Tropospheric NO2 column density retrieval from the GF-5 EMI data
- Vol. 25, Issue 11, Pages: 2313-2325(2021)
Published: 07 November 2021
DOI: 10.11834/jrs.20210303
扫 描 看 全 文
浏览全部资源
扫码关注微信
Published: 07 November 2021 ,
扫 描 看 全 文
程良晓,陶金花,余超,张莹,范萌,王雅鹏,陈元琳,朱莉莉,顾坚斌,陈良富.2021.高分五号大气痕量气体差分吸收光谱仪对流层NO2柱浓度遥感反演研究.遥感学报,25(11): 2313-2325
Cheng L X,Tao J H,Yu C,Zhang Y,Fan M,Wang Y P,Chen Y L,Zhu L L,Gu J B and Chen L F. 2021. Tropospheric NO2 column density retrieval from the GF-5 EMI data. National Remote Sensing Bulletin, 25(11):2313-2325
搭载于“高分五号”(GF-5)卫星上的痕量气体差分吸收光谱仪(EMI)是一台星下观测的高光谱载荷,测量紫外和可见光光谱范围的地球后向散射辐射,设计用于大气痕量气体的探测。本研究基于EMI在VIS1通道的实测光谱,利用差分光学吸收光谱(DOAS)方法进行了对流层NO
2
柱浓度反演,展示了基于EMI载荷的对流层NO
2
柱浓度反演结果,与同类载荷产品进行交叉验证,并利用地基观测结果进行了地基验证。研究表明,EMI反演结果与OMI、TROPOMI具有较好的空间分布一致性和较低的相对偏差,与TROPOMI具有较好的时间变化一致性。地面验证结果表明EMI NO
2
反演结果具有较高的精度。本研究证明了EMI在全球NO
2
监测方面的能力,可以为中国后续污染气体探测载荷的设计和反演算法的开发提供参考。
Significant impact of NO
2
on global atmospheric environment and human health necessitate accurate monitoring of NO
2
. On the one hand
people can study and analyze their generation and extinction laws
distribution characteristics
diffusion
and transmission characteristics. On the other hand
it can provide decision-making basis for the formulation of pollutant discharge policy and pollution control program. However
the number of ground-based air quality monitoring stations has been increasing
providing abundant NO
2
ground observation data. Large-scale monitoring of NO
2
emissions requires the development of other monitoring methods. Satellite instruments covering the ultraviolet and visible spectrum have been widely used to detect the concentration of NO
2
column in the atmosphere with the advantage of wide-range observation. to further strengthen the domestic air quality monitoring
and improve the air quality in China
the Environmental Trace Gas Monitoring Instrument (EMI) onboard the Chinese GaoFen-5 (GF-5) satellite was launched on May 9
2018. It is a nadir-viewing wide-field hyperspectral spectrometer
which measures the earth’s backscattered radiation in the ultraviolet and visible spectrum and is designed for atmospheric trace gas detection. Based on the measured spectrum of EMI VIS1 channel
the tropospheric NO
2
Vertical Column Density (VCD) was retrieved by Differential Optical Absorption Spectrometry (DOAS) method
which consists of three key steps
namely
spectral fitting
Stratosphere-Troposphere Separation (STS)
and tropospheric Air Mass Factor (AMF) calculations. After spectral fitting
a stripe correction scheme was developed for the stripe phenomenon that appears in the initial fitted NO
2
SCD. The current advanced STREAM algorithm was used to estimate the stratospheric NO
2
concentration
and the TM5 NO
2
profile with higher spatial resolution was used in the calculation of tropospheric AMF. The retrieval results of tropospheric NO
2
VCD based on EMI were presented
and the results were cross-verified with NO
2
products from international similar instruments
i.e.
