Annual 0.8 m surface reflectance data set of Beijing plain area from 2015 to 2019
- Vol. 25, Issue 11, Pages: 2303-2312(2021)
Published: 07 November 2021
DOI: 10.11834/jrs.20210407
扫 描 看 全 文
浏览全部资源
扫码关注微信
Published: 07 November 2021 ,
扫 描 看 全 文
申茜,姚月,李利伟,龙腾飞,陈甫,张兵.2021.北京市平原区2015年—2019年0.8 m地表反射率数据集.遥感学报,25(11): 2303-2312
Shen Q, Yao Y, Li L W, Long T F, Chen F and Zhang B. 2021. Annual 0.8 m surface reflectance data set of Beijing plain area from 2015 to 2019. National Remote Sensing Bulletin, 25(11):2303-2312
地表反射率产品作为最重要的定量遥感产品,是很多参量化遥感产品的基础数据源,可以被广泛应用于林业、农业、水资源、生态环境、城市环境等典型应用领域。对于米级高分辨率的遥感影像,国内外不提供反射率影像产品。目前主流的国产高分数据源大部分都是蓝、绿、红、近红4个波段的多光谱数据,缺少短波红外波段,难以满足陆地区域浓密植被算法或者清洁水体的短波红外信号近似看作零的假设条件,要完成精确大气校正、生产大范围的GF-2影像拼接的地表反射率产品,是一个挑战。为了更好的推广高分地表反射率的应用,本研究针对北京市平原区,运用全色和多光谱融合、几何精校正和相对辐射一致化算法,以Sentinel-2为参考影像,生成了一套几何精校正后的0.8 m地表反射率影像集。该数据集时间范围为2015年—2019年,每年一期,包含年度产品的覆盖情况及分布矢量,共计184景地表反射率影像,数据量总共为1.63 TB。
As the most important quantitative remote sensing product
surface reflectance products are the basic data source for many parametric remote sensing products and can be widely used in typical applications
such as forestry
agriculture
water resources
ecological environment
and urban environment. However
for meter-level high-resolution remote sensing images
reflectance products are unavailable at home and abroad. Most of the current domestic satellite products use high-resolution multispectral data in the four bands of blue
green
red
and near infrared as the main data source
and accurate atmospheric correction is difficult to achieve mainly due to the lack of short-wave infrared data. A set of spatiotemporal continuous meter-level high-resolution image reflectance products should also be provided for researchers to use. In this study
GF-2 Level-1A standardized products were used as input. The processing steps included panchromatic and multispectral fusion
geometric precision correction and mosaic
and atmospheric correction. A set of annual surface reflectance images with a spatial resolution of 0.8 m covering Beijing plain area from 2015 to 2019 was generated.
First
a geometric deviation of subpixel level exists among the four multispectral bands of GF-2 Level-1A products. The Pixel Knife software was used to register each band of GF-2 images accurately
then the images were fused with panchromatic images. Second
with Sentinel-2 as reference images (10 m resolution) and supplementary SRTM DEM data (30 m resolution)
we used a regional network adjustment method to achieve geometric precision correction. The geometric accuracy is within 20 m. This method ensures the absolute geometric positioning accuracy and the relative geometric accuracy among images. Third
we used a relative radiation uniformity method to complete atmospheric correction. Regarding Sentinel-2 reflectance images as reference images (10 m resolution)
we automatically searched the pseudo invariant points between the reference images and the images to be corrected and built a regression equation band by band.
A total of 184 scenes of surface reflectance images with a total data volume of 1.63 TB are acquired. The data set is issued annually
including the coverage and distribution vector of the annual products. In the current data set
for mountain-shaded and relatively clean water bodies
such as Miyun Reservoir water bodies
the retrieval reflectance is often zero or negative. Therefore
this data set is suitable for underlying surface applications
except mountainous areas and relatively clean water bodies. It can prevent the shading phenomenon after the fusion of panchromatic and multispectral images and ensure that the multiscene geometric precision correction images have good geometric consistency at the joints. The validation results show that the atmospheric correction effect of water
road
and vegetation canopy is good.
