Update of remote sensing satellite ground systemof China remote sensing satellite ground station
- Vol. 25, Issue 1, Pages: 251-266(2021)
Published: 07 January 2021
DOI: 10.11834/jrs.20210457
扫 描 看 全 文
浏览全部资源
扫码关注微信
Published: 07 January 2021 ,
扫 描 看 全 文
李安,黄鹏,石璐,何国金,冯旭祥,吴业炜,张箐,马广彬,冯柯,杨进,李景山.2021.中国遥感卫星地面站卫星地面系统的发展.遥感学报,25(1): 251-266
Li A,Huang P,Shi L,He G J,Feng X X,Wu Y W,Zhang Q,Ma G B,Feng K,Yang J and Li J S. 2021. Update of remote sensing satellite ground systemof China remote sensing satellite ground station. National Remote Sensing Bulletin, 25(1):251-266
成立于1986年的中国遥感卫星地面站是中国重大科技基础设施,也是国际资源卫星地面站网的重要成员。历经30余年的建设和运行,中国遥感卫星地面站形成了以北京总部为中心,拥有密云、喀什、三亚、昆明、北极5个卫星接收站的体系,实时数据接收覆盖中国全部领土和亚洲70%陆地区域,并初步具备了全球数据的快速获取能力。2020年,地面站实现了32颗国内外陆地观测卫星和中国空间科学卫星的全自动化业务运行,是中国兼容和扩展能力最强的卫星数据地面接收系统,总体指标达到国际先进水平,部分指标达到国际领先水平。近年来,地面站在技术上不断取得突破性进展,包括Ka频段数据接收、VCM模式数据接收、面向快速应用的卫星数据记录与快视平台、超远距离数据网络传输、数据接收任务自动规划等。同时,以国际先进遥感卫星数据处理产品、对地观测数据共享计划、虚拟地面站、RTU等新型数据产品为代表,为中国空间对地观测提供了有力的数据保障,为国家经济建设、社会发展、科学研究都做出了突出的贡献。
Established in 1986
China Remote Sensing Satellite Ground Station (RSGS) is one of China’s major scientific infrastructures and an important member of the International Ground Station (IGS) Network. After more than 30 years of construction
development and operation
RSGS has developed a system that is centered around the Beijing headquarters with five ground stations located in Miyun (operation since 1986)
Kashi (since 2008)
Sanya (since 2010)
Kunming (since 2016)
and the Arctic (since 2016). Its real-time data acquisition covers all territory of China and 70% of Asia’s land areas. It is also equipped with the initial ability to acquire global earth observation data efficiently.By the continuous system development and technical improving
RSGS is currently the most compatible and expandable ground receiving system for satellite data in China. Its overall performance has achieved the international advanced standard as some indicators approach the international leading level. For example
S
X and Ka band downlink reception capability with bit rate up to 2×1200Mbps (in X band) and 4×1.5Gbps (in Ka band)
satellite signal tracking efficiently for high dynamics and low signal-to-noise ratio case
multiple-satellite data recording and quicklook in real time
high speed data transferring fiber link with bandwidth 200Mbps
622Mbps or 10Gbps between domestic stations and RSGS headquarter
the worldwide standard LANDSAT
RADARSAT
SPOT and PLEIADES data processing and production system
the on-line archiving data querying/ordering and product delivery system
and the integrated ground station operation management system to monitor and manage the daily data acquisition
recording
transferring and so on.In recent years
the number of domestic and international satellite missions
the data reception passes and successful rate
and the data processing amount are all increasing continuously. From January to September of 2020
RSGS automated the operation of 32 domestic and overseas earth observation satellites as well as China’s Space Science satellites
and the total number of data reception is 42
183 passes with the successful rate 99.8%.RSGS also made a series of technical breakthroughs
including Ka band data reception
the VCM (Variable Coding and Modulation) mode data receiving technology
satellite high speed data recording and quicklook platforms for rapid application
ultra-distance data transmission network
automatic planning for data reception operations
centralized digital 3D virtual simulation monitoring of remote sensing satellite ground station
and etc. Meanwhile
the new data and application products are provided to public
such as Earth Observation Data Sharing Plan
virtual ground station
RTU (Ready-to-Use) data service
InSAR monitoring of land subsidence nationwide
and etc. On the other hand
remote sensing applications were accomplished by the national requirements
such as flood and earthquake monitoring
forest fire investigation
and sea supervision.According to the guidance of national programme
RSGS is carrying out the research and construction of the national civil space infrastructure data receiving system project. In the future
with the enhancement of system capabilities
RSGS will continue to provide China’s earth observation with powerful quantitative support and contribute greatly to national economic development
social progress
and scientific research.
