Assessment of Antarctic Ice Sheet mass balance from 2005 to 2016
- Vol. 27, Issue 2, Pages: 318-334(2023)
Published: 07 February 2023
DOI: 10.11834/jrs.20210446
扫 描 看 全 文
浏览全部资源
扫码关注微信
Published: 07 February 2023 ,
扫 描 看 全 文
林依静,于志同,刘岩,程晓,沈强,赵励耘.2023.2005年—2016年南极冰盖物质平衡精细评估.遥感学报,27(2): 318-334
Lin Y J,Yu Z T,Liu Y,Cheng X,Shen Q and Zhao L Y. 2023. Assessment of Antarctic Ice Sheet mass balance from 2005 to 2016. National Remote Sensing Bulletin, 27(2):318-334
在全球变暖背景下,精细评估南极冰盖物质平衡可以深入探索南极冰盖变化对海平面上升的影响。基于最新的多源遥感冰盖产品,本文改进了通量法(IOM)在触地线处冰通量的评估方法,并逐年逐流域评估了2005年—2016年南极冰盖物质平衡及变化,探讨了其变化的动力学和气候学原因。本文实现了触地线处冰通量的精细评估,与国际同期结果比较此方法结果更合理;同时,对比结果显示细微的数据差异和方法差异会造成IOM法物质平衡估算结果的明显差异。2005年—2016年期间,南极年冰盖物质平衡基本处于物质流失状态,年均物质损耗量为109.1±34.9 Gt/a,年际间波动为±84.1 Gt/a。南极冰盖物质损耗由西南极主导,占总物质损耗量的65.1%;东南极整体处于正平衡状态,但威尔克斯地流域存在明显的物质损耗;南极半岛地区在零平衡状态下波动;岛屿冰通量首次被单独评估,处于负物质平衡状态。冰盖物质平衡变化从整体来看是由表面物质平衡主导的,受年际变化的气候学因素影响;从小尺度范围来看,冰架变薄、冰川崩解导致的触地线处冰通量的动力学变化影响了部分物质损耗严重区域的物质平衡变化,使其在崩解事件发生的年份流失的冰物质量增加。
The Antarctic ice sheet is an important indicator of climate change and a driver of sea level rise
with a volume in sea level equivalent terms of 58.3 m. Its tiny change could have a significant impact on the global sea mean level
which is considered to be one of the most serious consequences of future climate change. Therefore
understanding where and how the Antarctic ice mass changes is of societal importance. Considering the few assessments of the interannual change in the Antarctic mass balance
the objective of this paper is to demonstrate the estimation and uncertainty of the annual material balance of the Antarctic ice sheet from 2005 to 2016 based on the Input‒Output Method (IOM). The reasons for the change in the Antarctic ice sheet in various basins have been investigated
which will provide effective supporting data for further studies on the loss of the Antarctic ice sheet.
Compared with other methods for estimating the Antarctic mass balance
the IOM quantifies the difference between mass gain through primarily snowfall and loss by sublimation
meltwater runoff and ice discharge. The advantage of this approach is that it separately calculates changes in each component at the scale of individual glacier drainage basins. Unquestionably
using different datasets could cause great variation. Here
we improve the method to finely evaluate the ice discharge over the grounding line
which can accurately calculate the flux at each outlet unit
ensure time series continuity
and define flux export widths. Finally
for the first time
year-to-year estimates of the ice flux from the islands around Antarctica have been achieved.
Our results are within a reasonable range compared to the international estimates of the Antarctic ice sheet mass balance. During 2005—2016
Antarctica was basically in a loss state
with an average mass loss of 109.1 ± 34.9 Gt/a and a standard deviation of ± 84.1 Gt/a. West Antarctica dominated the mass loss and contributed 65.1% of the total loss
East Antarctica 26.4%
the Peninsula 4.5% and islands 4.0%. All of East Antarctica was in a positive mass balance and showed evident ice mass loss in some basins. The Peninsula fluctuated at zero equilibrium. The islands
accounting for 1.15% of the Antarctic ice sheet
were assessed individually for the first time and found to be in a persistent negative mass balance
with mass loss even exceeding the Peninsula in some years. On the whole
the change in the Antarctic ice sheet mass balance was dominated by the surface mass balance
which was mainly influenced by interannual variability in the climatological factors. From a small-scale perspective
the dynamic changes in ice flux at the grounding line due to ice shelves thinning and iceberg calving affected the mass balance in some regions
resulting in an increase in mass loss during the years of calving events.
