Experiment of measuring targets' full-parameters microwave properties
- Vol. 25, Issue 1, Pages: 323-331(2021)
Published: 07 January 2021
DOI: 10.11834/jrs.20210397
扫 描 看 全 文
浏览全部资源
扫码关注微信
Published: 07 January 2021 ,
扫 描 看 全 文
邵芸,宫华泽,田维,张庆君,王国军,卞小林,张婷婷,张风丽,李坤,刘致曲,倪崇.2021.微波目标散射特性全要素测量试验.遥感学报,25(1): 323-331
Shao Y,Gong H Z,Tian W,Zhang Q J,Wang G J,Bian X L,Zhang T T,Zhang F L,Li K,Liu Z Q and Ni C. 2021. Experiment of measuring targets' full-parameters microwave properties. National Remote Sensing Bulletin, 25(1):323-331
合成孔径雷达SAR(Synthetic Aperture Radar )以其全天时全天候的观测能力在地表目标识别、灾害监测等领域得到了越来越多的重视,高分辨率、全极化等各类先进SAR载荷卫星的发展日新月异。相对而言,微波与地物目标的相互作用机理仍有待深入研究。在可控无电磁干扰的测试环境下开展典型目标微波特性测量实验,可以再现SAR卫星电磁波与地物目标的相互作用过程,有效提升微波电磁波与典型地物目标相互作用机理的认知水平。本文基于“陆地目标微波特性测量与仿真成像科学实验平台”,在可控环境下对两种典型的人工目标(金属球与四旋翼植保无人机)以及典型自然地物(水稻)目标分别开展了全频段微波散射特性测量与多波段、多极化、多入射角、多方位角成像实验。实验结果表明,金属球的雷达散射截面积RCS(Radar Cross Section)测量值精度较高,在2.5 GHz以上与Mie级数模拟值的均方根误差分别为1.09 dBsm(HH极化)与1.00 dBsm(VV极化);同时实验平台能够较好地呈现无干扰环境下目标多入射角、多方位角的散射特性。此外,由于结构特征的不规则性和介电特征的不连续性,水稻的0.8—18 GHz连续微波波谱曲线起伏变化较大,这也是导致对自然地物目标的SAR图像解译困难的主要原因之一。
Synthetic Aperture Radar (SAR) has gained more and more attention in the field of target identification and disaster monitoring because of its all-weather observation capability. Many more advance SAR satellite developed in the last decade
e.g. high resolution SAR and full polarized SAR. However
the mechanism of interaction between electromagnetic wave and target in microwave band is still limited in the current research. Measurement of microwave characteristics in a controllable and non-interference environment can recur the interaction between electromagnetic wave and target on the ground
and can greatly help improving the cognition of SAR imaging as well. In this paper
the Laboratory of Target Microwave Properties (LAMP) was introduced and a full-parameters microwave properties measurement experiment was demonstrated. The internal size of LAMP is: 24 m (length) ×24 m (width) ×17 m (height). The positioning accuracy of the straight orbit system is 0.1 mm
while 0.01 °for the arc orbit. This guarantees that LAMP could implement the quantitative control of the relative motion between the antenna and the target under measurement
with high-precision. The dynamic range of LAMP is better than 100 dB
and the sensitivity is greater than -60 dBsm. The platform could conduct either imaging in conventional SAR imaging modes such as spotlight
stripmap and ISAR or in complex SAR imaging modes such as POLSAR
InSAR
polInSAR
with the highest spatial resolution is as high as 1cm. In this experiment
two kinds of typical man-made targets (medal ball and four-wind UAV) and natural targets (rice)
were measured in LAMP
in conditions of multi-frequencies
multi-polarization
multi-incidence angles and multi-azimuth angles. The test results showed that the measured value of Radar Cross Section (RCS) of the metal ball was acceptable (2.5 —17 GHz): the RMSE is 1.09 dBsm and 1.00 dBsm for HH and VV polarization respectively
relative to the Mie scattering simulation value. For the rest of frequency band (lower than 2.5 GHz or higher than 17 GHz)
however
the deviation between the measured and the theoretical RCS value of the medal ball was observed. The reason why it happened is that the surface of the medal ball is not smooth enough
on the other hand
the frequency band
lower than 2.5 GHz
is located at resonance area because of the diameter is of the same order of the length of incidence electromagnetic wave. At the same time
the scattering characteristics of multi-incident Angle and multi-azimuth Angle can be well presented in the experiment. On the other hand
the natural targets show varied microwave spectral graph (0.8—18 GHz)
resulting from their irregular structures and discontinuous dialectical properties. This is the reason why it is tough to interpret SAR imageries in terms of objects of the nature.
