The proposal, practice and preliminary application of land-based (ground-based, shore-based) remote sensing of water environment
- Vol. 25, Issue 11, Pages: 2163-2172(2021)
Published: 07 November 2021
DOI: 10.11834/jrs.20210473
扫 描 看 全 文
浏览全部资源
扫码关注微信
Published: 07 November 2021 ,
扫 描 看 全 文
张运林,施坤,张毅博,孙晓,李娜,黄新,王玮佳,周永强,高阳辉,蔡宏,高晶.2021.陆基(地基、岸基)水环境遥感的提出、实践和初步应用.遥感学报,25(11): 2163-2172
Zhang Y L,Shi K,Zhang Y B,Sun X,Li N,Huang X,Wang W J,Zhou Y Q,Gao Y H, Cai H and Gao J. 2021. The proposal, practice and preliminary application of land-based (ground-based, shore-based) remote sensing of water environment. National Remote Sensing Bulletin, 25(11):2163-2172
断面监测是准确掌握中国地表水水质和水环境变化特征,开展水环境成因机制分析、评价评估、治理修复和管理考核的重要基石。提高监测立体化、自动化、智能化水平是未来水生态环境监测的重要方向,可以切实提高中国生态环境监测现代化能力。本文针对全国地表水环境断面监测,首次提出陆基(地基、岸基)水环境遥感概念,有效补充和完善传统的卫星遥感和断面监测技术方法。通过与杭州海康威视数字技术股份有限公司(简称“海康威视”)开展合作研发,自主研制了国产高光谱成像仪,于2020-07-31—2020-08-17在太湖开展了复杂天况和水况场景下陆基(地基、岸基)水环境遥感实践应用,构建了透明度、悬浮物、总氮、总磷等关键水质参数高精度遥感反演算法,反演精度可达80%及以上。将相关算法植入高光谱成像仪中获得关键水质参数高频动态变化过程,精细刻画其时间演化过程。太湖陆基(地基、岸基)水环境遥感实践表明,在全国地表水监测断面架设国产高光谱成像仪开展关键水质参数高频精准观测具有广泛应用前景和市场推广价值,可以与卫星和无人机遥感形成天—空—地立体化遥感监测体系,结合断面人工巡测和自动观测开展协同监测。
Cross-section monitoring is an important cornerstone to accurately grasp the surface water quality and water environment change characteristics
to explore water environment formation mechanism
to evaluate and assess water environment trend
to treat and repair water pollution
and to manage water quality. Improving the level of three-dimensional
automatic and intelligent monitoring is an important direction of future ecological environment monitoring
which can effectively improve the level of modern ecological environment monitoring ability.
The traditional cross-section manual sampling monitoring is time-consuming and laborious
and the time and space frequency are very low resulting in the discrete data and the poor timeliness. High frequency on-line monitoring of underwater sensors can solve the continuous observation in time
but the sensor is easy to wear and tear and disturbed by water environment
resulting in unstable monitoring accuracy
limited monitoring indexes
large errors between automatic monitoring results of key parameters such as total nitrogen and total phosphorus and conventional laboratory monitoring analysis data. In addition
high management and maintenance costs are needed for the on-line monitoring of underwater sensors. Satellite remote sensing can realize the inversion of key water quality parameters in different spatial scales
but it is difficult to solve the high temporal resolution continuous observation. Meanwhile
it is difficult to ensure high-precision monitoring due to the effects of cloud and rain conditions and atmospheric correction.
In this study
we firstly propose the concept of land-based (ground-based
shore-based) water environment remote sensing to effectively supplement and improve the existing satellite remote sensing and national surface water environment cross-section monitoring technology and methods. Using domestic hyperspectral imager developed by the Hangzhou Hikvision Digital Technology Co.
Ltd. and Nanjing Institute of Geography and Limnology
Chinese Academy of Sciences
we carry out the application practice of land-based (ground-based
shore-based) water environment remote sensing under complex weather and water conditions in Lake Taihu. Based on the
in situ
measurement of remote sensing reflectance and key water quality parameters
we calibrate and validate the remote sensing estimation models of Secchi disc depth
total suspended matter
total nitrogen
and total phosphorus with high precision. Overall
the estimation precisions of four key water quality parameters are close or higher than 80% indicating the land-based (ground-based
shore-based) remote sensing can be used for the accurate monitoring of water quality under complex weather and water conditions. High frequency dynamic processes of key water quality parameters are observed by implanting remote sensing estimation models into the hyperspectral imager
which can be used to finely characterize time evolution process of water environment. The practice of remote sensing of water environment in Lake Taihu shows that it has a wide application prospect and market value to install domestic hyperspectral imager to carry out high frequency accurate observation of key water quality parameters in the national surface water monitoring section.
