High-resolution cropland extraction in Shandong province using MPSPNet and UNet network
- Vol. 27, Issue 2, Pages: 471-491(2023)
Published: 07 February 2023
DOI: 10.11834/jrs.20210478
扫 描 看 全 文
浏览全部资源
扫码关注微信
Published: 07 February 2023 ,
扫 描 看 全 文
李倩楠,张杜娟,潘耀忠,代佳佳.2023.MPSPNet和UNet网络下山东省高分辨耕地遥感提取.遥感学报,27(2): 471-491
Li Q N,Zhang D J,Pan Y Z and Dai J J. 2023. High-resolution cropland extraction in Shandong province using MPSPNet and UNet network. National Remote Sensing Bulletin, 27(2):471-491
高分辨率遥感影像中耕地特征复杂,人工目视解译和传统的遥感影像分类方法提取能力有限,无法实现大范围的自动化高精度耕地提取。深度学习技术因具有较强的地物表达能力,在遥感影像信息自动提取方面表现出了优越的性能,为大范围耕地的精细化自动提取提供了新的思路。探究不同典型网络模型在不同景观特征耕地提取上的适用情况对耕地提取质量和效率的提升具有重要意义。基于此,本研究以高分一号及高分二号融合的2 m分辨率数据为数据源,采用改进的金字塔场景解析网络MPSPNet(Modified Pyramid Scene Parsing Network)和UNet网络模型,应用于山东省的耕地精细自动化提取,并与传统面向对象的方法对比,探究两种深度卷积神经网络模型在大尺度耕地自动提取中的适用性。研究获得以下结论:(1)MPSPNet模型和UNet模型在区/县尺度的耕地提取上性能优于传统的面向对象的分类方法,在全省尺度的耕地提取上总体精度优于90%且无明显差异。(2)耕地景观特征是影响两模型耕地提取效果的重要因素,模型的选择对耕地提取效果无明显影响。在耕地景观指数较低的地块规则平整的区域,模型提取效果较好,在耕地景观指数较高的地块破碎丘陵区域以及与耕地特征相近的地块区域,模型提取效果较差,并且UNet模型在这些区域误分耕地的概率更大。(3)两模型在不同区域、不同时相的影像中能得到较好的耕地提取效果,具有较强的泛化能力和时空迁移能力。
The rapid development of remote sensing image technology enables a large number of high-resolution remote sensing images to provide good data support for the accurate extraction of cropland and other ground features. However
high-resolution remote sensing images have large data volume and complex features
the artificial visual interpretation and traditional classification methods have limited extraction capabilities which cannot realized large-scale high-precision cropland extraction automatically. Deep learning technology has shown superior performance in the automatic extraction of remote sensing image information due to its strong ability to express features
providing a new idea for the automatic extraction of large-scale cropland. Exploring the application of different typical network models in the extraction of cropland with different landscape features is of great significance to the improvement of the quality and efficiency of cropland extraction. Based on above
the study uses the 2 m resolution data fused with GF-1 and GF-2 in 2015—2017 as the data source. Using Modified Pyramid Scene Parsing Network (MPSPNet) and UNet models applied to the fine automatic extraction of cropland in Shandong Province
and compared with the traditional object-oriented method
exploring the applicability of two deep convolutional neural network models in the automatic extraction of large-scale cropland. We also apply the trained models to the images of different regions and different time phases for the extraction of cropland
and explore the generalization ability of the models. The landscape features of cropland and uncertainty results are analyzed to explore the factors affecting the accuracy of cropland extraction by the models. Results show that: (1) MPSPNet and UNet models perform better than traditional object-oriented classification methods in the extraction of cropland at the district/county scale
the overall accuracy of the extraction of cropland at the provincial scale is better than 90% and there is no obvious difference between two models. (2) The landscape characteristic of cropland is an important factor that affects the effect of the two models
and the choice of the model has no obvious influence on the cropland extraction effect. The extraction effect is better in areas where the cropland landscape index is low and the plots are regular and flat
and the extraction effect is poor in the broken hilly areas of the plots with high cropland landscape index and in the noncropland plots whose characteristics are similar to the cropland
the UNet model is more likely to misclassify cropland in these areas. (3) The two models can obtain better cropland extraction effects in images of different regions and different time phases
and have strong generalization capabilities and temporal and spatial migration capabilities. This study proves the powerful feature learning capabilities of MPSPNet and UNET network models for high-resolution images
and the application potential of deep learning algorithms in fully automatic high-resolution cropland extraction.