OMI and TROPOMI. From a larger spatial scale
EMI can reflect the global distribution of typical NO
2
pollution city sources. In terms of regional scale
the daily spatial distribution correlation coefficients between EMI and TROPOMI in different regions are greater than 0.9. On a monthly time scale
EMI and OMI (TROPOMI) show consistent spatial distribution in the four urban agglomerations of China
and the average spatial correlation coefficient is 0.8 (0.87). The regional mean bias between EMI and OMI (TROPOMI) is within 11.3% (9.5%). The time series analysis of the Pearl River Delta region shows that EMI has high consistency (
r
=0.89) with TROPOMI. The ground-based MAX-DOAS observation results are also used for validation. The ground validation results show that the EMI retrieval results have high correlation coefficient (0.96) and approximately 35% underestimated. This study proves EMI’s ability in global NO
2
monitoring. In the future
domestic instruments similar to EMI are carried out on the GF-5 (02) satellite and the atmospheric environmental monitoring satellite (AEMS)
which contributes continuously to China’s trace gas detection. Therefore
this study can provide reference for the design of next similar instruments and the development of corresponding NO
2
retrieval algorithm in China.
遥感高分五号EMINO2DOAS
remote sensingGF-5EMINO2DOAS
Barkley M P, Abad G G, Kurosu T P, Spurr R, Torbatian S and Lerot C. 2017. OMI air-quality monitoring over the Middle East. Atmospheric Chemistry and Physics, 17(7): 4687-4709 [DOI: 10.5194/acp-17-4687-2017http://dx.doi.org/10.5194/acp-17-4687-2017]
Beirle S, Hörmann C, Jöckel P, Liu S, Penning de Vries M, Pozzer A, Sihler H, Valks P and Wagner T. 2016. The STRatospheric Estimation Algorithm from Mainz (STREAM): estimating stratospheric NO2 from nadir-viewing satellites by weighted convolution. Atmospheric Measurement Techniques, 9(7): 2753-2779 [DOI: 10.5194/amt-9-2753-2016http://dx.doi.org/10.5194/amt-9-2753-2016]
Boersma K F, Eskes H J, and Brinksma E J. 2004. Error analysis for tropospheric NO2 retrieval from space. Journal of Geophysical Research-Atmospheres, 109 (D4) [DOI: 10.1029/2003JD003962]
Boersma K F, Eskes H J, Dirksen R J, van der A R J, Veefkind J P, Stammes P, Huijnen V, Kleipool Q L, Sneep M, Claas J, Leitão J, Richter A, Zhou Y and Brunner D. 2011. An improved tropospheric NO2 column retrieval algorithm for the Ozone Monitoring Instrument. Atmospheric Measurement Techniques, 4(9): 1905-1928 [DOI: 10.5194/amt-4-1905-2011http://dx.doi.org/10.5194/amt-4-1905-2011]
Boersma K F, Eskes H J, Richter A, de Smedt I, Lorente A, Beirle S, van Geffen J H G M, Zara M, Peters E, van Roozendael M, Wagner T, Maasakkers J D, van der A R J, Nightingale J, de Rudder A, Irie H, Pinardi G, Lambert J C and Compernolle S C. 2018. Improving algorithms and uncertainty estimates for satellite NO2 retrievals: results from the quality assurance for the essential climate variables (QA4ECV) project. Atmospheric Measurement Techniques, 11(12): 6651-6678 [DOI: 10.5194/amt-11-6651-2018http://dx.doi.org/10.5194/amt-11-6651-2018]
