Construction and simulation of a BRF model for the 3D canopy
- Vol. 26, Issue 11, Pages: 2282-2291(2022)
Published: 07 November 2022
DOI: 10.11834/jrs.20210178
扫 描 看 全 文
浏览全部资源
扫码关注微信
Published: 07 November 2022 ,
扫 描 看 全 文
马红章,孙淑怡,刘素美,艾璐,孙根云,孙林.2022.三维冠层BRF模型构建与模拟.遥感学报,26(11): 2282-2291
Ma H Z,Sun S Y,Liu S M,Ai L,Sun G Y and Sun L. 2022. Construction and simulation of a BRF model for the 3D canopy. National Remote Sensing Bulletin, 26(11):2282-2291
三维辐射传输模型能准确刻画异质性植被冠层对太阳辐射的散射,这对利用高空间分辨率光学影像进行植被参数的定量反演具有重要的指导意义。本文基于具有真实植株统计特征的概率株进行三维植被冠层的构建,通过合理设计光能粒子在冠层内的传输过程并结合蒙特卡洛光线追踪技术和冠层孔隙率计算方法,建立了三维冠层辐射传输模型,并利用该模型对不同生长期玉米冠层多角度二向性反射因子BRF(Bidirectional Reflectance Function)进行了模拟。与实测数据的对比结果表明,离散期、垄行期和均一期的玉米冠层BRF模拟结果与实测数据均保持了较好的一致性,红光波段BRF模拟值与实测值的RMSE为0.0085,
R
2
为0.96,近红外波段模拟值与实测值的RMSE为0.013,
R
2
为0.96。水平均一冠层BRF模拟结果与SAIL(Scattering by Arbitrarily Inclined Leaves)模型结果的对比表明,本文模型在光能粒子传输与能量计算方面的是合理准确的。本文发展的概率株三维辐射传输模型为研究异质性冠层BRF提供了一个有效手段,并可为植被生物量以及叶面积指数LAI(Leaf Area Index)等关键冠层参数的定量化反演与验证提供数据支撑。
Vegetation plays an important role in the earth’s ecosystem
and it has always been a focus of quantitative remote sensing research. The spatial heterogeneity of the vegetation canopy results in the complicated Bidirectional Reflectance Factor (BRF) distribution which brings great difficulties to the high-resolution vegetation remote sensing research. The 3D radiation transmission model can accurately describes the interaction between heterogeneous vegetation canopy and solar radiation
which is important for modeling and application of vegetation quantitative remote sensing using high-resolution optical data.
In this work
the probabilistic plants with statistical properties similar to actual plants are used to construct a 3D vegetation canopy. Combining Monte Carlo ray tracing technology and canopy porosity calculation
a 3D canopy radiation transmission model is constructed by rationally designing the random transmission process of optical particles in the canopy. Using probabilistic plants to build the canopy not only accurately describes the canopy’s heterogeneity but also takes into account the non-uniform spatial distribution of leaves. The model considers light to be a particle with the dual properties of frequency and energy. The Monte Carlo method is used to simulate the transmission behavior of light particles in the canopy
and the canopy porosity is calculated to improve the model’s calculation stability.
Taking the corn canopy with a typical ridge planting structure as an example
the bidirectional reflectance function of the corn canopy in different growth periods is simulated and compared with the multi-angle observation data. The comparison results illustrate that the model has good simulation accuracy for the optical BRF of corn canopy in different growing periods. The RMSE between the model simulation value and the measured value is 0.0085 at the red band
and the
R
2
is 0.96. At the near-infrared band
the RMSE and
R
2
are 0.013 and 0.96
respectively. For the homogeneous canopy
the comparison between the model developed in this work and the SAIL model shows that the model of this paper perfectly describes the transport path and energy transfer of the light particles.
The model proposed in this paper can accurately simulate the BRF of the canopy with the centrosymmetric statistical characteristics
and it offers great convenience in constructing inhomogeneous canopy scenes as well as high simulation stability. The model provides an effective simulation tool for studying canopy BRF and supporting verification of key canopy parameters such as vegetation biomass and leaf area index.