耕地遥感卷积神经网络MPSPNetUNet
croplandremote sensingconvolutional neural networkMPSPNetUNet
Blaschke T. 2010. Object based image analysis for remote sensing. ISPRS Journal of Photogrammetry and Remote Sensing, 65(1): 2-16 [DOI: 10.1016/j.isprsjprs.2009.06.004http://dx.doi.org/10.1016/j.isprsjprs.2009.06.004]
Bruzzone L., Carlin L., 2006. A multilevel context-based system for classification of very high spatial resolution images. IEEE Transactions on Geoscience and Remote Sensing, 44(9): 2587-2600 [DOI: 10.1109/TGRS.2006.875360http://dx.doi.org/10.1109/TGRS.2006.875360]
Chen L C, Zhu Y K, Papandreou G, Schroff F and Adam H. 2018. Encoder-decoder with atrous separable convolution for semantic image segmentation//15th European Conference on Computer Vision. Munich: Springer: 833-851 [DOI: 10.1007/978-3-030-01234-2_49http://dx.doi.org/10.1007/978-3-030-01234-2_49]
Cheng G, Han J W and Lu X Q. 2017. Remote sensing image scene classification: benchmark and state of the art. Proceedings of the IEEE, 105(10): 1865-1883 [DOI: 10.1109/JPROC.2017.2675998http://dx.doi.org/10.1109/JPROC.2017.2675998]
Clayton D G. 1971. Gram-Schmidt orthogonalization. Journal of the Royal Statistical Society: Series C (Applied Statistics), 20(3): 335-338 [DOI: 10.2307/2346771http://dx.doi.org/10.2307/2346771]
Costa H, Foody G M and Boyd D S. 2017. Using mixed objects in the training of object-based image classifications. Remote Sensing of Environment, 190: 188-197 [DOI: 10.1016/j.rse.2016.12.017http://dx.doi.org/10.1016/j.rse.2016.12.017]
Dehghan H and Ghassemian H. 2006. Measurement of uncertainty by the entropy: application to the classification of MSS data. International Journal of Remote Sensing, 27(18): 4005-4014 [DOI: 10.1080/01431160600647225http://dx.doi.org/10.1080/01431160600647225]
De Pinho C M D, Fonseca L M G, Korting T S, De Almeida C M and Kux H J H. 2012. Land-cover classification of an intra-urban environment using high-resolution images and object-based image analysis. International Journal of Remote Sensing, 33(19): 5973-5995 [DOI: 10.1080/01431161.2012.675451http://dx.doi.org/10.1080/01431161.2012.675451]
Goodin D G, Anibas K L and Bezymennyi M. 2015. Mapping land cover and land use from object-based classification: an example from a complex agricultural landscape. International Journal of Remote Sensing, 36(18): 4702-4723 [DOI: 10.1080/01431161.2015.1088674http://dx.doi.org/10.1080/01431161.2015.1088674]
He K M, Zhang X Y, Ren S Q and Sun J. 2016. Deep residual learning for image recognition//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE: 770-778 [DOI: 10.1109/CVPR.2016.90http://dx.doi.org/10.1109/CVPR.2016.90]
He Z, Liu H, Wang Y W and Hu J. 2017. Generative adversarial networks-based semi-supervised learning for hyperspectral image classification. Remote Sensing, 9(10): 1042 [DOI: 10.3390/rs9101042http://dx.doi.org/10.3390/rs9101042]