Boersma K F, Eskes H J, Veefkind J P, Brinksma E J, van der A R J, Sneep M, van den Oord G H J, Levelt P F, Stammes P, Gleason J F and Bucsela E J. 2007. Near-real time retrieval of tropospheric NO2 from OMI. Atmospheric Chemistry and Physics, 7(8): 2103-2118 [DOI: 10.5194/acp-7-2103-2007http://dx.doi.org/10.5194/acp-7-2103-2007]
Bovensmann H, Burrows J P, Buchwitz M, Frerick J, Noël S, Rozanov V V, Chance K V and Goede A P H. 1999. SCIAMACHY: mission objectives and measurement modes. Journal of the Atmospheric Sciences, 56(2): 127-150 [DOI: 10.1175/1520-0469(1999)056<0127:smoamm>2.0.co;2http://dx.doi.org/10.1175/1520-0469(1999)056<0127:smoamm>2.0.co;2]
Bucsela E J, Krotkov N A, Celarier E A, Lamsal L N, Swartz W H, Bhartia P K, Boersma K F, Veefkind J P, Gleason J F and Pickering K E. 2013. A new stratospheric and tropospheric NO2 retrieval algorithm for nadir-viewing satellite instruments: applications to OMI. Atmospheric Measurement Techniques, 6(10): 2607-2626 [DOI: 10.5194/amt-6-2607-2013http://dx.doi.org/10.5194/amt-6-2607-2013]
Burrows J P, Weber M, Buchwitz M, Rozanov V, Ladstätter-Weißenmayer A, Richter A, DeBeek R, Hoogen R, Bramstedt K, Eichmann K U, Eisinger M and Perner D. 1999. The global ozone monitoring experiment (GOME): mission concept and first scientific results. Journal of the Atmospheric Sciences, 56(2): 151-175 [DOI: 10.1175/1520-0469(1999)056<0151:tgomeg>2.0.co;2http://dx.doi.org/10.1175/1520-0469(1999)056<0151:tgomeg>2.0.co;2]
Callies J, Corpaccioli E, Eisinger M, Hahne A and Lefebvre A. 2000. GOME-2 - Metop's second-generation sensor for operational ozone monitoring. Esa Bulletin, 102: 28-36
Chen D M, Feng Y and Zhang X Y. 2017. Comparison of variability and change rate in tropospheric NO2 column obtained from satellite products across China during 1997-2015. International Journal of Digital Earth, 10(8): 814-828 [DOI: 10.1080/17538947.2016.1252435http://dx.doi.org/10.1080/17538947.2016.1252435]
Cheng L X, Tao J H, Valks P, Yu C, Liu S, Wang Y P, Xiong X Z, Wang Z F and Chen L F. 2019. NO2 retrieval from the environmental trace gases monitoring instrument (EMI): preliminary results and intercomparison with OMI and TROPOMI. Remote Sensing, 11(24): 3017 [DOI: 10.3390/rs11243017http://dx.doi.org/10.3390/rs11243017]
Drosoglou T, Bais A F, Zyrichidou I, Kouremeti N, Poupkou A, Liora N, Giannaros C, Koukouli M E, Balis D and Melas D. 2017. Comparisons of ground-based tropospheric NO2 MAX-DOAS measurements to satellite observations with the aid of an air quality model over the Thessaloniki area, Greece. Atmospheric Chemistry and Physics, 17(9): 5829-5849 [DOI: 10.5194/acp-17-5829-2017http://dx.doi.org/10.5194/acp-17-5829-2017]
Drosoglou T, Koukouli M E, Kouremeti N, Bais A F, Zyrichidou I, Balis D, van der A R J, Xu J and Li A. 2018. MAX-DOAS NO2 observations over Guangzhou, China; ground-based and satellite comparisons. Atmospheric Measurement Techniques, 11(4): 2239-2255 [DOI: 10.5194/amt-11-2239-2018http://dx.doi.org/10.5194/amt-11-2239-2018]
Georgoulias A K, van der A R J, Stammes P, Boersma K F and Eskes H J. 2019. Trends and trend reversal detection in 2 decades of tropospheric NO2 satellite observations. Atmospheric Chemistry and Physics, 19(9): 6269-6294 [DOI: 10.5194/acp-19-6269-2019http://dx.doi.org/10.5194/acp-19-6269-2019]