Of course
more
in situ
observation and measurement for different waters are needed to improve or develop universal models for more parameters monitoring. Coupled with satellite
unmanned aerial vehicle and land-based (ground-based
shore based) remote sensing
the sky-air-ground integrated remote sensing monitoring system can be established. Combined with cross-section manual monitoring and automatic observation
the collaborative monitoring can be carried out to give full play to their respective advantages
which truly realize the long-term reconstruction and real-time high-frequency dynamic monitoring of key water quality parameters serving water environment management.
陆基(地基、岸基)遥感水质参数悬浮物营养盐总磷透明度
land-based (ground-based shore-based) remote sensingwater quality parameterstotal suspended matternutrientstotal phosphorussecchi disc depth
Chen J and Quan W T. 2012. Using Landsat/TM imagery to estimate nitrogen and phosphorus concentration in Taihu Lake, China. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 5(1): 273-280 [DOI: 10.1109/jstars.2011.2174339http://dx.doi.org/10.1109/jstars.2011.2174339]
Duan H T, Wan N S, Qiu Y G, Liu G, Chen Q, Luo J H, Chen Y and Qi T C. 2020. Discussions and practices on the framework of monitoring system in eutrophic lakes and reservoirs. Journal of Lake Sciences, 32(5): 1396-1405
段洪涛, 万能胜, 邱银国, 刘刚, 陈青, 罗菊花, 陈远, 齐天赐. 2020. 富营养化湖库天—空—地一体化监控平台系统设计与实践. 湖泊科学, 32(5): 1396-1405 [DOI: 10.18307/2020.0513http://dx.doi.org/10.18307/2020.0513]
Hogg D C. 1980. Ground-based remote sensing and profiling of the lower atmosphere using radio wavelengths. IEEE Transactions on Antennas and Propagation, 28(2): 281-283 [DOI: 10.1109/tap.1980.1142317http://dx.doi.org/10.1109/tap.1980.1142317]
Huang J C, Zhang Y J, Arhonditsis G B, Gao J F, Chen Q W, Wu N C, Dong F F and Shi W Q. 2019. How successful are the restoration efforts of China's lakes and reservoirs? Environment International, 123: 96-103 [DOI: 10.1016/j.envint.2018.11.048http://dx.doi.org/10.1016/j.envint.2018.11.048]
Kaufman Y J, Tanré D, Dubovik O, Karnieli A and Remer L A. 2001. Absorption of sunlight by dust as inferred from satellite and ground-based remote sensing. Geophysical Research Letters, 28(8): 1479-1482 [DOI: 10.1029/2000gl012647http://dx.doi.org/10.1029/2000gl012647]
Li S J, Wu Q, Wang X J, Piao X Y and Dai Y N. 2002. Correlations between reflectance spectra and contents of chlorophyll-a in Chaohu Lake. Journal of Lake Sciences, 14(3): 228-234
李素菊, 吴倩, 王学军, 朴秀英, 戴永宁. 2002. 巢湖浮游植物叶绿素含量与反射光谱特征的关系. 湖泊科学, 14(3): 228-234 [DOI: 10.18307/2002.0306http://dx.doi.org/10.18307/2002.0306]
Li Z, Gu X, Wang L, Li D, Xie Y, Li K, Dubovik O, Schuster G, Goloub P, Zhang Y, Li L, Ma Y and Xu H. 2013. Aerosol physical and chemical properties retrieved from ground-based remote sensing measurements during heavy haze days in Beijing winter. Atmospheric Chemistry and Physics, 13(20): 10171-10183 [DOI: 10.5194/acp-13-10171-2013http://dx.doi.org/10.5194/acp-13-10171-2013]
Liu J, Zhou M, Chen X and Liu T L. 2014. Study on the construction and management of the quality automatic monitoring network of state surface water. Environmental Monitoring and Forewarning, 6(1): 10-13