Hernandez I E R and Shi W Z. 2018. A Random Forests classification method for urban land-use mapping integrating spatial metrics and texture analysis. International Journal of Remote Sensing, 39(4): 1175-1198 [DOI: 10.1080/01431161.2017.1395968http://dx.doi.org/10.1080/01431161.2017.1395968]
Hu Q, Wu W B, Song Q, Yu Q Y, Yang P and Tang H J. 2015. Recent progresses in research of crop patterns mapping by using remote sensing. Scientia Agricultura Sinica, 48(10): 1900-1914
胡琼, 吴文斌, 宋茜, 余强毅, 杨鹏, 唐华俊. 2015. 农作物种植结构遥感提取研究进展. 中国农业科学, 48(10): 1900-1914 [DOI: 10.3864/j.issn.0578-1752.2015.10.004http://dx.doi.org/10.3864/j.issn.0578-1752.2015.10.004]
Jia Y Q, Shelhamer E, Donahue J, Karayev S, Long J, Girshick R, Guadarrama S and Darrell T. 2014. Caffe: convolutional architecture for fast feature embedding. arXiv: 1408.5093
Julien Y, Sobrino J A and Jiménez-Muñoz J C. 2011. Land use classification from multitemporal Landsat imagery using the Yearly Land Cover Dynamics (YLCD) method. International Journal of Applied Earth Observation and Geoinformation, 13(5): 711-720 [DOI: 10.1016/j.jag.2011.05.008http://dx.doi.org/10.1016/j.jag.2011.05.008]
Kingma D P and Ba J. 2017. Adam: a Method for Stochastic Optimization. arXiv:1412.6980
Krizhevsky A, Sutskever I and Hinton G E. 2012. ImageNet classification with deep convolutional neural networks//Proceedings of the 25th International Conference on Neural Information Processing Systems. Lake Tahoe: Curran Associates Inc.: 1097-1105
Laben C A and Brower B V. 2000. Process for enhancing the spatial resolution of multispectral imagery using pan-sharpening. U.S., 6011875
Larochelle H, Bengio Y, Louradour J and Lamblin P. 2009. Exploring strategies for training deep neural networks. The Journal of Machine Learning Research, 10: 1-40
LeCun Y, Boser B, Denker J S, Henderson D, Howard R E, Hubbard W and Jackel L D. 1989. Backpropagation applied to handwritten zip code recognition. Neural Computation, 1(4): 541-551 [DOI: 10.1162/neco.1989.1.4.541http://dx.doi.org/10.1162/neco.1989.1.4.541]
LeCun Y, Bottou L, Bengio Y and Haffner P. 1998. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11): 2278-2324 [DOI: 10.1109/5.726791http://dx.doi.org/10.1109/5.726791]
Li C J, Huang H and Li W. 2018. Research on agricultural remote sensing image cultivated land extraction technology based on support vector machine. Instrumentation Technology, 11: 5-8, 48
李昌俊, 黄河, 李伟. 2018. 基于支持向量机的农业遥感图像耕地提取技术研究. 仪表技术, (11): 5-8, 48 [DOI: 10.19432/j.cnki.issn1006-2394.2018.11.002http://dx.doi.org/10.19432/j.cnki.issn1006-2394.2018.11.002]
Li P, Yu H, Wang P and Li K Y. 2017. Comparison and analysis of agricultural information extraction methods based upon GF2 satellite images. Bulletin of Surveying and Mapping, (1): 48-52
李鹏, 虞虎, 王鹏, 李开渊. 2017. 基于GF2号卫星影像的农业信息提取方法对比分析. 测绘通报, (1): 48-52 [DOI: 10.13474/j.cnki.11-2246.2017.0011http://dx.doi.org/10.13474/j.cnki.11-2246.2017.0011]
LIU Wei, WU Zhifeng, LUO Jiancheng, et al. A divided and stratified extraction method of high-resolution remote sensing information for cropland in hilly and mountainous areas based on deep learning[J].Acta Geodaetica et Cartographica Sinica, 2021,50(1):105-116
