Machine learning paradigms in high-resolution remote sensing image interpretation
- Vol. 25, Issue 1, Pages: 182-197(2021)
Published: 07 January 2021
DOI: 10.11834/jrs.20210164
扫 描 看 全 文
浏览全部资源
扫码关注微信
Published: 07 January 2021 ,
扫 描 看 全 文
周培诚,程塨,姚西文,韩军伟.2021.高分辨率遥感影像解译中的机器学习范式.遥感学报,25(1): 182-197
Zhou P C,Cheng G,Yao X W and Han J W. 2021. Machine learning paradigms in high-resolution remote sensing image interpretation. National Remote Sensing Bulletin, 25(1):182-197
高分辨率遥感影像解译是遥感信息处理领域的研究热点之一,在遥感大数据知识挖掘与智能化分析中起着至关重要的作用,具有重要的民用和军事应用价值。传统的高分辨率遥感影像解译通常采用人工目视解译方式,费时费力且精度低。所以,如何自动、高效地实现高分辨率遥感影像解译是亟待解决的问题。近年来,随着人工智能技术的飞速发展,采用机器学习方法实现高分辨率遥感影像解译已成为主流的研究方向。本文结合高分辨率遥感影像解译的典型任务,如目标检测、场景分类、语义分割、高光谱图像分类等,系统综述了5种代表性的机器学习范式。具体来说,本文分别介绍了不同机器学习范式的定义、常用方法以及代表性应用,包括全监督学习(如支持向量机、K-最近邻、决策树、随机森林、概率图模型)、半监督学习(如纯半监督学习、直推学习、主动学习)、弱监督学习(如多示例学习)、无监督学习(如聚类、主成分分析、稀疏表达)和深度学习(如堆栈自编码机、深度信念网络、卷积神经网络、生成对抗网络)。其次,深入分析五种机器学习范式的优缺点,并总结了它们在遥感影像解译中的典型应用。最后,展望了高分辨率遥感影像解译的机器学习发展方向,如小样本学习、无监督深度学习、强化学习等。
High-resolution remote sensing image interpretation is a major topic in remote sensing information processing. It plays a vital role in the knowledge mining and intelligent analysis of remote sensing big data and has important application values in civil and military fields. The traditional methods of high-resolution remote sensing image interpretation generally use manual visual interpretation
which is time consuming and laborious and has low accuracy. Therefore
interpreting high-resolution remote sensing images automatically and efficiently is an urgent problem to be solved. The rapid development of artificial intelligence technology in recent years has made machine learning the mainstream research direction of high-resolution remote sensing image interpretation. In this study
we systematically review five kinds of representative machine learning paradigms on the basis of the typical tasks of high-resolution remote sensing image interpretation
such as object detection
scene classification
semantic segmentation
and hyperspectral image classification. Specifically
we introduce their definitions
typical methods
and applications. The representative machine learning paradigms include supervised learning (e.g.
support vector machine
k-nearest neighbor
decision tree
random tree
and probabilistic graph model)
semi-supervised learning (e.g.
pure semi-supervised learning
transductive learning
and active learning)
weakly supervised learning (e.g.
multiple instance learning)
unsupervised learning (e.g.
clustering
principal component analysis
and sparse coding)
and deep learning (e.g.
stacked auto-encoder
deep belief network
convolutional neural network
and generative adversarial network). Then
we comprehensively analyze the strengths and limitations of the five kinds of machine learning paradigms and summarize their typical applications in remote sensing image interpretation. Finally
we summarize the development direction of high-resolution remote sensing image interpretation
such as few-shot learning
unsupervised deep learning
and reinforcement learning.
遥感影像解译机器学习范式深度学习弱监督学习小样本学习强化学习
remote sensing image interpretationmachine learning paradigmdeep learningweakly supervised learningfew-shot learningreinforcement learning
Arı C and Aksoy S. 2014. Detection of compound structures using a gaussian mixture model with spectral and spatial constraints. IEEE Transactions on Geoscience and Remote Sensing, 52(10): 6627-6638 [DOI: 10.1109/TGRS.2014.2299540http://dx.doi.org/10.1109/TGRS.2014.2299540]
Bai X, Zhang H G and Zhou J. 2014. VHR object detection based on structural feature extraction and query expansion. IEEE Transactions on Geoscience and Remote Sensing, 52(10): 6508-6520 [DOI: 10.1109/TGRS.2013.2296782http://dx.doi.org/10.1109/TGRS.2013.2296782]
Bandos T V, Bruzzone L and Camps-Valls G. 2009. Classification of hyperspectral images with regularized linear discriminant analysis. IEEE Transactions on Geoscience and Remote Sensing, 47(3): 862-873 [DOI: 10.1109/TGRS.2008.2005729http://dx.doi.org/10.1109/TGRS.2008.2005729]
Blaschke T. 2010. Object based image analysis for remote sensing. ISPRS Journal of Photogrammetry and Remote Sensing, 65(1): 2-16 [DOI: 10.1016/j.isprsjprs.2009.06.004http://dx.doi.org/10.1016/j.isprsjprs.2009.06.004]
Boualleg Y, Farah M and Farah I R. 2019. Remote sensing scene classification using convolutional features and deep forest classifier. IEEE Geoscience and Remote Sensing Letters, 16(12): 1944-1948 [DOI: 10.1109/LGRS.2019.2911855http://dx.doi.org/10.1109/LGRS.2019.2911855]
