Big geodata aggregation: Connotation, classification, and framework
- Vol. 25, Issue 11, Pages: 2153-2162(2021)
Published: 07 November 2021
DOI: 10.11834/jrs.20210480
扫 描 看 全 文
浏览全部资源
扫码关注微信
Published: 07 November 2021 ,
扫 描 看 全 文
裴韬,黄强,王席,陈晓,刘亚溪,宋辞,陈洁,周成虎.2021.地理大数据聚合的内涵、分类与框架.遥感学报,25(11): 2153-2162
Pei T,Huang Q,Wang X,Chen X,Liu Y X,Song C,Chen J and Zhou C H. 2021. Big geodata aggregation: Connotation, classification, and framework. National Remote Sensing Bulletin, 25(11):2153-2162
地理大数据是地理对象所产生的“足迹数据”,而地理大数据挖掘就是通过反演分析地理对象的“足迹数据”,揭示其中蕴含的人地关系及其时空模式。近年关于地理大数据的重大研究进展显示,其研究结论的取得大多需要借助多种大数据的信息综合。为此,本文提出研究地理大数据聚合的必要性:代表新的研究范式、产生新的研究视角、提升研究的全面性,并将地理大数据聚合定义为:不同地理大数据之间通过转换形成面向研究对象的多维数据集合。在阐述地理大数据分类和特点的基础上,将地理大数据聚合分为:时空聚合、面向对象聚合、面向主题聚合以及面向模型聚合四种类型。地理大数据聚合作为地理大数据挖掘的重要组成部分,其过程大致可以分为:确定内核—信息溯源—反演汇聚3个步骤,而其中的关键科学问题包括:统一时空框架和基准、统一数据表达与存储、匹配同一观测对象的多数据源、统一多源数据的时空范围、调和不同对象之间不同的变化速率、解决数据共享与隐私保护、大数据与小数据的聚合等。地理大数据聚合方法与技术的发展,将会拓展地方的感知、土地功能的识别、对人群的观测与理解、功能与流动之间关系、地表复杂巨系统等新领域的研究。
Big geodata can be regarded as the “footprints” generated by geographic objects
which are divided into two types: big earth observation data and big social behavior data. Big earth observation data refer to remote sensing data and all kinds of monitoring data from ground observation stations; big social behavior data are defined as the data generated by humans
such as mobile phone data
traffic card data
social media data
and trajectory data of floating cars. Big earth observation data contain the information of land surface
and big social behavior data record the social behavior of humans. The essence of big geodata mining is to reveal the man-land relationship via the retrieval of the “footprint” of geographic objects. Magnificent progresses in recent years demonstrate that most of them have been made through the aggregation of multiple types of big geodata. The significance of big geodata aggregation can be summarized into three aspects: to represent a new research paradigm
to produce a new research angle
and to improve the research quality by combining different types of information. In contrast to image fusion
which is regarded as the combination of imageries with the same data structure
big geodata aggregation is defined as the merging of different types of big geodata into a multidimensional dataset through transformation in terms of structure
content
and representation. In general
big geodata aggregation includes big earth observation data and big social behavior data. Given the differences in data source
data structure
connotation
and granularity
the aggregation procedure is various and complicated. Considering the characteristics and the classification of big geodata
we classify big geodata aggregation into four types: spatiotemporal aggregation
object-oriented aggregation
topic-oriented aggregation
and model-oriented aggregation. In spatiotemporal aggregation
data are merged via their common locations
such as the aggregation between POI and remote sensing data. In object-oriented aggregation
data are connected through the same object
such as the aggregation of indoor and outdoor trajectory data via the same phone carrier. In topic-oriented aggregation
data with the same topic are integrated
such as the aggregation of different types of information sourced from the same earthquake event. In model-oriented aggregation
data are assimilated via the same model
such as the aggregation of street view data and POI data when using a deep learning model for the recognition of building style. As an important part of big geodata mining
the procedure of big geodata aggregation can be divided into four steps: the determination of the aggregation core
information back tracking
retrieving
and converging. The key issues in big geodata aggregation include unifying spatiotemporal benchmarks
uniting data representation and storage
matching multisource big geodata from the same geo-object
centralizing the spatiotemporal scope of multisource big geodata
settling the changing velocities of different objects
solving data-sharing and privacy protection problems
and aggregating big and small geodata. With the development of methods and techniques of big geodata aggregation
some research areas
including the sensing of places
the identification of land functions
the detection of crowd activities
the determination of the relationship between urban functions and multisource flow
and the introduction of a land surface complex giant system
may be substantially expanded.