Ghude S D, van der A R J, Beig G, Fadnavis S and Polade S D. 2009. Satellite derived trends in NO2 over the major global hotspot regions during the past decade and their inter-comparison. Environmental Pollution, 157(6): 1873-1878 [DOI: 10.1016/j.envpol.2009.01.013http://dx.doi.org/10.1016/j.envpol.2009.01.013]
Kleipool Q L, Dobber M R, de Haan J F and Levelt P F. 2008. Earth surface reflectance climatology from 3 years of OMI data. Journal of Geophysical Research, 113(D18): D18308 [DOI: 10.1029/2008jd010290http://dx.doi.org/10.1029/2008jd010290]
Lamsal L N, Krotkov N A, Vasilkov A, Marchenko S, Qin W H, Yang E S, Fasnacht Z, Joiner J, Choi S, Haffner D, Swartz W H, Fisher B and Bucsela E. 2020. OMI/aura nitrogen dioxide standard product with improved surface and cloud treatments. Atmospheric Measurement Techniques Discussions [DOI: 10.5194/amt-2020-200http://dx.doi.org/10.5194/amt-2020-200]
Lelieveld J, Beirle S, Hörmann C, Stenchikov G and Wagner T. 2015. Abrupt recent trend changes in atmospheric nitrogen dioxide over the Middle East. Science Advances, 1(7): e1500498 [DOI: 10.1126/sciadv.1500498http://dx.doi.org/10.1126/sciadv.1500498]
Levelt P F, van den Oord G H J, Dobber M R, Malkki A, Visser H, de Vries J, Stammes P, Lundell J O V and Saari H. 2006. The ozone monitoring instrument. IEEE Transactions on Geoscience and Remote Sensing, 44(5): 1093-1101 [DOI: 10.1109/TGRS.2006.872333http://dx.doi.org/10.1109/TGRS.2006.872333]
Lin J T, Martin R V, Boersma K F, Sneep M, Stammes P, Spurr R, Wang P, van Roozendael M, Clémer K and Irie H. 2014. Retrieving tropospheric nitrogen dioxide from the Ozone Monitoring Instrument: effects of aerosols, surface reflectance anisotropy, and vertical profile of nitrogen dioxide. Atmospheric Chemistry and Physics, 14(3): 1441-1461 [DOI: 10.5194/acp-14-1441-2014http://dx.doi.org/10.5194/acp-14-1441-2014]
Liu M Y, Lin J T, Boersma K F, Pinardi G, Wang Y, Chimot J, Wagner T, Xie P H, Eskes H, van Roozendael M, Hendrick F, Wang P C, Wang T, Yan Y Y, Chen L L and Ni R J. 2019a. Improved aerosol correction for OMI tropospheric NO2 retrieval over East Asia: constraint from CALIOP aerosol vertical profile. Atmospheric Measurement Techniques, 12(1): 1-21 [DOI: 10.5194/amt-12-1-2019http://dx.doi.org/10.5194/amt-12-1-2019]
Liu S, Valks P, Pinardi G, de Smedt I, Yu H, Beirle S and Richter A. 2019b. An improved total and tropospheric NO2 column retrieval for GOME-2. Atmospheric Measurement Techniques, 12(2): 1029-1057 [DOI: 10.5194/amt-12-1029-2019http://dx.doi.org/10.5194/amt-12-1029-2019]
Lorente A, Boersma K F, Yu H, Dörner S, Hilboll A, Richter A, Liu M Y, Lamsal L N, Barkley M, de Smedt I, van Roozendael M, Wang Y, Wagner T, Beirle S, Lin J T, Krotkov N, Stammes P, Wang P, Eskes H J and Krol M. 2017. Structural uncertainty in air mass factor calculation for NO2 and HCHO satellite retrievals. Atmospheric Measurement Techniques, 10(3): 759-782 [DOI: 10.5194/amt-10-759-2017http://dx.doi.org/10.5194/amt-10-759-2017]
Ma Q K, Cheng C L, Li M, Chen D H, Zhou Y, Wu M X and Zhou Z. 2019. The aerosol optical characteristics and chemical composition of single particles in Heshan. China Environmental Science, 39(7): 2710-2720