Chen H, Wu C, Du B, Zhang L P and Wang L. 2020. Change detection in multisource VHR images via deep siamese convolutional multiple-layers recurrent neural network. IEEE Transactions on Geoscience and Remote Sensing, 58(4): 2848-2864 [DOI: 10.1109/TGRS.2019.2956756http://dx.doi.org/10.1109/TGRS.2019.2956756]
Chen Y S, Jiang H L, Li C Y, Jia X P and Ghamisi P. 2016. Deep feature extraction and classification of hyperspectral images based on convolutional neural networks. IEEE Transactions on Geoscience and Remote Sensing, 54(10): 6232-6251 [DOI: 10.1109/TGRS.2016.2584107http://dx.doi.org/10.1109/TGRS.2016.2584107]
Chen Y S, Lin Z H, Zhao X, Wang G and Gu Y F. 2014. Deep learning-based classification of hyperspectral data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(6): 2094-2107 [DOI: 10.1109/JSTARS.2014.2329330http://dx.doi.org/10.1109/JSTARS.2014.2329330]
Chen Y S, Zhao X and Jia X P. 2015. Spectral–spatial classification of hyperspectral data based on deep belief network. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(6): 2381-2392 [DOI: 10.1109/JSTARS.2015.2388577http://dx.doi.org/10.1109/JSTARS.2015.2388577]
Cheng G, Guo L, Zhao T Y, Han J W, Li H H and Fang J. 2013a. Automatic landslide detection from remote-sensing imagery using a scene classification method based on BoVW and pLSA. International Journal of Remote Sensing, 34(1): 45-59 [DOI: 10.1080/01431161.2012.705443http://dx.doi.org/10.1080/01431161.2012.705443]
Cheng G and Han J W. 2016. A survey on object detection in optical remote sensing images. ISPRS Journal of Photogrammetry and Remote Sensing, 117: 11-28 [DOI: 10.1016/j.isprsjprs.2016.03.014http://dx.doi.org/10.1016/j.isprsjprs.2016.03.014]
Cheng G, Han J W, Guo L, Liu Z B, Bu S H and Ren J C. 2015a. Effective and efficient midlevel visual elements-oriented land-use classification using VHR remote sensing images. IEEE Transactions on Geoscience and Remote Sensing, 53(8): 4238-4249 [DOI: 10.1109/TGRS.2015.2393857http://dx.doi.org/10.1109/TGRS.2015.2393857]
Cheng G, Han J W, Guo L, Qian X L, Zhou P C, Yao X W and Hu X T. 2013b. Object detection in remote sensing imagery using a discriminatively trained mixture model. ISPRS Journal of Photogrammetry and Remote Sensing, 85: 32-43 [DOI: 10.1016/j.isprsjprs.2013.08.001http://dx.doi.org/10.1016/j.isprsjprs.2013.08.001]
Cheng G, Han J W and Lu X Q. 2017a. Remote sensing image scene classification: benchmark and state of the art. Proceedings of the IEEE, 105(10): 1865-1883 [DOI: 10.1109/JPROC.2017.2675998http://dx.doi.org/10.1109/JPROC.2017.2675998]
Cheng G, Han J W, Zhou P C and Guo L. 2014. Multi-class geospatial object detection and geographic image classification based on collection of part detectors. ISPRS Journal of Photogrammetry and Remote Sensing, 98: 119-132 [DOI: 10.1016/j.isprsjprs.2014.10.002http://dx.doi.org/10.1016/j.isprsjprs.2014.10.002]
Cheng G, Han J W, Zhou P C and Xu D. 2019. Learning rotation-invariant and fisher discriminative convolutional neural networks for object detection. IEEE Transactions on Image Processing, 28(1): 265-278 [DOI: 10.1109/TIP.2018.2867198http://dx.doi.org/10.1109/TIP.2018.2867198]
Cheng G, Li Z P, Han J W, Yao X W and Guo L. 2018a. Exploring hierarchical convolutional features for hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing, 56(11): 6712-6722 [DOI: 10.1109/TGRS.2018.2841823http://dx.doi.org/10.1109/TGRS.2018.2841823]
Cheng G, Li Z P, Yao X W, Guo L and Wei Z L. 2017b. Remote sensing image scene classification using bag of convolutional features. IEEE Geoscience and Remote Sensing Letters, 14(10): 1735-1739 [DOI: 10.1109/LGRS.2017.2731997http://dx.doi.org/10.1109/LGRS.2017.2731997]
Cheng G, Ma C C, Zhou P C, Yao X W and Han J W. 2016a. Scene classification of high resolution remote sensing images using convolutional neural networks//2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). Beijing: IEEE: 767-770 [DOI: 10.1109/IGARSS.2016.7729193http://dx.doi.org/10.1109/IGARSS.2016.7729193]
Cheng G, Si Y J, Hong H L, Yao X W and Guo L. 2020. Cross-scale feature fusion for object detection in optical remote sensing images. IEEE Geoscience and Remote Sensing Letters: 1-5 [DOI: 10.1109/LGRS.2020.2975541http://dx.doi.org/10.1109/LGRS.2020.2975541]