This study improves the IOM method for the detailed assessment of the Antarctic ice sheet mass balance during 2005—2016.
南极冰盖物质平衡通量法表面物质平衡冰通量
Antarctic Ice Sheetmass balanceinput-output methodsurface mass balanceice flux
Agosta C, Amory C, Kittel C, Orsi A, Favier V, Gallée H, Van Den Broeke M R, Lenaerts J T M, Van Wessem J M, Van De Berg W J and Fettweis X. 2019. Estimation of the ANTARCTIC surface mass balance using the regional climate model MAR (1979—2015) and identification of dominant processes. The Cryosphere, 13(1): 281-296 [DOI: 10.5194/tc-13-281-2019http://dx.doi.org/10.5194/tc-13-281-2019]
Bamber J L, Westaway R M, Marzeion B and Wouters B. 2018. The land ice contribution to sea level during the satellite era. Environmental Research Letters, 13(6): 063008 [DOI: 10.1088/1748-9326/aac2f0http://dx.doi.org/10.1088/1748-9326/aac2f0]
Bindschadler R, Choi H, Wichlacz A, Bingham R, Bohlander J, Brunt K, Corr H, Drews R, Fricker H, Hall M, Hindmarsh R, Kohler J, Padman L, Rack W, Rotschky G, Urbini S, Vornberger P and Young N. 2011. Getting around Antarctica: new high-resolution mappings of the grounded and freely-floating boundaries of the Antarctic ice sheet created for the international polar year. The Cryosphere, 5(3): 569-588 [DOI: 10.5194/tc-5-569-2011http://dx.doi.org/10.5194/tc-5-569-2011]
Chen Y, Sun B, Liu C, Cui X B and Wang T T. 2014. The analysis of a new Antarctic topography database: BEDMAP 2. Chinese Journal of Polar Research, 26(2): 254-261
陈昀, 孙波, 刘春, 崔祥斌, 王甜甜. 2014. 南极冰盖地形数据库BEDMAP 2述评. 极地研究, 26(2): 254-261 [DOI: 10.13679/j.jdyj.2014.2.254http://dx.doi.org/10.13679/j.jdyj.2014.2.254]
Cheng X. 2009. Polar remote sensing. Journal of Remote Sensing, 13(S1): 113-118
程晓. 2009. 极地遥感. 遥感学报, 13(S1): 113-118 [DOI: 10.11834/jrs.20090015http://dx.doi.org/10.11834/jrs.20090015]
Fretwell P, Pritchard H D, Vaughan D G, Bamber J L, Barrand N E, Bell R, Bianchi C, Bingham R G, Blankenship D D, Casassa G, Catania G, Callens D, Conway H, Cook A J, Corr H F J, Damaske D, Damm V, Ferraccioli F, Forsberg R, Fujita S, Gim Y, Gogineni P, Griggs J A, Hindmarsh R C A, Holmlund P, Holt J W, Jacobel R W, Jenkins A, Jokat W, Jordan T, King E C, Kohler J, Krabill W, Riger-Kusk M, Langley K A, Leitchenkov G, Leuschen C, Luyendyk B P, Matsuoka K, Mouginot J, Nitsche F O, Nogi Y, Nost O A, Popov S V, Rignot E, Rippin D M, Rivera A, Roberts J, Ross N, Siegert M J, Smith A M, Steinhage D, Studinger M, Sun B, Tinto B K, Welch B C, Wilson D, Young D A, Xiangbin C and Zirizzotti A. 2013. Bedmap2: improved ice bed, surface and thickness datasets for antarctica. The Cryosphere, 7(1): 375-393 [DOI: 10.5194/tc-7-375-2013http://dx.doi.org/10.5194/tc-7-375-2013]
Gardner A S, Moholdt G, Scambos T, Fahnstock M, Ligtenberg S, Van Den Broeke M and Nilsson J. 2018. Increased west Antarctic and unchanged east Antarctic ice discharge over the last 7 years. The Cryosphere, 12(2): 521-547 [DOI: 10.5194/tc-12-521-2018http://dx.doi.org/10.5194/tc-12-521-2018]