中国遥感卫星地面站国家重大科技基础设施卫星数据接收站网遥感卫星地面系统
RSGSnational major science and technology infrastructuresatellite data receiving station networkground system for satellite data
AIRBUS DEFENCE AND SPACE. 2017. Pléiades Imagery User Guide. 1-2. https://www.intelligence-airbusds.com/automne/api/docs/v1.0/document/download/ZG9jdXRoZXF1ZS1kb2N1bWVu dC01NTY0Mw==/ZG9jdXRoZXF1ZS1maWx lLTU1NjQy/Pleiades_UserGuide_18072019.pdfhttps://www.intelligence-airbusds.com/automne/api/docs/v1.0/document/download/ZG9jdXRoZXF1ZS1kb2N1bWVudC01NTY0Mw==/ZG9jdXRoZXF1ZS1maWxlLTU1NjQy/Pleiades_UserGuide_18072019.pdf [2020-05-21]
AIRBUS DEFENCE AND SPACE. 2019. SPOT 6/7 User Guide. 1-2. https://www.intelligence-airbusds.com/aut omne/api/docs/v1.0/document/download/ZG9jdXRoZXF1ZS1kb2N1bWVudC01NTY0 NQ==/ZG9jdXRoZXF1ZS1maWxlLTU1N jQ0/SPOT6-7_UserGuide_201906.pdfhttps://www.intelligence-airbusds.com/automne/api/docs/v1.0/document/download/ZG9jdXRoZXF1ZS1kb2N1bWVudC01NTY0NQ==/ZG9jdXRoZXF1ZS1maWxlLTU1NjQ0/SPOT6-7_UserGuide_201906.pdf [2020-05-21]
Cai H M, Fu C, Jin Y, 2019, A Remote Sensing Image Retrieval Model based on an Ensemble Neural Networks. Big Earth Data, 2(4):351-367
Cai M., Jin Y, Fu C, et al. 2018, Assessing Heavy Industrial Heat Source Distribution in China Using Real-Time VIIRS Active Fire/Hotspot Data. Sustainability , 10(12), 4419
Gooley T D , Borsi J J and Moore J T . 1996. Automating Air Force Satellite control Network (AFSCN) scheduling. Mathematical & Computer Modelling, 24(2):91-101
He G J, Zhang Z M, Jiao W L, Long T F, Peng Y, Wang G Z, Yin R Y, Wang W, Zhang X M, Liu H C, Cheng B and Xiang B. 2018. Generation of ready to use (RTU) products over China based on Landsat series data. Big Earth Data, 2(1):56-64, [DOI: 10.1080/20964471.2018.1433370http://dx.doi.org/10.1080/20964471.2018.1433370]
Jeffrey G M, Vermote E F, Saleous N E, Wolfe R, Hall F G, Huemmrich K F, Gao F, Kutler J and Lim T K. 2006. A Landsat Surface Reflectance Dataset for North America, 1990-2000. IEEE Geoscience and Remote Sensing Letters, 3(1): 68-72
Jian B L, Jin Y, Fu C, Qin D,2014, Jing Z,Location-based instant satellite image service: concept and system design, International Journal of Digital Earth ,8(2): 91-101
Junyi Yang,Jinshu Chen,Wanyu Wang,Lu Xu. 2012. Joint XPI and ISI Cancellation for Dually-Polarized Radio Systems over Earth-Space Links. Procedia Engineering, 29(2), 3217-3221
Long T F, Zhang Z M, He G J, et al. 2019. 30 m Resolution Global Annual Burned Area Mapping Based on Landsat Images and Google Earth Engine. Remote Sensing, 11:489-519
Peng Y, He G J, Zhang Z M, Long T F, Wang M M and Ling S G. 2016. Study on atmospheric correction approach of Landsat-8 imageries based on 6S model and look-up table. Journal of Applied Remote Sensing, 10(4):045006