Cheng G, Yang C Y, Yao X W, Guo L and Han J W. 2018b. When deep learning meets metric learning: remote sensing image scene classification via learning discriminative CNNs. IEEE Transactions on Geoscience and Remote Sensing, 56(5): 2811-2821 [DOI: 10.1109/TGRS.2017.2783902http://dx.doi.org/10.1109/TGRS.2017.2783902]
Cheng G, Zhou P C and Han J W. 2016b. Learning rotation-invariant convolutional neural networks for object detection in VHR optical remote sensing images. IEEE Transactions on Geoscience and Remote Sensing, 54(12): 7405-7415 [DOI: 10.1109/TGRS.2016.2601622http://dx.doi.org/10.1109/TGRS.2016.2601622]
Cheng G, Zhou P C and Han J W. 2016c. RIFD-CNN: rotation-invariant and fisher discriminative convolutional neural networks for object detection//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA: IEEE: 2884-2893 [DOI: 10.1109/CVPR.2016.315http://dx.doi.org/10.1109/CVPR.2016.315]
Cheng G, Zhou P C and Han J W. 2016d. Learning rotation-invariant convolutional neural networks for object detection in VHR optical remote sensing images. IEEE Transactions on Geoscience and Remote Sensing, 54(12): 7405-7415 [DOI: 10.1109/TGRS.2016.2601622http://dx.doi.org/10.1109/TGRS.2016.2601622]
Cheng G, Zhou P C, Han J W, Guo L and Han J G. 2015b. Auto-encoder-based shared mid-level visual dictionary learning for scene classification using very high resolution remote sensing images. IET Computer Vision, 9(5): 639-647 [DOI: 10.1049/iet-cvi.2014.0270http://dx.doi.org/10.1049/iet-cvi.2014.0270]
Cheng L, Liu X, Li L L, Jiao L C and Tang X. 2018c. Deep adaptive proposal network for object detection in optical remote sensing images. arXiv preprint arXiv: 1807.07327
Cortes C and Vapnik V. 1995. Support-vector networks. Machine Learning, 20(3): 273-297 [DOI: 10.1007/BF00994018http://dx.doi.org/10.1007/BF00994018]
Cover T and Hart P. 1967. Nearest neighbor pattern classification. IEEE Transactions on Information Theory, 13(1): 21-27 [DOI: 10.1109/TIT.1967.1053964http://dx.doi.org/10.1109/TIT.1967.1053964]
Deng C, Xue Y M, Liu X L, Li C and Tao D C. 2019. Active transfer learning network: a unified deep joint spectral–spatial feature learning model for hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing, 57(3): 1741-1754 [DOI: 10.1109/TGRS.2018.2868851http://dx.doi.org/10.1109/TGRS.2018.2868851]
Ding J, Xue N, Long Y, Xia G S and Lu Q K. 2019. Learning RoI transformer for oriented object detection in aerial images//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, CA, USA: IEEE: 2844-2853 [DOI: 10.1109/CVPR.2019.00296http://dx.doi.org/10.1109/CVPR.2019.00296]
Dópido I, Li J, Marpu P R, Plaza A, Dias J M B and Benediktsson J A. 2013. Semisupervised self-learning for hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing, 51(7): 4032-4044 [DOI: 10.1109/TGRS.2012.2228275http://dx.doi.org/10.1109/TGRS.2012.2228275]
Eikvil L, Aurdal L and Koren H. 2009. Classification-based vehicle detection in high-resolution satellite images. ISPRS Journal of Photogrammetry and Remote Sensing, 64(1): 65-72 [DOI: 10.1016/j.isprsjprs.2008.09.005http://dx.doi.org/10.1016/j.isprsjprs.2008.09.005]
Fan Y D, Wu W, Wang W, Liu M and Wen Q. 2016. Research progress of disaster remote sensing in China. Journal of Remote Sensing, 20(5): 1170-1184
范一大, 吴玮, 王薇, 刘明, 温奇. 2016. 中国灾害遥感研究进展. 遥感学报, 20(5): 1170-1184 [DOI: 10.11834/jrs.20166171http://dx.doi.org/10.11834/jrs.20166171]
Fauvel M, Benediktsson J A, Chanussot J and Sveinsson J R. 2008. Spectral and spatial classification of hyperspectral data using SVMs and morphological profiles. IEEE Transactions on Geoscience and Remote Sensing, 46(11): 3804-3814 [DOI: 10.1109/TGRS.2008.922034http://dx.doi.org/10.1109/TGRS.2008.922034]
Feng X X, Han J W, Yao X W and Cheng G. 2020. Progressive contextual instance refinement for weakly supervised object detection in remote sensing images. IEEE Transactions on Geoscience and Remote Sensing: 1-11 [DOI: 10.1109/TGRS.2020.2985989http://dx.doi.org/10.1109/TGRS.2020.2985989]
Gao L R, Gu D X, Zhuang L N, Ren J C, Yang D and Zhang B. 2020. Combining t-distributed stochastic neighbor embedding with convolutional neural networks for hyperspectral image classification. IEEE Geoscience and Remote Sensing Letters, 17(8): 1368-1372 [DOI: 10.1109/LGRS.2019.2945122http://dx.doi.org/10.1109/LGRS.2019.2945122]