Griggs J A and Bamber J L. 2011. Antarctic ice-shelf thickness from satellite radar altimetry. Journal of Glaciology, 57(203): 485-498 [DOI: 10.3189/002214311796905659http://dx.doi.org/10.3189/002214311796905659]
Hanna E, Navarro F J, Pattyn F, Domingues C M, Fettweis X, Ivins E R, Nicholls R J, Ritz C, Smith B, Tulaczyk S, Whitehouse P L and Zwally H J. 2013. Ice-sheet mass balance and climate change. Nature, 498(7452): 51-59 [DOI: 10.1038/nature12238http://dx.doi.org/10.1038/nature12238]
Holland D M, Nicholls K W and Basinski A. 2020. The southern ocean and its interaction with the Antarctic ice sheet. Science, 367(6484): 1326-1330 [DOI: 10.1126/science.aaz5491http://dx.doi.org/10.1126/science.aaz5491]
Huang H B, Cheng X, Gong P and Clinton N. 2014. A new 1000 m digital elevation model for Antarctica by integrating ICESat/GLAS and Envisat RA-2 data. Journal of Remote Sensing, 18(1): 117-125 [DOI: 10.11834/jrs.20133093http://dx.doi.org/10.11834/jrs.20133093]
Kennicutt M C, Chown S L, Cassano J J, Liggett D, Massom R, Peck L S, Rintoul S R, Storey J W V, Vaughan D G, Wilson T J and Sutherland W J. 2014. Polar research: six priorities for Antarctic science. Nature, 512(7512): 23-25 [DOI: 10.1038/512023ahttp://dx.doi.org/10.1038/512023a]
Li X, Rignot E, Mouginot J and Scheuchl B. 2016. Ice flow dynamics and mass loss of Totten glacier, east Antarctica, from 1989 to 2015. Geophysical Research Letters, 43(12): 6366-6373 [DOI: 10.1002/2016GL069173http://dx.doi.org/10.1002/2016GL069173]
Liu Y, Cheng X, Hui F M, Wang F and Chi Z H. 2013. Antarctic iceberg calving monitoring based on EnviSat ASAR images. Journal of Remote Sensing, 17(3): 479-494
刘岩, 程晓, 惠凤鸣, 王芳, 迟肇惠. 2013. 利用EnviSat ASAR数据监测南极冰架崩解. 遥感学报, 17(3): 479-494 [DOI: 10.11834/jrs.20132050http://dx.doi.org/10.11834/jrs.20132050]
Mohajerani Y, Velicogna I and Rignot E. 2018. Mass loss of Totten and Moscow university glaciers, east Antarctica, using regionally optimized GRACE Mascons. Geophysical Research Letters, 45(14): 7010-7018 [DOI: 10.1029/2018GL078173http://dx.doi.org/10.1029/2018GL078173]
Morlighem M, Rignot E, Binder T, Blankenship D, Drews R, Eagles G, Eisen O, Ferraccioli F, Forsberg R, Fretwell P, Goel V, Greenbaum J S, Gudmundsson H, Guo J X, Helm V, Hofstede C, Howat I, Humbert A, Jokat W, Karlsson N B, Lee W S, Matsuoka K, Millan R, Mouginot J, Paden J, Pattyn F, Roberts J, Rosier S, Ruppel A, Seroussi H, Smith E C, Steinhage D, Sun B, Van Den Broeke M R, Van Ommen T D, Van Wessem M and Young D A. 2020. Deep glacial troughs and stabilizing ridges unveiled beneath the margins of the Antarctic ice sheet. Nature Geoscience, 13(2): 132-137 [DOI: 10.1038/s41561-019-0510-8http://dx.doi.org/10.1038/s41561-019-0510-8]