刘巍,吴志峰,骆剑承,等.深度学习支持下的丘陵山区耕地高分辨率遥感信息分区分层提取方法[J].测绘学报,2021,50(1):105-116 [DOI:10.11947/j.AGCS.2021.20190448http://dx.doi.org/10.11947/j.AGCS.2021.20190448]
Long J, Shelhamer E and Darrell T. 2015. Fully convolutional networks for semantic segmentation//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston: IEEE: 3431-3440 [DOI: 10.1109/CVPR.2015.7298965http://dx.doi.org/10.1109/CVPR.2015.7298965]
Lu H, Fu X, Liu C, Li L G, He Y X and Li N W. 2017. Cultivated land information extraction in UAV imagery based on deep convolutional neural network and transfer learning. Journal of Mountain Science, 14(4): 731-741 [DOI: 10.1007/s11629-016-3950-2http://dx.doi.org/10.1007/s11629-016-3950-2]
Lu S, Oki K, Shimizu Y and Omasa K. 2007. Comparison between several feature extraction/classification methods for mapping complicated agricultural land use patches using airborne hyperspectral data. International Journal of Remote Sensing, 28(5): 963-984 [DOI: 10.1080/01431160600771561http://dx.doi.org/10.1080/01431160600771561]
Ma L, Li M C, Ma X X, Cheng L, Du P J and Liu Y X. 2017. A review of supervised object-based land-cover image classification. ISPRS Journal of Photogrammetry and Remote Sensing, 130: 277-293 [DOI: 10.1016/j.isprsjprs.2017.06.001http://dx.doi.org/10.1016/j.isprsjprs.2017.06.001]
Ma L, Liu Y, Zhang X L, Ye Y X, Yin G F and Johnson B A. 2019. Deep learning in remote sensing applications: a meta-analysis and review. ISPRS Journal of Photogrammetry and Remote Sensing, 152: 166-177 [DOI: 10.1016/j.isprsjprs.2019.04.015http://dx.doi.org/10.1016/j.isprsjprs.2019.04.015]
Phalke A R and Özdoğan M. 2018. Large area cropland extent mapping with Landsat data and a generalized classifier. Remote Sensing of Environment, 219: 180-195 [DOI: 10.1016/j.rse.2018.09.025http://dx.doi.org/10.1016/j.rse.2018.09.025]
Ronneberger O, Fischer P and Brox T. 2015. U-Net: convolutional networks for biomedical image segmentation//18th International Conference on Medical Image Computing and Computer-Assisted Intervention. Munich: Springer: 234-241 [DOI: 10.1007/978-3-319-24574-4_28http://dx.doi.org/10.1007/978-3-319-24574-4_28]
Shu Y, Tang H, Li J, Mao T, He S, Gong A D, Chen Y H and Du H Y. 2015. Object-based unsupervised classification of VHR panchromatic satellite images by combining the HDP and IBP on multiple scenes. IEEE Transactions on Geoscience and Remote Sensing, 53(11): 6148-6162 [DOI: 10.1109/TGRS.2015.2432856http://dx.doi.org/10.1109/TGRS.2015.2432856]
Simonyan K and Zisserman A. 2015. Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556
Szegedy C, Liu W, Jia Y Q, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V and Rabinovich A. 2015. Going deeper with convolutions//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston: IEEE: 1-9 [DOI: 10.1109/CVPR.2015.7298594http://dx.doi.org/10.1109/CVPR.2015.7298594]