Geng J, Wang H Y, Fan J C and Ma X R. 2018. SAR image classification via deep recurrent encoding neural networks. IEEE Transactions on Geoscience and Remote Sensing, 56(4): 2255-2269 [DOI: 10.1109/TGRS.2017.2777868http://dx.doi.org/10.1109/TGRS.2017.2777868]
Gong J Y and Zhong Y F. 2016. Survey of intelligent optical remote sensing image processing. Journal of Remote Sensing, 20(5): 733-747
龚健雅, 钟燕飞. 2016. 光学遥感影像智能化处理研究进展. 遥感学报, 20(5): 733-747 [DOI: 10.11834/jrs.20166205http://dx.doi.org/10.11834/jrs.20166205]
Han J W, Zhang D W, Cheng G, Guo L and Ren J C. 2015. Object detection in optical remote sensing images based on weakly supervised learning and high-level feature learning. IEEE Transactions on Geoscience and Remote Sensing, 53(6): 3325-3337 [DOI: 10.1109/TGRS.2014.2374218http://dx.doi.org/10.1109/TGRS.2014.2374218]
Han J W, Zhou P C, Zhang D W, Cheng G, Guo L, Liu Z B, Bu S H and Wu J. 2014. Efficient, simultaneous detection of multi-class geospatial targets based on visual saliency modeling and discriminative learning of sparse coding. ISPRS Journal of Photogrammetry and Remote Sensing, 89: 37-48 [DOI: 10.1016/j.isprsjprs.2013.12.011http://dx.doi.org/10.1016/j.isprsjprs.2013.12.011]
He K M, Zhang X Y, Ren S Q and Sun J. 2016. Deep residual learning for image recognition//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA: IEEE: 770-778 [DOI: 10.1109/CVPR.2016.90http://dx.doi.org/10.1109/CVPR.2016.90]
Hinton G E and Salakhutdinov R R. 2006. Reducing the dimensionality of data with neural networks. Science, 313(5786): 504 [DOI: 10.1126/science.1127647http://dx.doi.org/10.1126/science.1127647]
Hu W, Huang Y Y, Wei L, Zhang F and Li H C. 2015. Deep convolutional neural networks for hyperspectral image classification. Journal of Sensors, 2015: 258619 [DOI: 10.1155/2015/258619http://dx.doi.org/10.1155/2015/258619]
Jia X P and Richards J A. 2002. Cluster-space representation for hyperspectral data classification. IEEE Transactions on Geoscience and Remote Sensing, 40(3): 593-598 [DOI: 10.1109/TGRS.2002.1000319http://dx.doi.org/10.1109/TGRS.2002.1000319]
Kang X D, Xiang X L, Li S T and Benediktsson J A. 2017. PCA-based edge-preserving features for hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing, 55(12): 7140-7151 [DOI: 10.1109/TGRS.2017.2743102http://dx.doi.org/10.1109/TGRS.2017.2743102]
Kong Y, Cheng Y H, Chen C L P and Wang X S. 2019. Hyperspectral image clustering based on unsupervised broad learning. IEEE Geoscience and Remote Sensing Letters, 16(11): 1741-1745 [DOI: 10.1109/LGRS.2019.2907598http://dx.doi.org/10.1109/LGRS.2019.2907598]
Krizhevsky A, Sutskever I and Hinton G E. 2012. ImageNet classification with deep convolutional neural networks//Proceedings of the 25th International Conference on Neural Information Processing Systems. Red Hook, United states: ACM: 1097-1105
Lei Z, Fang T, Huo H and Li D R. 2012. Rotation-invariant object detection of remotely sensed images based on texton forest and hough voting. IEEE Transactions on Geoscience and Remote Sensing, 50(4): 1206-1217 [DOI: 10.1109/TGRS.2011.2166966http://dx.doi.org/10.1109/TGRS.2011.2166966]
Lei Z, Fang T and Li D R. 2011. Land cover classification for remote sensing imagery using conditional texton forest with historical land cover map. IEEE Geoscience and Remote Sensing Letters, 8(4): 720-724 [DOI: 10.1109/LGRS.2010.2103045http://dx.doi.org/10.1109/LGRS.2010.2103045]
Li D R, Zhang L P and Xia G S. 2014. Automatic analysis and mining of remote sensing big data. Acta Geodaetica et Cartographica Sinica, 43(12): 1211-1216
李德仁, 张良培, 夏桂松. 2014. 遥感大数据自动分析与数据挖掘. 测绘学报, 43(12): 1211-1216 [DOI: 10.13485/j.cnki.11-2089.2014.0187http://dx.doi.org/10.13485/j.cnki.11-2089.2014.0187]
Li J, Bioucas-Dias J M and Plaza A. 2012. Spectral–spatial hyperspectral image segmentation using subspace multinomial logistic regression and markov random fields. IEEE Transactions on Geoscience and Remote Sensing, 50(3): 809-823 [DOI: 10.1109/TGRS.2011.2162649http://dx.doi.org/10.1109/TGRS.2011.2162649]
Li K, Cheng G, Bu S H and You X. 2018a. Rotation-insensitive and context-augmented object detection in remote sensing images. IEEE Transactions on Geoscience and Remote Sensing, 56(4): 2337-2348 [DOI: 10.1109/TGRS.2017.2778300http://dx.doi.org/10.1109/TGRS.2017.2778300]
Li K, Wan G, Cheng G, Meng L Q and Han J W. 2020a. Object detection in optical remote sensing images: a survey and a new benchmark. ISPRS Journal of Photogrammetry and Remote Sensing, 159: 296-307 [DOI: 10.1016/j.isprsjprs.2019.11.023http://dx.doi.org/10.1016/j.isprsjprs.2019.11.023]