刘京, 周密, 陈鑫, 刘廷良. 2014. 国家地表水水质自动监测网建设与运行管理的探索与思考. 环境监控与预警, 6(1): 10-13
Liu T Y, Kuang D B and Yin Q. 2004. Study on hyperspectral quantitative model of concentrations for chlorophyll-a of alga and suspended particles in Tailake. Journal of Infrared and Millimeter Waves, 23(1): 11-15
刘堂友, 匡定波, 尹球. 2004. 湖泊藻类叶绿素-a和悬浮物浓度的高光谱定量遥感模型研究. 红外与毫米波学报, 23(1): 11-15 [DOI: 10.3321/j.issn:1001-9014.2004.01.003http://dx.doi.org/10.3321/j.issn:1001-9014.2004.01.003]
Ma R H and Dai J F. 2005. Chlorophyll-a concentration estimation with field spectra of water-body near Meiliang Bayou in Taihu Lake. Journal of Remote Sensing, 9(1): 78-86
马荣华, 戴锦芳. 2005. 应用实测光谱估测太湖梅梁湾附近水体叶绿素浓度. 遥感学报, 9(1): 78-86 [DOI: 10.3321/j.issn:1007-4619.2005.01.012http://dx.doi.org/10.3321/j.issn:1007-4619.2005.01.012]
Ma T, Zhao N, Ni Y, Yi J W, Wilson J P, He L H, Du Y Y, Pei T, Zhou C H, Song C and Cheng W M. 2020. China’s improving inland surface water quality since 2003. Science Advances, 6(1):
eaau3798 [DOI: 10.1126/sciadv.aau3798http://dx.doi.org/10.1126/sciadv.aau3798]
Mishra D R, Kumar A, Ramaswamy L, Boddula V K, Das M C, Page B P and Weber S J. 2020. CyanoTRACKER: A cloud-based integrated multi-platform architecture for global observation of cyanobacterial harmful algal blooms. Harmful Algae, 96: 101828 [DOI: 10.1016/j.hal.2020.101828http://dx.doi.org/10.1016/j.hal.2020.101828]
Qin B Q. 2020. Shallow lake limnology and control of eutrophication in Lake Taihu. Journal of Lake Sciences, 32(5): 1229-1243
秦伯强. 2020. 浅水湖泊湖沼学与太湖富营养化控制研究. 湖泊科学, 32(5): 1229-1243 [DOI: 10.18307/2020.0501http://dx.doi.org/10.18307/2020.0501]
Qin B Q, Li W, Zhu G W, Zhang Y L, Wu T F and Gao G. 2015. Cyanobacterial bloom management through integrated monitoring and forecasting in large shallow eutrophic Lake Taihu (China). Journal of Hazardous Materials, 287: 356-363 [DOI: 10.1016/j.jhazmat.2015.01.047http://dx.doi.org/10.1016/j.jhazmat.2015.01.047]
Qin B Q, Paerl H W, Brookes J D, Liu J G, Jeppesen E, Zhu G W, Zhang Y L, Xu H, Shi K and Deng J M. 2019. Why Lake Taihu continues to be plagued with cyanobacterial blooms through 10 years (2007-2017) efforts. Science Bulletin, 64(6): 354-356 [DOI: 10.1016/j.scib.2019.02.008http://dx.doi.org/10.1016/j.scib.2019.02.008]
Qin B Q, Xu P Z, Wu Q L, Luo L C and Zhang Y L. 2007. Environmental issues of Lake Taihu, China. Hydrobiologia, 581(1): 3-14 [DOI: 10.1007/s10750-006-0521-5http://dx.doi.org/10.1007/s10750-006-0521-5]
Qin B Q, Zhang Y L, Zhu G W, Gong Z J, Deng J M, Hamilton D P, Gao G, Shi K, Zhou J, Shao K Q, Zhu M Y, Zhou Y Q, Tang X M and Li L. 2020. Are nitrogen-to-phosphorus ratios of Chinese lakes actually increasing? Proceedings of the National Academy of Sciences of the United States of America, 117(35): 21000-21002 [DOI: 10.1073/pnas.2013445117http://dx.doi.org/10.1073/pnas.2013445117]
Qin B Q, Zhu G W, Gao G, Zhang Y L, Li W, Paerl H W and Carmichael W W. 2010. A drinking water crisis in Lake Taihu, China: Linkage to climatic variability and lake management. Environmental Management, 45(1): 105-112 [DOI: 10.1007/s00267-009-9393-6http://dx.doi.org/10.1007/s00267-009-9393-6]