地理大数据思维城市功能区人群活动地理信息科学数据融合
big geodata philosophyurban functional areacrowds activitiesgeographic information sciencedata fusion
Allen G H and Pavelsky T M. 2018. Global extent of rivers and streams. Science, 361(6402): 585-588 [DOI: 10.1126/science.aat0636http://dx.doi.org/10.1126/science.aat0636]
Alparone L, Aiazzi B, Baronti S and Garzelli A. 2015. Remote Sensing Image Fusion. Boca Raton, Florida, USA: CRC Press
Cai J X, Huang B and Song Y M. 2017. Using multi-source geospatial big data to identify the structure of polycentric cities. Remote Sensing of Environment, 202: 210-221 [DOI: 10.1016/j.rse.2017.06.039http://dx.doi.org/10.1016/j.rse.2017.06.039]
Chen G Q. 2014. A big data fusion model based on generalized correlation and its application in mineral prediction//Proceedings of the 13th National Symposium on Mathematical Geology and Geomatics Information. Xuzhou: Geological Society of China: 210
陈国强. 2014. 基于广义相关性的大数据融合模型及在矿产预测中的应用//第十三届全国数学地质与地学信息学术研讨会. 徐州: 中国地质学会: 210
Chen H. 2020. Video and IoT big data fusion analysis application platform. Digital Technology and Application, 38(8): 114-115
陈慧. 2020. 视频与物联网大数据融合分析应用平台. 数字技术与应用, 38(8): 114-115 [DOI: 10.19695/j.cnki.cn12-1369.2020.08.44http://dx.doi.org/10.19695/j.cnki.cn12-1369.2020.08.44]
Chen Y H, Zhang R J, Ge Y, Jin Y and Xia Z L. 2019. Downscaling census data for gridded population mapping with geographically weighted area-to-point regression kriging. IEEE Access, 7: 149132-149141 [DOI: 10.1109/ACCESS.2019.2945000http://dx.doi.org/10.1109/ACCESS.2019.2945000]
Crowther T W, Glick H B, Covey K R, Bettigole C, Maynard D S, Thomas S M, Smith J R, Hintler G, Duguid M C, Amatulli G, Tuanmu M N, Jetz W, Salas C, Stam C, Piotto D, Tavani R, Green S, Bruce G, Williams S J, Wiser S K, Huber M O, Hengeveld G M, Nabuurs G J, Tikhonova E, Borchardt P, Li C F, Powrie L W, Fischer M, Hemp A, Homeier J, Cho P, Vibrans A C, Umunay P M, Piao S L, Rowe C W, Ashton M S, Crane P R and Bradford M A. 2015. Mapping tree density at a global scale. Nature, 525(7568): 201-205 [DOI: 10.1038/nature14967http://dx.doi.org/10.1038/nature14967]
Du H. 2013. Research on In-Depth Aggregation of Academic Information Resource on the Basis of Coupling Relationships. Wuhan: Wuhan University: 43-45
杜晖. 2013. 基于耦合关系的学术信息资源深度聚合研究. 武汉: 武汉大学: 43-45
Frachetti M D, Smith C E, Traub C M and Williams T. 2017. Nomadic ecology shaped the highland geography of Asia’s Silk Roads. Nature, 543(7644): 193-198 [DOI: 10.1038/nature21696http://dx.doi.org/10.1038/nature21696]
Ginsberg J, Mohebbi M H, Patel R S, Brammer L, Smolinski M S and Brilliant L. 2009. Detecting influenza epidemics using search engine query data. Nature, 457(7232): 1012-1014 [DOI: 10.1038/nature07634http://dx.doi.org/10.1038/nature07634]