Morlighem M, Williams C N, Rignot E, An L, Arndt J E, Bamber J L, Catania G, Chauché N, Dowdeswell J A, Dorschel B, Fenty I, Hogan K, Howat I, Hubbard A, Jakobsson M, Jordan T M, Kjeldsen K K, Millan R, Mayer L, Mouginot J, Noël B P Y, O’Cofaigh C, Palmer S, Rysgaard S, Seroussi H, Siegert M J, Slabon P, Straneo F, Van Den Broeke M R, Weinrebe W, Wood M and Zinglersen K B. 2017. BedMachine v3: complete bed topography and ocean bathymetry mapping of Greenland from Multibeam echo sounding combined with mass conservation. Geophysical Research Letters, 44(21): 11051-11061 [DOI: 10.1002/2017GL074954http://dx.doi.org/10.1002/2017GL074954]
Mouginot J, Rignot E, Scheuchl B and Millan R. 2017. Comprehensive annual ice sheet velocity mapping using landsat-8, sentinel-1, and RADARSAT-2 data. Remote Sensing, 9(4): 364 [DOI: 10.3390/rs9040364http://dx.doi.org/10.3390/rs9040364]
Mouginot J, Scheuchl B and Rignot E. 2012. Mapping of ice motion in Antarctica using synthetic-aperture radar data. Remote Sensing, 4(9): 2753-2767 [DOI: 10.3390/rs4092753http://dx.doi.org/10.3390/rs4092753]
Palerme C, Claud C, Dufour A, Genthon C, Wood N B and L’Ecuyer T. 2017. Evaluation of Antarctic snowfall in global meteorological reanalyses. Atmospheric Research, 190: 104-112 [DOI: 10.1016/j.atmosres.2017.02.015http://dx.doi.org/10.1016/j.atmosres.2017.02.015]
Qin D H, Ding Y J, Xiao C D, Kang S C, Ren J W, Yang J P and Zhang S Q. 2018. Cryospheric science: research framework and disciplinary system. National Science Review, 5(2): 255-268 [DOI: 10.1093/nsr/nwx108http://dx.doi.org/10.1093/nsr/nwx108]
Qin D H, Yao T D, Ding Y J and Ren J W. 2020. Establishment and significance of the scientific system of cryospheric science. Bulletin of Chinese Academy of Sciences, 35(4): 393-406
秦大河, 姚檀栋, 丁永建, 任贾文. 2020. 冰冻圈科学体系的建立及其意义. 中国科学院院刊, 35(4): 393-406 [DOI: 10.16418/j.issn.1000-3045.20200331001http://dx.doi.org/10.16418/j.issn.1000-3045.20200331001]
Rack W and Rott H. 2004. Pattern of retreat and disintegration of the Larsen b ice shelf, Antarctic peninsula. Annals of Glaciology, 39: 505-510 [DOI: 10.3189/172756404781814005http://dx.doi.org/10.3189/172756404781814005]
Ren J W, Allison I, Xiao C D and Qin D H. 2002. Mass balance in lambert, east Antarctica. Science in China Series D: Earth Sciences, 32(2): 134-140
任贾文, Allison I, 效存德, 秦大河. 2002. 东南极冰盖Lambert冰川流域的物质平衡研究. 中国科学(D辑: 地球科学), 32(2): 134-140 [DOI: 10.1360/zd2002-32-2-134http://dx.doi.org/10.1360/zd2002-32-2-134]
Rignot E, Bamber J L, Van Den Broeke M R, Davis C, Li Y H, Van De Berg W J and Van Meijgaard E. 2008. Recent Antarctic ice mass loss from radar interferometry and regional climate modelling. Nature Geoscience, 1(2): 106-110 [DOI: 10.1038/ngeo102http://dx.doi.org/10.1038/ngeo102]
Rignot E, Casassa G, Gogineni S, Kanagaratnam P, Krabill W, Pritchard H, Rivera A, Thomas R, Turner J and Vaughan D. 2005. Recent ice loss from the Fleming and other glaciers, Wordie Bay, west Antarctic peninsula. Geophysical Research Letters, 32(7): L07502 [DOI: 10.1029/2004GL021947http://dx.doi.org/10.1029/2004GL021947]
Rignot E, Casassa G, Gogineni P, Krabill W, Rivera A and Thomas R. 2004. Accelerated ice discharge from the Antarctic peninsula following the collapse of Larsen B ice shelf. Geophysical Research Letters, 31(18): L18401 [DOI: 10.1029/2004GL020697http://dx.doi.org/10.1029/2004GL020697]