Spangelo S , Cutler J and Gilson K , et al. 2015. Optimization-based scheduling for the single-satellite, multi-ground station communication problem. Computers & Operations Research, 57:1-16
Vermote E F, El Saleous N, Justice C O, Kaufman Y J, Privette J L, Remer L and Tanre D. 1997. Atmospheric correction of visible to middle-infrared EOS-MODIS data over land surfaces: background, operational algorithm and validation. J. Geophys. Res, 102(D14):17131-17141
Vermote E, Justice C, Claverie M and Franch B. 2016. Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product. Remote Sensing of Environment, 185:46-56
Xhafa F, Herrero X and Barolli A. 2013. Evaluation of struggle strategy in Genetic Algorithms for ground stations scheduling problem. Journal of computer and system sciences, 79(7): 1086-1100
Zhang B. 2011,Intelligent remote sensing satellite system, Journal of Remote Sensing, 15(3):416-422
Zhang X M, Long T F, He G J, et al. 2020. Rapid generation of global forest cover map using Landsat based on the forest ecological zones. J. Appl. Rem. Sens. 14(2), 022211 (18 March 2020) https://doi.org/10.1117/1.JRS.14.022211
Feng Z K, Ge X Q, Zhang H Q, Li A. 2016. Remote sensing data receiving and processing technology. Beijing: Beihang University Press(Chinese).(冯钟葵,葛小青,张洪群,李安等,遥感数据接收与处理技术,北京:北京航空航天大学出版社,2016)
He G J, Wang L Z, Ma Y, Zhang Z M, Wang G Z, Peng Y. 2015. Chinese Processing of earth observation big data: Challenges and countermeasures. Science Bulletin(Chinese). 60(5):470-478
何国金,王力哲,马艳, 张兆明,王桂周,彭燕等. 2015. 对地观测大数据处理: 挑战与思考. 科学通报, 60(5):470-478
Li Y F, Wu X Y. 2008. Application of genetic algorithm in satellite data transmission scheduling problem. Systems Engineering-Theory & Practice(Chinese). 28(1):124-131
李云峰, 武小悦. 2008. 遗传算法在卫星数传调度问题中的应用. 系统工程理论与实践, 28(1):124-131 [DOI: 10.3321/j.issn:1000-6788.2008.01.018http://dx.doi.org/10.3321/j.issn:1000-6788.2008.01.018]
Tang T. 2017. Cross-Polarization Interference Cancellation in High-Rate Data Transmission. Radar Science and Technology(Chinese). 15(06):666-670
唐婷. 2017. 高速数传中的交叉极化干扰对消设计. 雷达科学与技术, 15(06):666-670 [DOI: 10.3969/j.issn.1672-2337.2017.06.016http://dx.doi.org/10.3969/j.issn.1672-2337.2017.06.016]
Wang W Y, Chen J S. 2013. Study on Cross-polarization Interference Cancellation Technology. Telecommunication Engineering(Chinese). 53(6):707-710
王万玉, 陈金树. 2013. 交叉极化干扰消除技术研究. 电讯技术, 53(6):707-710
Wang W Y, Mao W, He Y C. Analysis of remote sensing satellite earth link data transmission technology. Internet of things technologies(Chinese). 7(07):33-36
王万玉, 毛伟, 何元春. 2017. 遥感卫星星地链路数据传输技术分析.物联网技术, 7(07):33-36
Wang W Y, Wang Y H, Wang Q. 2014. Analysis on XPD requirement of dual-polarized remote satellite data receiving system. Modern Electronics Technique(Chinese). 37(15):45-48, 54 (王万玉, 王永华, 王强. 2014. 双圆极化遥感卫星数据接收系统极化鉴别率需求分析. 现代电子技术, 37(15):45-48, 54) [DOI: 10.3969/j.issn.1004-373X.2014.15.013http://dx.doi.org/10.3969/j.issn.1004-373X.2014.15.013]