概率株三维冠层蒙特卡洛冠层孔隙率二向性反射因子
probability plantsthree-dimensional canopyMonte Carlocanopy porositybidirectional reflectance function
España M L, Baret F, Aries F, Chelle M, Andrieu B and Prévot L. 1999. Modeling maize canopy 3D architecture: application to reflectance simulation. Ecological Modelling, 122(1/2): 25-43 [DOI: 10.1016/S0304-3800(99)00070-8http://dx.doi.org/10.1016/S0304-3800(99)00070-8]
Gastellu-Etchegorry J P, Martin E and Gascon F. 2004. DART: a 3D model for simulating satellite images and studying surface radiation budget. International Journal of Remote Sensing, 25(1): 73-96 [DOI: 10.1080/0143116031000115166http://dx.doi.org/10.1080/0143116031000115166]
Gommes R, Wu B F, Li Z Y and Zeng H W. 2016. Design and characterization of spatial units for monitoring global impacts of environmental factors on major crops and food security. Food and Energy Security, 5(1): 40-55 [DOI: 10.1002/fes3.73http://dx.doi.org/10.1002/fes3.73]
Govaerts Y M, Verstraete M M and Raytran. 1998. Raytran: a Monte Carlo ray-tracing model to compute light scattering in three-dimensional heterogeneous media. IEEE Transactions on Geoscience and Remote Sensing, 36(2): 493-505 [DOI: 10.1109/36.662732http://dx.doi.org/10.1109/36.662732]
Huang H G, Qin W H and Liu Q H. 2013. RAPID: a radiosity applicable to porous individual objects for directional reflectance over complex vegetated scenes. Remote Sensing of Environment, 132: 221-237 [DOI: 10.1016/j.rse.2013.01.013http://dx.doi.org/10.1016/j.rse.2013.01.013]
Jacquemoud S. 1993. Inversion of the PROSPECT + SAIL canopy reflectance model from AVIRIS equivalent spectra: theoretical study. Remote Sensing of Environment, 44(2/3): 281-292 [DOI: 10.1016/0034-4257(93)90022-Phttp://dx.doi.org/10.1016/0034-4257(93)90022-P]
Jiao Z T, Schaaf C B, Dong Y D, Román M, Hill M J, Chen J M, Wang Z S, Zhang H, Saenz E, Poudyal R, Gatebe C, Bréon F M, Li X W and Strahler A. 2016. A method for improving hotspot directional signatures in BRDF models used for MODIS. Remote Sensing of Environment, 186: 135-151 [DOI: 10.1016/j.rse.2016.08.007http://dx.doi.org/10.1016/j.rse.2016.08.007]
Li X Y and Huang H G. 2020. Retrieving canopy closure of Yunnan pine forests by using stochastic radiative transfer model. Journal of Remote Sensing, 24(6): 752-765
李骁尧, 黄华国. 2020. 应用随机辐射传输模型反演云南松林分郁闭度. 遥感学报, 24(6): 752-765 [DOI: 10.11834/jrs.20208329http://dx.doi.org/10.11834/jrs.20208329]
Liu Q H, Yan G J, Jiao Z T, Xiao Q, Wen J G, Liang S L and Wang J D. 2019. Geometric-optical remote sensing modeling to quantitative remote sensing theory and methodology development: in memory of academician Li Xiaowen. Journal of Remote Sensing, 23(1): 1-10
柳钦火, 阎广建, 焦子锑, 肖青, 闻建光, 梁顺林, 王锦地. 2019. 发展几何光学遥感建模理论, 推动定量遥感科学前行——深切缅怀李小文院士. 遥感学报, 23(1): 1-10 [DOI: 10.11834/jrs.20198077http://dx.doi.org/10.11834/jrs.20198077]
Ma H Z, Liu S M, Sun G Y, Du Y M, Sun L and Liu Q H. 2016. Three-dimensional simulation model for thermal radiation directivity of nonuniform canopy: a case study of corn canopy. Journal of Remote Sensing, 20(3): 374-381
