dx.doi.org/10.1109/36.662730]
Spreen G, Kaleschke L and Heygster G. 2008. Sea ice remote sensing using AMSR-E 89-GHz channels. Journal of Geophysical Research: Oceans, 113(C2): 1-14[DOI: 10.1029/2005JC003384http://dx.doi.org/10.1029/2005JC003384]
Steffen K and Schweiger A. 1991. NASA Team algorithm for sea ice concentration retrieval from Defense Meteorological Satellite Program special sensor microwave imager: comparison with Landsat satellite imagery. Journal of Geophysical Research: Oceans, 96(C12): 21971-21987 [DOI: 10.1029/91JC02334http://dx.doi.org/10.1029/91JC02334]
Stroeve J C, Serreze M C, Holland M M, Kay J E, Malanik J and Barrett A P. 2012. The Arctic’s rapidly shrinking sea ice cover: a research synthesis. Climatic Change, 110(3/4): 1005-1027 [DOI: 10.1007/s10584-011-0101-1http://dx.doi.org/10.1007/s10584-011-0101-1]
Svendsen E, Kloster K, Farrelly B, Johannessen O M, Johannessen J A, Campbell W J, Gloersen P, Cavalieri D and Mätzler C. 1983. Norwegian Remote Sensing Experiment: evaluation of the Nimbus 7 scanning multichannel microwave radiometer for sea ice research. Journal of Geophysical Research: Oceans, 88(C5): 2781-2791 [DOI: 10.1029/JC088iC05p02781http://dx.doi.org/10.1029/JC088iC05p02781]
Svendsen E, Matzler C and Grenfell T C. 1987. A model for retrieving total sea ice concentration from a spaceborne dual-polarized passive microwave instrument operating near 90 GHz. International Journal of Remote Sensing, 8(10): 1479-1487 [DOI: 10.1080/01431168708954790http://dx.doi.org/10.1080/01431168708954790]
Thomas D N and Dieckmann G S. 2010. Sea Ice. 2nd ed. Oxford: Wiley-Blackwell Publishing: 15-44 [ ISBN: 9781405185806]
Tian L J, Ackley S, Wu H B. 2021. Precipitation contributions in the mass balance of Arctic and Antarctic sea ice based on stable-isotope tracers. Quaternary Sciences, 41(3): 766-779
田立军, Ackley S, 吴海斌. 2021. 基于同位素示踪降水在两极海冰质量平衡中的贡献. 第四纪研究, 41(3): 766-779 [DOI: 10.11928/j.issn.1001-7410.2021.03.12http://dx.doi.org/10.11928/j.issn.1001-7410.2021.03.12]
Tonboe R T. 2010. The simulated sea ice thermal microwave emission at window and sounding frequencies. Tellus A: Dynamic Meteorology and Oceanography, 62(3): 333-344 [ DOI: 10.1111/j.1600-0870.2009.00434.x]
Tonboe R T, Eastwood S, Lavergne T, Sørensen A M, Rathmann N, Dybkjær G, Pedersen L T, Høyer J L and Kern S. 2016. The EUMETSAT sea ice concentration climate data record. The Cryosphere, 10(5): 2275-2290 [ DOI: 10.5194/tc-10-2275-2016]
Ulaby F T, Moore R K and Fung A K. 1986. Microwave Remote Sensing: Active and Passive, Vol. III, Volume Scattering and Emission Theory, Advanced Systems and Applications. Reading: Addison-Wesley: 1797-1848 [ ISBN-10: 0890061904]
Vihma T. 2014. Effects of arctic sea ice decline on weather and climate: a review. Surveys in Geophysics, 35(5): 1175-1214 [DOI: 10.1007/s10712-014-9284-0http://dx.doi.org/10.1007/s10712-014-9284-0]
Wang X Y, Guan L and Li L L. 2018. Comparison and validation of sea ice concentration from FY-3B/MWRI and Aqua/AMSR-E observations. Journal of Remote Sensing, 22(5): 723-736
王晓雨, 管磊, 李乐乐. 2018. FY-3B/MWRI和Aqua/AMSR-E海冰密集度比较及印证. 遥感学报, 22(5): 723-736 [DOI:0.11834/jrs.20187419http://dx.doi.org/0.11834/jrs.20187419]
Wiesmann A and Mätzler C. 1999. Microwave emission model of layered snowpacks. Remote Sensing of Environment, 70(3): 307-316 [DOI: 10.1016/s0034-4257(99)00046-2http://dx.doi.org/10.1016/s0034-4257(99)00046-2]
Winebrenner D P, Bredow J, Fung A K, Drinkwater M R, Nghiem S, Gow A J, Perovich D K, Grenfell T C, Han H C, Kong J A, Lee J K, Mudaliar S, Onstott R G, Tsang L and West R D. 1992. Microwave Sea Ice Signature Modeling//Carsey F D ed. Microwave Remote Sensing of Sea Ice. Washington: American Geophysical Union: 75-137 [DOI: 10.1029/GM068p0137http://dx.doi.org/10.1029/GM068p0137]
Wu S L and Liu J. 2018. Comparison of Arctic sea ice concentration datasets. Haiyang Xuebao, 40(11): 64-72
武胜利, 刘健. 2018. 长序列北极海冰覆盖数据集对比分析. 海洋学报, 40(11): 64-72 [DOI: 10.3969/j.issn.0253-4193.2018.11.007http://dx.doi.org/10.3969/j.issn.0253-4193.2018.11.007]
Zhang X, Wang Z Z and Shen H. 2012. A sea ice concentration algorithm based on HY-2 scanning radiometer data. Remote Sensing Technology and Application, 27(6): 912-918
张翔, 王振占, 谌华. 2012. 一种利用HY-2卫星扫描微波辐射计数据反演极地海冰密集度的算法. 遥感技术与应用, 27(6): 912-918 [ DOI: 10.11873/j.issn.1004-0323.2012.6.912http://dx.doi.org/10.11873/j.issn.1004-0323.2012.6.912]
Zhang X. 2012. Research on Polar Sea Ice Parameters and Retrieval and Variability Based on Space-borne Microwave Radiometer. Beijing: University of Chinese Academy of Sciences
张翔. 2012. 基于星载微波辐射计的极地海冰参数及其变化研究. 北京: 中国科学院大学
Zhao J C, Zhou X, Sun X Y, Cheng J J, Hu B and Li C H. 2017. The inter comparison and assessment of satellite sea-ice concentration datasets from the arctic. Journal of Remote Sensing, 21(3): 351-364
赵杰臣, 周翔, 孙晓宇, 程净净, 胡波, 李春花. 2017. 北极遥感海冰密集度数据的比较和评估. 遥感学报, 21(3): 351-364 [DOI: 10.11834/jrs.20176136http://dx.doi.org/10.11834/jrs.20176136]
相关文章
相关作者
相关机构