On the premise that the reference image is ready
the processing method proposed in this article can process high-resolution images and output surface reflectance products rapidly
massively
and automatically. Currently
70% success rate is achieved for atmospheric correction
which should be further improved.
0.8 m地表反射率GF-2高分辨率影像大气校正北京市平原区
0.8 m surface reflectance dataGF-2high resolution imageatmospheric correctionplain area of Beijing
Canty M J, Nielsen A A and Schmidt M. 2004. Automatic radiometric normalization of multitemporal satellite imagery. Remote Sensing of Environment, 91(3/4): 441-451 [DOI: 10.1016/j.rse.2003.10.024http://dx.doi.org/10.1016/j.rse.2003.10.024]
Cao X J, Jiang H, Zhang Z M, He G J, Wang M M, Long T F, Wang G Z and Zhang X M. 2019. Research progress of Landsat series satellite surface reflectance products. Geomatics and Spatial Information Technology, 42(3): 93-96
曹小杰, 江洪, 张兆明, 何国金, 王猛猛, 龙腾飞, 王桂周, 张晓美. 2019. Landsat系列卫星地表反射率产品研究进展. 测绘与空间地理信息, 42(3): 93-96 [DOI: 10.3969/j.issn.1672-5867.2019.03.025http://dx.doi.org/10.3969/j.issn.1672-5867.2019.03.025]
JrChavez P S, Sides S C and Anderson J A. 1991. Comparison of three different methods to merge multiresolution and multispectral data: Landsat TM and SPOT panchromatic. Photogrammetric Engineering and Remote Sensing, 57(3): 295-303
Chen F. 2021. Pixel-Knife[EB/OL]. [2020-06-07]. https://www.zybuluo.com/novachen/note/426294 (https://www.zybuluo.com/novachen/note/426294(
陈甫. 2021. 像素刻刀高分卫星处理软件[EB/OL]. [2020-06-07]. https://www.zybuluo.com/novachen/note/426294https://www.zybuluo.com/novachen/note/426294
Doxani G, Vermote E, Roger J C, Gascon F, Adriaensen S, Frantz D, Hagolle O, Hollstein A, Kirches G, Li F Q, Louis J, Mangin A, Pahlevan N, Pflug B and Vanhellemont Q. 2018. Atmospheric correction inter-comparison exercise. Remote Sensing, 10(2): 352 [DOI: 10.3390/re10020352http://dx.doi.org/10.3390/re10020352]
European Space Agency. 2015. Sentinel-2 User Handbook, Issue 1, Revision 2.
Grodecki J and Dial G. 2003. Block adjustment of high-resolution satellite images described by rational polynomials. Photogrammetric Engineering and Remote Sensing, 69(1): 59-68 [DOI: 10.14358/PERS.69.1.59http://dx.doi.org/10.14358/PERS.69.1.59]
Kanzow C, Yamashita N and Fukushima M. 2004. Levenberg-Marquardt methods with strong local convergence properties for solving nonlinear equations with convex constraints. Journal of Computational and Applied Mathematics, 172(2): 375-397 [DOI: 10.1016/j.cam.2004.02.013http://dx.doi.org/10.1016/j.cam.2004.02.013]
Laben C A and Brower B V. 2000. Process for enhancing the spatial resolution of multispectral imagery using pan-sharpening. U.S., No. 6011875
Liang S L, Bai R, Chen X N, Cheng J, Fan W J, He T, Jia K, Jiang B, Jiang L M, Jiao Z T, Liu Y B, Ni W J, Qiu F, Song L L, Sun L, Tang B H, Wen J G, Wu G P, Xie D H, Yao Y J, Yuan W P, Zhang Y G, Zhang Y Z, Zhang Y T, Zhang X T, Zhao T J and Zhao X. 2020. Review of China’s land surface quantitative remote sensing development in 2019. Journal of Remote Sensing, 24(6): 618-671
梁顺林, 白瑞, 陈晓娜, 程洁, 范闻捷, 何涛, 贾坤, 江波, 蒋玲梅, 焦子锑, 刘元波, 倪文俭, 邱凤, 宋柳霖, 孙林, 唐伯惠, 闻建光, 吴桂平, 谢东辉, 姚云军, 袁文平, 张永光, 张玉珍, 张云腾, 张晓通, 赵天杰, 赵祥. 2020. 2019年中国陆表定量遥感发展综述. 遥感学报, 24(6): 618-671 [DOI: 10.11834/jrs.20209476http://dx.doi.org/10.11834/jrs.20209476]
Liang S L, Cheng J, Jia K, Jiang B, Liu Q, Liu S H, Xiao Z Q, Xie X H, Yao Y J, Yuan W P, Zhang X T and Zhao X. 2016. Recent progress in land surface quantitative remote sensing. Journal of Remote Sensing, 20(5): 875-898
梁顺林, 程洁, 贾坤, 江波, 刘强, 刘素红, 肖志强, 谢先红, 姚云军, 袁文平, 张晓通, 赵祥. 2016. 陆表定量遥感反演方法的发展新动态. 遥感学报, 20(5): 875-898 [DOI: 10.11834/jrs.20166258http://dx.doi.org/10.11834/jrs.20166258]
Liu L Y and Zhang X. 2017-10-20. Landsat-8 land surface reflectance products of China in 2015.