微波暗室散射特性雷达截面积合成孔径雷达仿真成像
microwave anechoic chamberscattering propertiesRCSsynthetic aperture radarsimulation imaging
Brunner D, Lemoine G, Fortuny J and Bruzzone L. 2007. Building characterisation in VHR SAR data acquired under controlled EMSL conditions//Proceedings of 2007 IEEE International Geoscience and Remote Sensing Symposium. Barcelona: IEEE: 2694-2697 [DOI: 10.1109/IGARSS.2007.4423398http://dx.doi.org/10.1109/IGARSS.2007.4423398]
Chang S and Senior T B. 1969. University of Michigan Radiation Laboratory. Ann Arbor, Mich Report, (1363-5): 21-26
Cloude S R and Papathanassiou K P. 1997. Polarimetric optimisation in radar interferometry. Electronics Letters, 33(13): 1176-1178 [DOI: 10.1049/el:19970790http://dx.doi.org/10.1049/el:19970790]
Ding C B, Liu J Y, Lei B and Qiu X L. 2017. Preliminary Exploration of systematic geolocation accuracy of GF-3 SAR satellite system. Journal of Radars, 6(1): 11-16
丁赤飚, 刘佳音, 雷斌, 仇晓兰. 2017. 高分三号SAR卫星系统级几何定位精度初探. 雷达学报, 6(1): 11-16 [DOI: 10.12000/JR17024http://dx.doi.org/10.12000/JR17024]
Guo H D, Shao Y and Wang C L. 2000. Radar for Earth Observation. Beijing: Science Press
郭华东, 邵芸, 王长林. 2000. 雷达对地观测理论与应用. 北京: 科学出版社
Jin J M, Volakis J L and Collins J D. 1991. A finite-element-boundary-integral method for scattering and radiation by two-and three-dimensional structures. IEEE Antennas and Propagation Magazine, 33(3): 22-32 [DOI: 10.1109/74.88218http://dx.doi.org/10.1109/74.88218]
Jung D J, Kim C H and Chang K. 2012. Broadband 8 to 18 GHz phased array system for communications//Proceedings of 2012 Asia Pacific Microwave Conference Proceedings. Taiwan, China: IEEE: 406-408 [DOI: 10.1109/APMC.2012.6421613http://dx.doi.org/10.1109/APMC.2012.6421613]
Klingbeil L and Wark T. 2008. Demonstration of a wireless sensor network for real-time indoor localisation and motion monitoring//Proceedings of 2008 International Conference on Information Processing in Sensor Networks (ipsn 2008). St. Louis: IEEE: 543-544 [DOI: 10.1109/IPSN.2008.16http://dx.doi.org/10.1109/IPSN.2008.16]
Li K, Brisco B, Shao Y and Touzi R. 2012. Polarimetric decomposition with RADARSAT-2 for rice mapping and monitoring. Canadian Journal of Remote Sensing, 38(2): 169-179 [DOI: 10.5589/m12-024http://dx.doi.org/10.5589/m12-024]
Mancini M, Vandersteene F, Troch P A, Bolognani O, Terzaghi G, D'Urso G and Wuthrich M. 1995. Experimental setup at the EMSL for the retrieval of soil moisture profiles using multifrequency polarimetric data//Proceedings of 1995 International Geoscience and Remote Sensing Symposium, IGARSS'95.
(Quantitative Remote Sensing for Science and Applications. Firenze: IEEE: 2023-2025) [DOI: 10.1109/IGARSS.1995.524097http://dx.doi.org/10.1109/IGARSS.1995.524097]
Nesti G, Fortuny J and Lopez-Sanchez J M. 2000. Polarimetric microwave remote sensing experiments at the EMSL. IEEE Geoscience and Remote Sensing Newsletter, (113): 6-11
Santosa F and Vogelius M. 1990. A backprojection algorithm for electrical impedance imaging. SIAM Journal on Applied Mathematics, 50(1): 216-243 [DOI: 10.1137/0150014http://dx.doi.org/10.1137/0150014]
Shao Y, Fan X T, Liu H, Xiao J H, Ross S, Brisco B, Brown R and Staples G. 2001. Rice monitoring and production estimation using multitemporal RADARSAT. Remote Sensing of Environment, 76(3): 310-325 [DOI: 10.1016/S0034-4257(00)00212-1http://dx.doi.org/10.1016/S0034-4257(00)00212-1]
Shao Y, Liao J J and Wang C Z. 2002. Analysis of temporal radar backscatter of rice: a comparison of SAR observations with modeling results. Canadian Journal of Remote Sensing, 28(2): 128-138 [DOI: 10.5589/m02-019http://dx.doi.org/10.5589/m02-019]
Tian W, Xu X, Bian X L, Chai X, Wang S A, Gong H Z, Xiong W C and Shao Y. 2014. Applications of environmental remote sensing by HJ-1C SAR imageries. Journal of Radars, 3(3): 339-351
田维, 徐旭, 卞小林, 柴勋, 王世昂, 宫华泽, 熊文成, 邵芸. 2014. 环境一号C卫星SAR图像典型环境遥感应用初探. 雷达学报, 3(3): 339-351 [DOI: 10.3724/SP.J.1300.2014.13055http://dx.doi.org/10.3724/SP.J.1300.2014.13055]
Wei Z Q, 2001. Synthetic APerture Rodar Satellite. Beijing: Slien ce Press: 7-8
魏钟铨. 2001. 合成孔径雷达卫星. 北京: 科学出版社: 7-8
Wiesbeck W and Kahny D. 1991. Single reference, three target calibration and error correction for monostatic, polarimetric free space measurements. Proceedings of the IEEE, 79(10): 1551-1558 [DOI: 10.1109/5.104229http://dx.doi.org/10.1109/5.104229]
Yang Z, Shao Y, Li K, Liu Q B, Liu L and Brisco B. 2017. An improved scheme for rice phenology estimation based on time-series multispectral HJ-1A/B and polarimetric RADARSAT-2 data. Remote Sensing of Environment, 195: 184-201 [DOI: 10.1016/j.rse.2017.04.016http://dx.doi.org/10.1016/j.rse.2017.04.016]
Yegulalp A F. 1999. Fast backprojection algorithm for synthetic aperture radar//Proceedings of the 1999 IEEE Radar Conference. Radar into the Next Millennium (Cat. No.99CH36249). Waltham: IEEE: 60-65 [DOI: 10.1109/NRC.1999.767270http://dx.doi.org/10.1109/NRC.1999.767270]
相关文章
相关作者
相关机构