Li S S, Zhang B, Li A, Jia X P, Gao L R and Peng M. 2013. Hyperspectral imagery clustering with neighborhood constraints. IEEE Geoscience and Remote Sensing Letters, 10(3): 588-592 [DOI: 10.1109/LGRS.2012.2215005http://dx.doi.org/10.1109/LGRS.2012.2215005]
Li S T, Song W W, Fang L Y, Chen Y S, Ghamisi P and Benediktsson J A. 2019. Deep learning for hyperspectral image classification: an overview. IEEE Transactions on Geoscience and Remote Sensing, 57(9): 6690-6709 [DOI: 10.1109/TGRS.2019.2907932http://dx.doi.org/10.1109/TGRS.2019.2907932]
Li Y S, Zhang Y J, Huang X and Yuille A L. 2018b. Deep networks under scene-level supervision for multi-class geospatial object detection from remote sensing images. ISPRS Journal of Photogrammetry and Remote Sensing, 146: 182-196 [DOI: 10.1016/j.isprsjprs.2018.09.014http://dx.doi.org/10.1016/j.isprsjprs.2018.09.014]
Li Z L, Xu K, Xie J F, Bi Q and Qin K. 2020b. Deep multiple instance convolutional neural networks for learning robust scene representations. IEEE Transactions on Geoscience and Remote Sensing, 58(5): 3685-3702 [DOI: 10.1109/TGRS.2019.2960889http://dx.doi.org/10.1109/TGRS.2019.2960889]
Lillesand T M, Kiefer R W and Chipman J W. 2015. Remote Sensing and Image Interpretation. 7th ed. Hoboken: John Wiley and Sons
Liu Q H, Kampffmeyer M, Jenssen R and Salberg A B. 2020. Dense dilated convolutions' merging network for land cover classification. IEEE Transactions on Geoscience and Remote Sensing, 58(9): 6309-6320 [DOI: 10.1109/TGRS.2020.2976658http://dx.doi.org/10.1109/TGRS.2020.2976658]
Liu W, Su F L and Huang X. 2019. Unsupervised adversarial domain adaptation network for semantic segmentation. IEEE Geoscience and Remote Sensing Letters: 1-5 [DOI: 10.1109/LGRS.2019.2956490http://dx.doi.org/10.1109/LGRS.2019.2956490]
Lu X Q, Sun H and Zheng X T. 2019. A feature aggregation convolutional neural network for remote sensing scene classification. IEEE Transactions on Geoscience and Remote Sensing, 57(10): 7894-7906 [DOI: 10.1109/TGRS.2019.2917161http://dx.doi.org/10.1109/TGRS.2019.2917161]
Lu X Q, Wang B Q, Zheng X T and Li X L. 2018. Exploring models and data for remote sensing image caption generation. IEEE Transactions on Geoscience and Remote Sensing, 56(4): 2183-2195 [DOI: 10.1109/TGRS.2017.2776321http://dx.doi.org/10.1109/TGRS.2017.2776321]
Luo R, Wang L, Xiao Y J, He Y and Zhao D F. 2020. Application of deep learning technology in military field. Command Control and Simulation, 42(1): 1-5
罗荣, 王亮, 肖玉杰, 何翼, 赵东峰. 2020. 深度学习技术在军事领域应用. 指挥控制与仿真, 42(1): 1-5 [DOI: 10.3969/j.issn.1673-3819.2020.01.001http://dx.doi.org/10.3969/j.issn.1673-3819.2020.01.001]
Ma D G, Tang P and Zhao L J. 2019. SiftingGAN: generating and sifting labeled samples to improve the remote sensing image scene classification baseline in vitro. IEEE Geoscience and Remote Sensing Letters, 16(7): 1046-1050 [DOI: 10.1109/LGRS.2018.2890413http://dx.doi.org/10.1109/LGRS.2018.2890413]
Ma L, Crawford M M and Tian J. 2010. Local manifold learning-based k-nearest-neighbor for hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing, 48(11): 4099-4109 [DOI: 10.1109/TGRS.2010.2055876http://dx.doi.org/10.1109/TGRS.2010.2055876]
Mei A X. 2001. An Introduction to Remote Sensing. Beijing: Higher Education Press
梅安新. 2001. 遥感导论. 北京: 高等教育出版社
Mou L C, Bruzzone L and Zhu X X. 2019. Learning spectral-spatial-temporal features via a recurrent convolutional neural network for change detection in multispectral imagery. IEEE Transactions on Geoscience and Remote Sensing, 57(2): 924-935 [DOI: 10.1109/TGRS.2018.2863224http://dx.doi.org/10.1109/TGRS.2018.2863224]
Mou L C, Ghamisi P and Zhu X X. 2017. Deep recurrent neural networks for hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing, 55(7): 3639-3655 [DOI: 10.1109/TGRS.2016.2636241http://dx.doi.org/10.1109/TGRS.2016.2636241]
Mountrakis G, Im J and Ogole C. 2011. Support vector machines in remote sensing: a review. ISPRS Journal of Photogrammetry and Remote Sensing, 66(3): 247-259 [DOI: 10.1016/j.isprsjprs.2010.11.001http://dx.doi.org/10.1016/j.isprsjprs.2010.11.001]
Olshausen B A and Field D J. 1996. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature, 381(6583): 607-609 [DOI: 10.1038/381607a0http://dx.doi.org/10.1038/381607a0]