马红章, 刘素美, 孙根云, 杜永明, 孙林, 柳钦火. 2016. 非匀一冠层热辐射方向性3维模型构建——以玉米冠层为例. 遥感学报, 20(3): 374-381 [DOI: 10.11834/jrs.20165196http://dx.doi.org/10.11834/jrs.20165196]
Ma P P, Li J, Liu Q H, He B B and Zhao J. 2019. Multisensor synergistic quantitative leaf area index product of China. Journal of Remote Sensing, 23(6): 1232–1252
马培培, 李静, 柳钦火, 何彬彬, 赵静. 2019. 中国区域MuSyQ叶面积指数产品验证与分析. 遥感学报, 23(6): 1232-1252 [DOI:10.11834/jrs.20198071http://dx.doi.org/10.11834/jrs.20198071]
Peng Z X, Zhou J and Li M S. 2016. Review of methods for simulating land surface temperature at the pixel scale based on ground measurements over heterogeneous surface. Advances in Earth Science, 31(5): 471-480
彭志兴, 周纪, 李明松. 2016. 基于地面观测的异质性下垫面像元尺度地表温度模拟研究进展. 地球科学进展, 31(5): 471-480 [DOI: 10.11867/j.issn.1001-8166.2016.05.0471http://dx.doi.org/10.11867/j.issn.1001-8166.2016.05.0471]
Qin W H and Gerstl S A W. 2000. 3-D scene modeling of semidesert vegetation cover and its radiation regime. Remote Sensing of Environment, 74(1): 145-162 [DOI: 10.1016/S0034-4257(00)00129-2http://dx.doi.org/10.1016/S0034-4257(00)00129-2]
Wu S B, Wen J G, Tang Y, You D and Zhao J. 2017. Modeling anisotropic bidirectional reflectance of sloping forest//Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). Fort Worth: IEEE: 3874-3877 [DOI: 10.1109/IGARSS.2017.8127848http://dx.doi.org/10.1109/IGARSS.2017.8127848]
Xu X R, Fan W J, Li J C, Zhao P and Chen G X. 2017. A unified model of bidirectional reflectance distribution function for the vegetation canopy. Science China: Earth Sciences, 60(3): 463-477.
徐希孺, 范闻捷, 李举材, 赵鹏, 陈高星. 2017. 植被二向性反射统一模型. 中国科学: 地球科学, 47(2): 217-232 [DOI: 10.1360/N072016-00082http://dx.doi.org/10.1360/N072016-00082]
Yan B Y, Xu X R and Fan W J. 2012. A unified canopy bidirectional reflectance (BRDF) model for row ceops. Science China: Earth Sciences, 55(5): 824-836 [DOI: 10.1007/s11430-012-4380-9http://dx.doi.org/10.1007/s11430-012-4380-9]
Zhao Y H,Hou P,Jiang J B,Jiang Y,Zhang B,Bai J J and Xu H T. 2021. Progress in quantitative inversion of vegetation ecological remote sensing parameters. National Remote Sensing Bulletin,25(11):2173-2197.
赵燕红, 侯鹏, 蒋金豹, 姜赟, 张兵, 白君君, 徐海涛. 2021. 植被生态遥感参数定量反演研究方法进展. 遥感学报, 25(11): 2173-2197 [DOI:10.11834/jrs.20210402http://dx.doi.org/10.11834/jrs.20210402]
Zhou X, Zheng H B, Xu X Q, He J Y, Ge X K, Yao X, Cheng T, Zhu Y, Cao W X and Tian Y C. 2017. Predicting grain yield in rice using multi-temporal vegetation indices from UAV-based multispectral and digital imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 130: 246-255 [DOI: 10.1016/j.isprsjprs.2017.05.003http://dx.doi.org/10.1016/j.isprsjprs.2017.05.003]
Zhu X, Skidmore A K, Darvishzadeh R and Wang T J. 2019. Estimation of forest leaf water content through inversion of a radiative transfer model from Lidar and hyperspectral data. International Journal of Applied Earth Observation and Geoinformation, 74: 120-129 [DOI: 10.1016/j.jag.2018.09.008http://dx.doi.org/10.1016/j.jag.2018.09.008]