Rignot E, Jacobs S, Mouginot J and Scheuchl B. 2013. Ice-shelf melting around Antarctica. Science, 341(6143): 266-270 [DOI: 10.1126/science.1235798http://dx.doi.org/10.1126/science.1235798]
Rignot E, Mouginot J, Morlighem M, Seroussi H and Scheuchl B. 2014. Widespread, rapid grounding line retreat of Pine Island, Thwaites, smith, and glaciersKohler, Antarcticawest, from 1992 to 2011. Geophysical Research Letters, 41(10): 3502-3509 [DOI: 10.1002/2014GL060140http://dx.doi.org/10.1002/2014GL060140]
Rignot E, Mouginot J and Scheuchl B. 2011a. Antarctic grounding line mapping from differential satellite radar interferometry. Geophysical Research Letters, 38(10): L10504 [DOI: 10.1029/2011GL047109http://dx.doi.org/10.1029/2011GL047109]
Rignot E, Mouginot J, Scheuchl B, Van Den Broeke M, Van Wessem M J and Morlighem M. 2019. Four decades of Antarctic ice sheet mass balance from 1979—2017. Proceedings of the National Academy of Sciences of the United States of America, 116(4): 1095-1103 [DOI: 10.1073/pnas.1812883116http://dx.doi.org/10.1073/pnas.1812883116]
Rignot E and Thomas R H. 2002. Mass balance of polar ice sheets. Science, 297(5586): 1502-1506 [DOI: 10.1126/science.1073888http://dx.doi.org/10.1126/science.1073888]
Rignot E, Velicogna I, Van Den Broeke M R, Monaghan A and Lenaerts J T M. 2011b. Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise. Geophysical Research Letters, 38(5): L05503 [DOI: 10.1029/2011GL046583http://dx.doi.org/10.1029/2011GL046583]
Shen Q, Wang H S, Shum C K, Jiang L M, Hsu H T and Dong J L. 2018. Recent high-resolution Antarctic ice velocity maps reveal increased mass loss in Wilkes Land, east Antarctica. Scientific Reports, 8(1): 4477 [DOI: 10.1038/s41598-018-22765-0http://dx.doi.org/10.1038/s41598-018-22765-0]
Shepherd A, Ivins E R, Geruo A, Barletta V R, Bentley M J, Bettadpur S, Briggs K H, Bromwich D H, Forsberg R, Galin N, Horwath M, Jacobs S, Joughin I, King M A, Lenaerts J T M, Li J L, Ligtenberg S R M, Luckman A, Luthcke S B, McMillan M, Meister R, Milne G, Mouginot J, Muir A, Nicolas J P, Paden J, Payne A J, Pritchard H, Rignot E, Rott H, Sorensen L S, Scambos T A, Scheuchl B, Schrama E J O, Smith B, Sundal A V, Van Angelen J H, Van De Berg W J, Van Den Broeke M R, Vaughan D G, Velicogna I, Wahr J, Whitehouse P L, Wingham D J, Yi D H, Young D and Zwally H J. 2012. A reconciled estimate of ice-sheet mass balance. Science, 338(6111): 1183-1189 [DOI: 10.1126/science.1228102http://dx.doi.org/10.1126/science.1228102]
Smith B, Fricker H A, Gardner A S, Medley B, Nilsson J, Paolo F S, Holschuh N, Adusumilli S, Brunt K, Csatho B, Harbeck K, Markus T, Neumann T, Siegfried M R and Zwally H J. 2020. Pervasive ice sheet mass loss reflects competing ocean and atmosphere processes. Science, 368(6496): 1239-1242 [DOI: 10.1126/science.aaz5845http://dx.doi.org/10.1126/science.aaz5845]