Peng C, Li Y Y, Jiao L C, Chen Y Q and Shang R H. 2019. Densely based multi-scale and multi-modal fully convolutional networks for high-resolution remote-sensing image semantic segmentation. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 12(8): 2612-2626 [DOI: 10.1109/JSTARS.2019.2906387http://dx.doi.org/10.1109/JSTARS.2019.2906387]
Persello C and Bruzzone L. 2014. Active and semisupervised learning for the classification of remote sensing images. IEEE Transactions on Geoscience and Remote Sensing, 52(11): 6937-6956 [DOI: 10.1109/TGRS.2014.2305805http://dx.doi.org/10.1109/TGRS.2014.2305805]
Redmon J, Divvala S, Girshick R and Farhadi A. 2016. You only look once: unified, real-time object detection//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA: IEEE: 779-788 [DOI: 10.1109/CVPR.2016.91http://dx.doi.org/10.1109/CVPR.2016.91]
Ren S Q, He K M, Girshick R and Sun J. 2017. Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(6): 1137-1149 [DOI: 10.1109/TPAMI.2016.2577031http://dx.doi.org/10.1109/TPAMI.2016.2577031]
Simonyan K and Zisserman A. 2014. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv: 1409.1556
Szegedy C, Liu W, Jia Y Q, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V and Rabinovich A. 2015. Going deeper with convolutions//2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, MA, USA: IEEE: 1-9 [DOI: 10.1109/CVPR.2015.7298594http://dx.doi.org/10.1109/CVPR.2015.7298594]
Tang J X, Deng C W, Huang G B and Zhao B J. 2015. Compressed-domain ship detection on spaceborne optical image using deep neural network and extreme learning machine. IEEE Transactions on Geoscience and Remote Sensing, 53(3): 1174-1185 [DOI: 10.1109/TGRS.2014.2335751http://dx.doi.org/10.1109/TGRS.2014.2335751]
Tao Z and Nevatia R. 2001. Car detection in low resolution aerial image//Proceedings of the 8th IEEE International Conference on Computer Vision. Vancouver, BC, Canada: IEEE: 710-717 [DOI: 10.1109/ICCV.2001.937593http://dx.doi.org/10.1109/ICCV.2001.937593]
Tong Q X, Zhang B and Zhang L F. 2016. Current progress of hyperspectral remote sensing in China. Journal of Remote Sensing, 20(5): 689-707
童庆禧, 张兵, 张立福. 2016. 中国高光谱遥感的前沿进展. 遥感学报, 20(5): 689-707 [DOI: 10.11834/jrs.20166264http://dx.doi.org/10.11834/jrs.20166264]
Tong X D. 2016. Development of China high-resolution earth observation system. Journal of Remote Sensing, 20(5): 775-780
童旭东. 2016. 中国高分辨率对地观测系统重大专项建设进展. 遥感学报, 20(5): 775-780 [DOI: 10.11834/jrs.20166302http://dx.doi.org/10.11834/jrs.20166302]
Vincent P, Larochelle H, Lajoie I, Bengio Y and Manzagol P A. 2010. Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. The Journal of Machine Learning Research, 11(12): 3371-3408
Wang Q, Liu S T, Chanussot J and Li X L. 2019a. Scene classification with recurrent attention of VHR remote sensing images. IEEE Transactions on Geoscience and Remote Sensing, 57(2): 1155-1167 [DOI: 10.1109/TGRS.2018.2864987http://dx.doi.org/10.1109/TGRS.2018.2864987]
Wang R, Nie F P, Wang Z, He F and Li X L. 2019b. Scalable graph-based clustering with nonnegative relaxation for large hyperspectral image. IEEE Transactions on Geoscience and Remote Sensing, 57(10): 7352-7364 [DOI: 10.1109/TGRS.2019.2913004http://dx.doi.org/10.1109/TGRS.2019.2913004]
Wang S G, Wang M, Yang S Y and Jiao L C. 2017. New hierarchical saliency filtering for fast ship detection in high-resolution SAR images. IEEE Transactions on Geoscience and Remote Sensing, 55(1): 351-362 [DOI: 10.1109/TGRS.2016.2606481http://dx.doi.org/10.1109/TGRS.2016.2606481]
Wang Y B, Zhang L Q, Tong X H, Nie F P, Huang H Y and Mei J. 2018. LRAGE: learning latent relationships with adaptive graph embedding for aerial scene classification. IEEE Transactions on Geoscience and Remote Sensing, 56(2): 621-634 [DOI: 10.1109/TGRS.2017.2752217http://dx.doi.org/10.1109/TGRS.2017.2752217]
Wang Y B, Zhang L Q, Tong X H, Zhang L, Zhang Z X, Liu H, Xing X Y and Mathiopoulos P T. 2016. A three-layered graph-based learning approach for remote sensing image retrieval. IEEE Transactions on Geoscience and Remote Sensing, 54(10): 6020-6034 [DOI: 10.1109/TGRS.2016.2579648http://dx.doi.org/10.1109/TGRS.2016.2579648]
Wang Z Y, Nasrabadi N M and Huang T S. 2015. Semisupervised hyperspectral classification using task-driven dictionary learning with laplacian regularization. IEEE Transactions on Geoscience and Remote Sensing, 53(3): 1161-1173 [DOI: 10.1109/TGRS.2014.2335177http://dx.doi.org/10.1109/TGRS.2014.2335177]