Wang W Y, Zhang B Q, Liu A P, Li J N, Li F, Wang Q. 2012. Design of Data Receiving System for Frequency Reuse High Data Rate Remote Sensing Satellites. Telecommunication Engineering(Chinese). 52(4):423-428
王万玉, 张宝全, 刘爱平, 李娟妮, 李凡, 王强. 2012. 频率复用高码速率遥感卫星数据接收系统设计. 电讯技术, 52(4):423-428 [DOI: 10.3969/j.issn.1001-893x.2012.04.001http://dx.doi.org/10.3969/j.issn.1001-893x.2012.04.001]
Wang W Y, Zhang B Q. 2011. Multi-station Multi-satellite Task Scheduling Model and Solution. Telecommunication Engineering(Chinese). 51(4):1-6
王万玉, 张志强. 2011. 多站多星任务调度模型及求解. 电讯技术, 51(4):1-6 [DOI: 10.3969/j.issn.1001-893x.2011.04.001http://dx.doi.org/10.3969/j.issn.1001-893x.2011.04.001]
Wang X Z, Huang H L, Liu D Y, Zhang Q Y. 2004. The Iteration by Correcting Characteristic Value and Its Application in Surveying Data Processing. Journal of Heilongjiang Institute of Technology(Chinese). 15(2):3-6
王新洲, 黄海兰, 刘丁酉, 张前勇. 2004. 谱修正迭代法及其在测量数据处理中的应用. 黑龙江工程学院学报, 15(2):3-6 [DOI: 10.3969/j.issn.1671-4679.2001.02.001http://dx.doi.org/10.3969/j.issn.1671-4679.2001.02.001]
Wang Y H, Wang W Y. 2013. Analysis of Key Technology for S/X/Ka-band Antenna Feed and Servo System. Telecommunication Engineering(Chinese). 2013,53(08):1058-1063
王永华, 王万玉. 2013. S/X/Ka频段天伺馈系统关键技术分析. 电讯技术, 2013,53(08):1058-1063
Wu Y W, Zhang H Q, Li A. 2012. Remote sensing satellite baseband data acquisition and distribution system and method. CN2012103 01120.6 (吴业炜, 张洪群, 李安. 2012. 遥感卫星基带数据采集与分发系统及方法. 中国, CN201210301120.6)
Yang J, Zhao J. 2012. Research and Implementation of Remote Broadcasting System of HJ-1A/1B Satellite. Remote Sensing Information(Chinese). 027.004(2012):106-110
杨进, 赵静. 2012. HJ-1A/1B卫星远程播报系统的实现. 遥感信息, 027.004(2012):106-110 [DOI: 10.3969/j.issn.1000-3177.2012.04.019http://dx.doi.org/10.3969/j.issn.1000-3177.2012.04.019]
Zhang G, Li D R, Qin X W, Zhu X Y. 2008. Geometric Rectification of High Resolution Spaceborne SAR Image Based on RPC Model. Journal of Remote Sensing(Chinese). 12(006):942-948
张过, 李德仁, 秦绪文, 祝小勇. 2008. 基于RPC模型的高分辨率SAR影像正射纠正. 遥感学报, 12(006):942-948 [DOI: 10.11834/jrs.20 0806126http://dx.doi.org/10.11834/jrs.200806126]
Zhang Y, Xiong W M, Wang Z G. 2019. Adaptive mode design of near-earth satellite data transmission link for resistance to rainfall attenuation at Ka band. Journal of National University of Defense Technology(Chinese). 41(06):149-155
张颖, 熊蔚明, 王竹刚. 2019. 近地卫星Ka频段数传链路抗雨衰自适应模式设计. 国防科技大学学报, 41(06):149-155 [DOI: 10.11887/j.cn.201906022http://dx.doi.org/10.11887/j.cn.201906022]
Zhang Y S, Gong D C. 2004. Application of high resolution remote sensing satellite: imaging model, processing algorithm and application technology. Beijing: SCIENCE PRESS(Chinese). 30-31
张永生, 巩丹超. 2004. 高分辨率遥感卫星应用:成像模型, 处理算法及应用技术. 北京:科学出版社:30-31
相关文章
相关作者
相关机构