Shi K, Zhang Y L, Zhang Y B, Li N, Qin B Q, Zhu G W and Zhou Y Q. 2019. Phenology of phytoplankton blooms in a trophic lake observed from long-term MODIS data. Environmental Science and Technology, 53(5): 2324-2331 [DOI: 10.1021/acs.est.8b06887http://dx.doi.org/10.1021/acs.est.8b06887]
Shi K, Zhang Y L, Zhang Y B, Qin B Q and Zhu G W. 2020. Understanding the long-term trend of particulate phosphorus in a cyanobacteria-dominated lake using MODIS-Aqua observations. Science of the Total Environment, 737: 13976 [DOI: 10.1016/j.scitotenv.2020.139736http://dx.doi.org/10.1016/j.scitotenv.2020.139736]
Shi K, Zhang Y L, Zhu G W, Liu X H, Zhou Y Q, Xu H, Qin B Q, Liu G and Li Y M. 2015. Long-term remote monitoring of total suspended matter concentration in Lake Taihu using 250 m MODIS-Aqua data. Remote Sensing of Environment, 164: 43-56 [DOI: 10.1016/j.rse.2015.02.029http://dx.doi.org/10.1016/j.rse.2015.02.029]
Shi K, Zhang Y L, Zhu G W, Qin B Q and Pan D L. 2018. Deteriorating water clarity in shallow waters: Evidence from long term MODIS and in-situ observations. International Journal of Applied Earth Observation and Geoinformation, 68: 287-297 [DOI: 10.1016/j.jag.2017.12.015http://dx.doi.org/10.1016/j.jag.2017.12.015]
Wu J Y, Chen C Z, Zhao C, Sun Y and Hu T Y. 2020. Prospects for national eco-environmental monitoring during the 14th Five-Year Plan period. Environmental Conformity Assessment, 12(4): 62-67
吴季友, 陈传忠, 赵岑, 孙媛, 胡天洋. 2020. 国家生态环境监测“十四五”展望. 中国环境管理, 12(4): 62-67 [DOI: 10.16868/j.cnki.1674-6252.2020.04.062http://dx.doi.org/10.16868/j.cnki.1674-6252.2020.04.062]
Wu S Z, Xia Q and Liu H L. 2000. Analysis of river basin water pollution in China. Environmental Science and Technology, (2): 1-6
吴舜泽, 夏青, 刘鸿亮. 2000. 中国流域水污染分析. 环境科学与技术, (2): 1-6 [DOI: 10.3969/j.issn.1003-6504.2000.02.001]
Yang G S, Ma R H, Zhang L, Jiang J H, Yao S C, Zhang M and Zeng H A. 2010. Lake status, major problems and protection strategy in China. Journal of Lake Sciences, 22(6): 799-810
杨桂山, 马荣华, 张路, 姜加虎, 姚书春, 张民, 曾海鳌. 2010. 中国湖泊现状及面临的重大问题与保护策略. 湖泊科学, 22(6): 799-810
Zhang L P, Xia J and Hu Z F. 2009. Situation and problem analysis of water resource security in China. Resources and Environment in the Yangtze Basin, 18(2): 116-120
张利平, 夏军, 胡志芳. 2009. 中国水资源状况与水资源安全问题分析. 长江流域资源与环境, 18(2): 116-120 [DOI: 10.3969/j.issn.1004-8227.2009.02.004http://dx.doi.org/10.3969/j.issn.1004-8227.2009.02.004]
Zhang Y L, Qin B Q, Zhu G W, Shi K and Zhou Y Q. 2018. Profound changes in the physical environment of Lake Taihu from 25 years of long‐term observations: implications for algal bloom outbreaks and aquatic macrophyte loss. Water Resources Research, 54(7): 4319-4331 [DOI: 10.1029/2017WR022401http://dx.doi.org/10.1029/2017WR022401]
Zhou Y Q, Ma J R, Zhang Y L, Qin B Q, Jeppesen E, Shi K, Brookes J D, Spencer R G M, Zhu G W and Gao G. 2017. Improving water quality in China: Environmental investment pays dividends. Water Research, 118: 152-159 [DOI: 10.1016/j.watres.2017.04.035http://dx.doi.org/10.1016/j.watres.2017.04.035]
相关作者
相关机构