Xia G S, Bai X, Ding J, Zhu Z, Belongie S, Luo J B, Datcu M, Pelillo M and Zhang L P. 2018. DOTA: a large-scale dataset for object detection in aerial images//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, United States: IEEE: 3974-3983 [DOI: 10.1109/CVPR.2018.00418http://dx.doi.org/10.1109/CVPR.2018.00418]
Xia G S, Hu J W, Hu F, Shi B G, Bai X, Zhong Y F, Zhang L P and Lu X Q. 2017. AID: a benchmark data set for performance evaluation of aerial scene classification. IEEE Transactions on Geoscience and Remote Sensing, 55(7): 3965-3981 [DOI: 10.1109/TGRS.2017.2685945http://dx.doi.org/10.1109/TGRS.2017.2685945]
Xu F, Yang W, Jiang T B, Lin S J, Luo H and Xia G S. 2020. Mental retrieval of remote sensing images via adversarial sketch-image feature learning. IEEE Transactions on Geoscience and Remote Sensing: 1-14 [DOI: 10.1109/TGRS.2020.2984316http://dx.doi.org/10.1109/TGRS.2020.2984316]
Xu X D, Li W, Ran Q, Du Q, Gao L R and Zhang B. 2018. Multisource remote sensing data classification based on convolutional neural network. IEEE Transactions on Geoscience and Remote Sensing, 56(2): 937-949 [DOI: 10.1109/TGRS.2017.2756851http://dx.doi.org/10.1109/TGRS.2017.2756851]
Xu Z Z, Xu X, Wang L, Yang R and Pu F L. 2017. Deformable convnet with aspect ratio constrained NMS for object detection in remote sensing imagery. Remote Sensing, 9(12): 1312 [DOI: 10.3390/rs9121312http://dx.doi.org/10.3390/rs9121312]
Yang G and Liu X N. 2004. The present research condition and development trend of remotely sensed imagery interpretation. Remote Sensing for Land and Resources, 16(2): 7-10, 15
杨桄, 刘湘南. 2004. 遥感影像解译的研究现状和发展趋势. 国土资源遥感, 16(2): 7-10, 15 [DOI: 10.6046/gtzyyg.2004.02.02http://dx.doi.org/10.6046/gtzyyg.2004.02.02]
Yang W, Yin X S and Xia G S. 2015. Learning high-level features for satellite image classification with limited labeled samples. IEEE Transactions on Geoscience and Remote Sensing, 53(8): 4472-4482 [DOI: 10.1109/TGRS.2015.2400449http://dx.doi.org/10.1109/TGRS.2015.2400449]
Yao W, Dumitru C O, Loffeld O and Datcu M. 2016a. Semi-supervised hierarchical clustering for semantic SAR image annotation. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9(5): 1993-2008 [DOI: 10.1109/JSTARS.2016.2537548http://dx.doi.org/10.1109/JSTARS.2016.2537548]
Yao X W, Feng X X, Han J W, Cheng G and Guo L. 2020. Automatic weakly supervised object detection from high spatial resolution remote sensing images via dynamic curriculum learning. IEEE Transactions on Geoscience and Remote Sensing [DOI: 10.1109/TGRS.2020.2991407http://dx.doi.org/10.1109/TGRS.2020.2991407]
Yao X W, Han J W, Cheng G, Qian X M and Guo L. 2016b. Semantic annotation of high-resolution satellite images via weakly supervised learning. IEEE Transactions on Geoscience and Remote Sensing, 54(6): 3660-3671 [DOI: 10.1109/TGRS.2016.2523563http://dx.doi.org/10.1109/TGRS.2016.2523563]
Yao X W, Han J W, Guo L, Bu S H and Liu Z B. 2015. A coarse-to-fine model for airport detection from remote sensing images using target-oriented visual saliency and CRF. Neurocomputing, 164: 162-172 [DOI: 10.1016/j.neucom.2015.02.073http://dx.doi.org/10.1016/j.neucom.2015.02.073]
You H F, Tian S W, Yu L and Lv Y L. 2020. Pixel-level remote sensing image recognition based on bidirectional word vectors. IEEE Transactions on Geoscience and Remote Sensing, 58(2): 1281-1293 [DOI: 10.1109/TGRS.2019.2945591http://dx.doi.org/10.1109/TGRS.2019.2945591]
Yu H Y, Gao L R, Li W, Du Q and Zhang B. 2017a. Locality sensitive discriminant analysis for group sparse representation-based hyperspectral imagery classification. IEEE Geoscience and Remote Sensing Letters, 14(8): 1358-1362 [DOI: 10.1109/LGRS.2017.2712200http://dx.doi.org/10.1109/LGRS.2017.2712200]
Yu H Y, Gao L R, Liao W Z, Zhang B, Pižurica A and Philips W. 2017b. Multiscale superpixel-level subspace-based support vector machines for hyperspectral image classification. IEEE Geoscience and Remote Sensing Letters, 14(11): 2142-2146 [DOI: 10.1109/LGRS.2017.2755061http://dx.doi.org/10.1109/LGRS.2017.2755061]
Yu H Y, Shang X D, Zhang X, Gao L R, Song M P and Hu J C. 2020. Hyperspectral image classification based on adjacent constraint representation. IEEE Geoscience and Remote Sensing Letters: 1-5 [DOI: 10.1109/LGRS.2020.2982706http://dx.doi.org/10.1109/LGRS.2020.2982706]