马乾坤, 成春雷, 李梅, 陈多宏, 周洋, 吴梦曦, 周振. 2019. 鹤山气溶胶光学性质和单颗粒化学组分的研究. 中国环境科学, 39(7): 2710-2720 [DOI: 10.3969/j.issn.1000-6923.2019.07.003http://dx.doi.org/10.3969/j.issn.1000-6923.2019.07.003]
Munro R, Lang R, Klaes D, Poli G, Retscher C, Lindstrot R, Huckle R, Lacan A, Grzegorski M, Holdak A, Kokhanovsky A, Livschitz J and Eisinger M. 2016. The GOME-2 instrument on the Metop series of satellites: instrument design, calibration, and level 1 data processing - an overview. Atmospheric Measurement Techniques, 9(3): 1279-1301 [DOI: 10.5194/amt-9-1279-2016http://dx.doi.org/10.5194/amt-9-1279-2016]
Rozanov V V, Dinter T, Rozanov A V, Wolanin A, Bracher A and Burrows J P. 2017. Radiative transfer modeling through terrestrial atmosphere and ocean accounting for inelastic processes: software package SCIATRAN. Journal of Quantitative Spectroscopy and Radiative Transfer, 194: 65-85 [DOI: 10.1016/j.jqsrt.2017.03.009http://dx.doi.org/10.1016/j.jqsrt.2017.03.009]
Seinfeld J H and Pandis S N. 2016. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. 3rd ed. Hoboken: Wiley
Sillman S, Logan J A and Wofsy S C. 1990. The sensitivity of ozone to nitrogen oxides and hydrocarbons in regional ozone episodes. Journal of Geophysical Research, 95(D2): 1837-1851 [DOI: 10.1029/JD095iD02p01837http://dx.doi.org/10.1029/JD095iD02p01837]
Solomon S. 1999. Stratospheric ozone depletion: a review of concepts and history. Reviews of Geophysics 37(3): 275-316 [DOI: 10.1029/1999RG900008http://dx.doi.org/10.1029/1999RG900008]
Valks P, Pinardi G, Richter A, Lambert J C, Hao N, Loyola D, van Roozendael M and Emmadi S. 2011. Operational total and tropospheric NO2 column retrieval for GOME-2. Atmospheric Measurement Techniques, 4(7): 1491-1514 [DOI: 10.5194/amt-4-1491-2011http://dx.doi.org/10.5194/amt-4-1491-2011]
van der A R J, Peters D H M U, Eskes H, Boersma K F, van Roozendael M, de Smedt I and Kelder H M. 2006. Detection of the trend and seasonal variation in tropospheric NO2 over China. Journal of Geophysical Research, 111(D12): D12317 [DOI: 10.1029/2005JD006594http://dx.doi.org/10.1029/2005JD006594]
van Geffen J H G M, Boersma K F, van Roozendael M, Hendrick F, Mahieu E, de Smedt I, Sneep M and Veefkind J P. 2015. Improved spectral fitting of nitrogen dioxide from OMI in the 405-465 nm window. Atmospheric Measurement Techniques, 8(4): 1685-1699 [DOI: 10.5194/amt-8-1685-2015http://dx.doi.org/10.5194/amt-8-1685-2015]
Veefkind J P, Aben I, McMullan K, Förster H, de Vries J, Otter G, Claas J, Eskes H J, de Haan J F, Kleipool Q, van Weele M, Hasekamp O, Hoogeveen R, Landgraf J, Snel R, Tol P, Ingmann P, Voors R, Kruizinga B, Vink R, Visser H and Levelt P F. 2012. TROPOMI on the ESA Sentinel-5 Precursor: a GMES mission for global observations of the atmospheric composition for climate, air quality and ozone layer applications. Remote Sensing of Environment, 120: 70-83 [DOI: 10.1016/j.rse.2011.09.027http://dx.doi.org/10.1016/j.rse.2011.09.027]