Waldner F, Canto G S and Defourny P. 2015. Automated annual cropland mapping using knowledge-based temporal features. ISPRS Journal of Photogrammetry and Remote Sensing, 110: 1-13 [DOI: 10.1016/j.isprsjprs.2015.09.013http://dx.doi.org/10.1016/j.isprsjprs.2015.09.013]
Wang Q. 2021. Progress of environmental remote sensing monitoring technology in China and some related frontier issues. National Remote Sensing Bulletin, 25(1): 25-36
王桥. 2021. 中国环境遥感监测技术进展及若干前沿问题. 遥感学报, 25(1): 25-36 [DOI: 10.11834/jrs.20210572http://dx.doi.org/10.11834/jrs.20210572]
Wang W H, Xia L G, Luo J C and Hu X D. 2011. An iterative approach to object-oriented classification of remotely sensed image. Geomatics and Information Science of Wuhan University, 36(10): 1154-1158
王卫红, 夏列钢, 骆剑承, 胡晓东. 2011. 面向对象的遥感影像多层次迭代分类方法研究. 武汉大学学报(信息科学版), 36(10): 1154-1158 [doi: 10.13203/j.whugis2011.10.016http://dx.doi.org/10.13203/j.whugis2011.10.016]
Xu W N. 2020. Research on Cultivated Land Extraction Technology of Remote Sensing Images based on High Resolution Full Convolutional Network. Shenzhen: Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences
徐文娜. 2020. 基于高分辨率全卷积网络的遥感影像耕地提取方法研究. 深圳: 中国科学院大学(中国科学院深圳先进技术研究院)
Zhang C, Sargent I, Pan X, Li H P, Gardiner A, Hare J and Atkinson P M. 2018. An object-based convolutional neural network (OCNN) for urban land use classification. Remote Sensing of Environment, 216: 57-70 [DOI: 10.1016/j.rse.2018.06.034http://dx.doi.org/10.1016/j.rse.2018.06.034]
Zhang D J, Pan Y Z, Zhang J S, Hu T G, Zhao J H, Li N and Chen Q. 2020. A generalized approach based on convolutional neural networks for large area cropland mapping at very high resolution. Remote Sensing of Environment, 247: 111912 [DOI: 10.1016/j.rse.2020.111912http://dx.doi.org/10.1016/j.rse.2020.111912]
Zhang F, Zhao Z G, Li G and Chen G. 2019. Study on classification and extraction of agricultural land in Qitai County of Xinjiang based on different classifiers. Xinjiang Agricultural Sciences, 56(8): 1560-1568
张峰, 赵忠国, 李刚, 陈刚. 2019. 基于不同分类器的农用地分类提取. 新疆农业科学, 56(8): 1560-1568 [doi: 10.6048/j.issn.1001-4330.2019.08.022http://dx.doi.org/10.6048/j.issn.1001-4330.2019.08.022]
Zhang M and Huang S Y. 2019. Remote sensing image classification based on Landsat-8. Geomatics and Spatial Information Technology, 42(1): 177-180
张明, 黄双燕. 2019. 基于Landsat-8的遥感影像分类研究. 测绘与空间地理信息, 42(1): 177-180 [doi: 10.3969/j.issn.1672-5867.2019.01.049http://dx.doi.org/10.3969/j.issn.1672-5867.2019.01.049]
Zhao H S, Shi J P, Qi X J, Wang X G and Jia J Y. 2017. Pyramid scene parsing network//2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE: 6230-6239 [DOI: 10.1109/CVPR.2017.660http://dx.doi.org/10.1109/CVPR.2017.660]
Zhou P C, Cheng G, Yao X W and Han J W. 2021. Machine learning paradigms in high-resolution remote sensing image interpretation. National Remote Sensing Bulletin, 25(1): 182-197
周培诚, 程塨, 姚西文, 韩军伟. 2021. 高分辨率遥感影像解译中的机器学习范式. 遥感学报, 25(1): 182-197 [DOI: 10.11834/jrs.20210164http://dx.doi.org/10.11834/jrs.20210164]
相关文章
相关作者
相关机构