Zhang B, Li S S, Jia X P, Gao L R and Peng M. 2011. Adaptive markov random field approach for classification of hyperspectral imagery. IEEE Geoscience and Remote Sensing Letters, 8(5): 973-977 [DOI: 10.1109/LGRS.2011.2145353http://dx.doi.org/10.1109/LGRS.2011.2145353]
Zhang D W, Han J W, Cheng G, Liu Z B, Bu S H and Guo L. 2015. Weakly supervised learning for target detection in remote sensing images. IEEE Geoscience and Remote Sensing Letters, 12(4): 701-705 [DOI: 10.1109/LGRS.2014.2358994http://dx.doi.org/10.1109/LGRS.2014.2358994]
Zhang F, Du B, Zhang L P and Xu M Z. 2016a. Weakly supervised learning based on coupled convolutional neural networks for aircraft detection. IEEE Transactions on Geoscience and Remote Sensing, 54(9): 5553-5563 [DOI: 10.1109/TGRS.2016.2569141http://dx.doi.org/10.1109/TGRS.2016.2569141]
Zhang Q P and Couloigner I. 2006. Benefit of the angular texture signature for the separation of parking lots and roads on high resolution multi-spectral imagery. Pattern Recognition Letters, 27(9): 937-946 [DOI: 10.1016/j.patrec.2005.12.003http://dx.doi.org/10.1016/j.patrec.2005.12.003]
Zhang X R, Song Q, Gao Z Y, Zheng Y G, Weng P and Jiao L C. 2016b. Spectral-spatial feature learning using cluster-based group sparse coding for hyperspectral image classification. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9(9): 4142-4159 [DOI: 10.1109/JSTARS.2016.2593907http://dx.doi.org/10.1109/JSTARS.2016.2593907]
Zhao Z Q, Jiao L C, Liu F, Zhao J Q and Chen P H. 2016. Semisupervised discriminant feature learning for SAR image category via sparse ensemble. IEEE Transactions on Geoscience and Remote Sensing, 54(6): 3532-3547 [DOI: 10.1109/TGRS.2016.2519910http://dx.doi.org/10.1109/TGRS.2016.2519910]
Zheng C, Zhang Y and Wang L G. 2017. Semantic segmentation of remote sensing imagery using an object-based markov random field model with auxiliary label fields. IEEE Transactions on Geoscience and Remote Sensing, 55(5): 3015-3028 [DOI: 10.1109/TGRS.2017.2658731http://dx.doi.org/10.1109/TGRS.2017.2658731]
Zhong P, Gong Z Q, Li S T and Schönlieb C B. 2017. Learning to diversify deep belief networks for hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing, 55(6): 3516-3530 [DOI: 10.1109/TGRS.2017.2675902http://dx.doi.org/10.1109/TGRS.2017.2675902]
Zhong P and Wang R S. 2007. A multiple conditional random fields ensemble model for urban area detection in remote sensing optical images. IEEE Transactions on Geoscience and Remote Sensing, 45(12): 3978-3988 [DOI: 10.1109/TGRS.2007.907109http://dx.doi.org/10.1109/TGRS.2007.907109]
Zhou P C, Cheng G, Liu Z B, Bu S H and Hu X T. 2016. Weakly supervised target detection in remote sensing images based on transferred deep features and negative bootstrapping. Multidimensional Systems and Signal Processing, 27(4): 925-944 [DOI: 10.1007/s11045-015-0370-3http://dx.doi.org/10.1007/s11045-015-0370-3]
Zhou P C, Han J W, Cheng G and Zhang B C. 2019a. Learning compact and discriminative stacked autoencoder for hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing, 57(7): 4823-4833 [DOI: 10.1109/TGRS.2019.2893180http://dx.doi.org/10.1109/TGRS.2019.2893180]
Zhou X L, Chen X J and Chen S Y. 2019b. Weakly supervised learning-based object detection: a survey. Computer Science, 46(11): 49-57
周小龙, 陈小佳, 陈胜勇, 雷帮军. 2019. 弱监督学习下的目标检测算法综述. 计算机科学, 46(11): 49-57 [DOI: 10.118 96/jsjkx.181001899http://dx.doi.org/10.11896/jsjkx.181001899]
Zhou Z H. 2013. Disagreement-based semi-supervised learning. Acta Automatica Sinica, 39(11): 1871-1878
周志华. 2013. 基于分歧的半监督学习. 自动化学报, 39(11): 1871-1878 [DOI: 10.3724/SP.J.1004.2013.01871http://dx.doi.org/10.3724/SP.J.1004.2013.01871]
Zhou Z H. 2016. Machine Learning. Beijing: Tsinghua University Press, 2016 (周志华. 2016. 机器学习. 北京: 清华大学出版社)
Zhou Z H. 2018. A brief introduction to weakly supervised learning. National Science Review, 5(1): 44-53 [DOI: 10.1093/nsr/nwx106http://dx.doi.org/10.1093/nsr/nwx106]
Zhu C, Shi W, Pesaresi M, Liu L, Chen X and King B. 2005. The recognition of road network from high-resolution satellite remotely sensed data using image morphological characteristics. International Journal of Remote Sensing, 26(24): 5493-5508 [DOI: 10.1080/01431160500300354http://dx.doi.org/10.1080/01431160500300354]
Zhu L, Chen Y S, Ghamisi P and Benediktsson J A. 2018. Generative adversarial networks for hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing, 56(9): 5046-5063 [DOI: 10.1109/TGRS.2018.2805286http://dx.doi.org/10.1109/TGRS.2018.2805286]
相关文章
相关作者
相关机构