Wang Y, Beirle S, Lampel J, Koukouli M, de Smedt I, Theys N, Li A, Wu D X, Xie P H, Liu C, van Roozendael M, Stavrakou T, Müller J F and Wagner T. 2017. Validation of OMI, GOME-2A and GOME-2B tropospheric NO2, SO2 and HCHO products using MAX-DOAS observations from 2011 to 2014 in Wuxi, China: investigation of the effects of priori profiles and aerosols on the satellite products. Atmospheric Chemistry and Physics, 17(8): 5007-5033 [DOI: 10.5194/acp-17-5007-201http://dx.doi.org/10.5194/acp-17-5007-201]
Williams J E, Boersma K F, Le Sager P and Verstraeten W W. 2017. The high-resolution version of TM5-MP for optimized satellite retrievals: description and validation. Geoscientific Model Development, 10(2): 721-750 [DOI: 10.5194/gmd-10-721-2017http://dx.doi.org/10.5194/gmd-10-721-2017]
Xiao Z Y, Jiang H, Song X D and Zhang X Y. 2013. Monitoring of atmospheric nitrogen dioxide using Ozone Monitoring Instrument remote sensing data. Journal of Applied Remote Sensing, 7(1): 073534 [DOI: 10.1117/1.JRS.7.073534http://dx.doi.org/10.1117/1.JRS.7.073534]
Zhang C X, Liu C, Wang Y, Si F Q, Zhou H J, Zhao M J, Su W J, Zhang W Q, Chan K L, Liu X, Xie P H, Liu J G and Wagner T. 2018a. Preflight evaluation of the performance of the Chinese environmental trace gas monitoring instrument (EMI) by spectral analyses of nitrogen dioxide. IEEE Transactions on Geoscience and Remote Sensing, 56(6): 3323-3332 [DOI: 10.1109/TGRS.2018.2798038http://dx.doi.org/10.1109/TGRS.2018.2798038]
Zhang J, van der A R J and Ding J Y. 2018b. Detection and emission estimates of NOx sources over China North Plain using OMI observations. International Journal of Remote Sensing, 39(9): 2847-2859 [DOI: 10.1080/01431161.2018.1430402http://dx.doi.org/10.1080/01431161.2018.1430402]
Zhang L S, Lee C S, Zhang R Q and Chen L F. 2017. Spatial and temporal evaluation of long term trend (2005-2014) of OMI retrieved NO2 and SO2 concentrations in Henan Province, China. Atmospheric Environment, 154: 151-166 [DOI: 10.1016/j.atmosenv.2016.11.067http://dx.doi.org/10.1016/j.atmosenv.2016.11.067]
Zhang W T, Zhang X Y, Liu L, Zhao L M and Lu X H. 2018. Spatial variations in NO2 trend in North China Plain based on multi-source satellite remote sensing. Journal of Remote Sensing, 22(2): 335-346
章吴婷, 张秀英, 刘磊, 赵丽敏, 卢学鹤. 2018. 多源卫星遥感的华北平原大气NO2浓度时空变化. 遥感学报, 22(2): 335-346 [DOI: 10.11834/jrs.20187305http://dx.doi.org/10.11834/jrs.20187305]
Zhang X Y, Wang F, Wang W H, Huang F X, Chen B L, Gao L, Wang S P, Yan H H, Ye H H, Si F Q, Hong J, Li X Y, Cao Q, Che H Z and Li Z Q. 2020. The development and application of satellite remote sensing for atmospheric compositions in China. Atmospheric Research, 245: 105056 [DOI: 10.1016/j.atmosres.2020.105056http://dx.doi.org/10.1016/j.atmosres.2020.105056]
Zhao M J, Si F Q, Zhou H J, Wang S M and Jiang Y. 2019. Level 0~1 processor of spaceborne environmental trace gases monitoring instrument. Journal of Atmospheric and Environmental Optics, 14(1): 66-73
赵敏杰, 司福祺, 周海金, 汪世美, 江宇. 2019. 星载大气痕量气体差分吸收光谱仪0~1级数据处理研究. 大气与环境光学学报, 14(1): 66-73 [DOI: 10.3969/j.issn.1673-6141.2019.01.007http://dx.doi.org/10.3969/j.issn.1673-6141.2019.01.007]
Zhao M J, Si F Q, Zhou H J, Wang S M, Jiang Y and Liu W Q. 2018. Preflight calibration of the Chinese Environmental Trace Gases Monitoring Instrument (EMI). Atmospheric Measurement Techniques, 11(9): 5403-5419 [DOI: 10.5194/amt-11-5403-2018http://dx.doi.org/10.5194/amt-11-5403-2018]
相关文章
相关作者
相关机构