The Institute of remote sensing and digital earth, Chinese Academy of Sciences 刘良云, 张肖. 2017-10-20. 2015年全国陆地区域Landsat-8地表反射率产品. 中国科学院遥感与数字地球研究所) [DOI: 10.12237/casearth.5c19a5690600cf2a3c557bd3]
Long T F. 2016. Efficient Positioning Technology for Instant Satellite Image Service. Doctoral dissertation, University of Chinese Academy of Sciences. Beijing: University of Chinese Academy of Sciences: 83 (龙腾飞. 2016. 面向即时卫星影像服务的快速几何定位技术. 北京: 中国科学院大学: 83)
Long T F, Jiao W L, He G J and Zhang Z M. 2016. A fast and reliable matching method for automated georeferencing of remotely-sensed imagery. Remote Sensing, 8(1): 56 [DOI: 10.3390/rs8010056http://dx.doi.org/10.3390/rs8010056]
Richter R. 1998. Correction of satellite imagery over mountainous terrain. Applied Optics, 37(18): 4004-4015 [DOI: 10.1364/AO.37.004004http://dx.doi.org/10.1364/AO.37.004004]
Richter R and Schläpfer D. 2015. Atmospheric/Topographic Correction for Satellite Imagery. DLR Report DLR-IB565-02/15. Wessling, Germany: German Aerospace Center (DLR)
Shen Q, Yao Y, Li J S, Zhang F F, Wang S L, Wu Y H, Ye H P and Zhang B. 2019. A CIE color purity algorithm to detect black and odorous water in urban rivers using high-resolution multispectral remote sensing images. IEEE Transactions on Geoscience and Remote Sensing, 57(9): 6577-6590 [DOI: 10.1109/TGRS.2019.2907283http://dx.doi.org/10.1109/TGRS.2019.2907283]
Sun W H, Chen B and Messinger D. 2014. Nearest-neighbor diffusion-based pan-sharpening algorithm for spectral images. Optical Engineering, 53(1): 013107 [DOI: 10.1117/1.OE.53.1.013107http://dx.doi.org/10.1117/1.OE.53.1.013107]
Vermote E, Justice C, Claverie M and Franch B. 2016. Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product. Remote Sensing of Environment, 185: 46-56 [DOI: 10.1016/j.rse.2016.04.008http://dx.doi.org/10.1016/j.rse.2016.04.008]
Wu X D, Xiao Q, Wen J G, Liu Q, Peng J J and Li X W. 2014. Advances in uncertainty analysis for the validation of remote sensing products: take leaf area index for example. Journal of Remote Sensing, 18(5): 1011-1023
吴小丹, 肖青, 闻建光, 刘强, 彭菁菁, 李小文. 2014. 遥感数据产品真实性检验不确定性分析研究进展. 遥感学报, 18(5): 1011- 1023 [DOI: 10.11834/jrs.20143332http://dx.doi.org/10.11834/jrs.20143332]
相关作者
相关机构