The IMBIE team. 2018. Mass balance of the Antarctic ice sheet from 1992 to 2017. Nature, 558(7709): 219-222 [DOI: 10.1038/s41586-018-0179-yhttp://dx.doi.org/10.1038/s41586-018-0179-y]
Thomas E R, Van Wessem J M, Roberts J, Isaksson E, Schlosser E, Fudge T J, Vallelonga P, Medley B, Lenaerts J, Bertler N, Van Den Broeke M R, Dixon D A, Frezzotti M, Stenni B, Curran M and Ekaykin A A. 2017. Regional Antarctic snow accumulation over the past 1000 years. Climate of the Past, 13(11): 1491-1513 [DOI: 10.5194/cp-13-1491-2017http://dx.doi.org/10.5194/cp-13-1491-2017]
Van Wessem J M, Reijmer C H, Morlighem M, Mouginot J, Rignot E, Medley B, Joughin I, Wouters B, Depoorter M A, Bamber J L, Lenaerts J T M, Van De Berg W J, Van Den Broeke M R and Van Meijgaard E. 2014. Improved representation of east Antarctic surface mass balance in a regional atmospheric climate model. Journal of Glaciology, 60(222): 761-770 [DOI: 10.3189/2014JoG14J051http://dx.doi.org/10.3189/2014JoG14J051]
Van Wessem J M, Van De Berg W J, Noël B P Y, Van Meijgaard E, Amory C, Birnbaum G, Jakobs C L, Krüger K, Lenaerts J T M, Lhermitte S, Ligtenberg S R M, Medley B, Reijmer C H, Van Tricht K, Trusel L D, Van Ulft L H, Wouters B, Wuite J and Van Den Broeke M R. 2018. Modelling the climate and surface mass balance of polar ice sheets using RACMO2-Part 2: Antarctica (1979—2016). The Cryosphere, 12(4): 1479-1498 [DOI: 10.5194/tc-12-1479-2018http://dx.doi.org/10.5194/tc-12-1479-2018]
Wadham J L, Hawkings J R, Tarasov L, Gregoire L J, Spencer R G M, Gutjahr M, Ridgwell A and Kohfeld K E. 2019. Ice sheets matter for the global carbon cycle. Nature Communications, 10(1): 3567 [DOI: 10.1038/s41467-019-11394-4http://dx.doi.org/10.1038/s41467-019-11394-4]
Wang Q H and Ning J S. 2002. Calculations of the balance-flux distributions of the lambert glacier-Amery ice shelf system, east Antarctica. Journal of Glaciology and Geocryology, 24(5): 500-505
王清华, 宁津生. 2002. 东南极Lambert冰川-Amery冰架系统平衡通量分布的计算. 冰川冻土, 24(5): 500-505 [DOI: 10.3969/j.issn.1000-0240.2002.05.004http://dx.doi.org/10.3969/j.issn.1000-0240.2002.05.004]
Wen J H, Jezek K C, Csathó B M, Herzfeld U C, Farness K L and Huybrechts P. 2007. Mass budgets of the lambert, Mellor and fisher glaciers and basal fluxes beneath their flowbands on Amery ice shelf. Science in China Series D: Earth Sciences, 50(11): 1693-1706 [DOI: 10.1007/s11430-007-0120-yhttp://dx.doi.org/10.1007/s11430-007-0120-y]
Ye Y, Cheng X, Liu Y, Yang Y D, Zhao L Y, Lin Y J and Qu Y T. 2020. Research progress on ice sheet mass balance in Antarctica and Greenland. Chinese Journal of Polar Research, 32(4): 571-585
叶玥, 程晓, 刘岩, 杨元德, 赵励耘, 林依静, 璩榆桐. 2020. 南极和格陵兰冰盖物质平衡研究进展. 极地研究, 32(4): 571-585 [DOI: 10.13679/j.jdyj.20190060http://dx.doi.org/10.13679/j.jdyj.20190060]
Zhou C X, Liang Q, Chen Y M, Lei H B, Fu Z, Zheng L and Liu R X. 2019. Mass balance assessment of the Amery ice shelf basin, east Antarctica. Earth and Space Science, 6(10): 1987-1999 [DOI: 10.1029/2019EA000596http://dx.doi.org/10.1029/2019EA000596]
相关作者
相关机构