Guo H D, Chen F, Sun Z C, Liu J and Liang D. 2021. Big Earth Data: a practice of sustainability science to achieve the Sustainable Development Goals. Science Bulletin, 66(11): 1050-1053 [DOI: 10.1016/j.scib.2021.01.012http://dx.doi.org/10.1016/j.scib.2021.01.012]
Hsiang S M, Burke M and Miguel E. 2013. Quantifying the influence of climate on human conflict. Science, 341(6151): 1235367 [DOI: 10.1126/science.1235367http://dx.doi.org/10.1126/science.1235367]
Huang B and Jiang X L. 2021. An enhanced unmixing model for spatiotemporal image fusion. National Remote Sensing Bulletin, 25(1): 241-250
黄波, 姜晓璐. 2021. 增强型空间像元分解时空遥感影像融合算法. 遥感学报, 25(1): 241-250 [DOI: 10.11834/jrs.20210459http://dx.doi.org/10.11834/jrs.20210459]
Huang D C and Wang J F. 2018. Monitoring hand, foot and mouth disease by combining search engine query data and meteorological factors. Science of the Total Environment, 612: 1293-1299 [DOI: 10.1016/j.scitotenv.2017.09.017http://dx.doi.org/10.1016/j.scitotenv.2017.09.017]
Jia Y X, Ge Y, Ling F, Guo X, Wang J H, Wang L, Chen Y H and Li X D. 2018. Urban land use mapping by combining remote sensing imagery and mobile phone positioning data. Remote Sensing, 10(3): 446 [DOI: 10.3390/rs10030446http://dx.doi.org/10.3390/rs10030446]
Li C M. 2020. Evaluation of public transport service index in multi-source big data fusion. Journal of Xiamen University of Technology, 28(3): 77-83
李传明. 2020. 多源大数据融合的公交服务指数评价. 厦门理工学院学报, 28(3): 77-83 [DOI: 10.19697 /j.cnki.1673-4432.202003013http://dx.doi.org/10.19697/j.cnki.1673-4432.202003013]
Li M, Yuan W, Yuan W, Niu F Q, Li H Q and Hu D M. 2021. Big data analysis on geographical relationship of the Arctic based on news reports. Acta Geographica Sinica, 76(5): 1090-1104
李萌, 袁文, 袁武, 牛方曲, 李汉青, 胡段牧. 2021. 基于新闻大数据的北极地区地缘关系研究. 地理学报, 76(5): 1090-1104 [DOI: 10.11821/dlxb202105004http://dx.doi.org/10.11821/dlxb202105004]
Li S T, Li C Y and Kang X D. 2021. Development status and future prospects of multi-source remote sensing image fusion. National Remote Sensing Bulletin, 25(1): 148-166
李树涛, 李聪妤, 康旭东. 2021. 多源遥感图像融合发展现状与未来展望. 遥感学报, 25(1): 148-166 [DOI: 10.11834/jrs.20210259http://dx.doi.org/10.11834/jrs.20210259]
Li X and Huang C L. 2004. Data assimilation: a new means for multi-source geospatial data integration. Science and Technology Review, (12): 13-16 (李新, 黄春林. 2004. 数据同化——一种集成多源地理空间数据的新思路. 科技导报, (12): 13-16) [DOI: 10.3321/j.issn:1000-7857.2004.12.004]
Li X J, Zhang C R, Li W D, Ricard R, Meng Q Y and Zhang W X. 2015. Assessing street-level urban greenery using Google Street View and a modified green view index. Urban Forestry and Urban Greening, 14(3): 675-685 [DOI: 10.1016/j.ufug.2015.06.006http://dx.doi.org/10.1016/j.ufug.2015.06.006]
Liu Y. 2016. Revisiting several basic geographical concepts: a social sensing perspective. Acta Geographica Sinica, 71(4): 564-575
刘瑜. 2016. 社会感知视角下的若干人文地理学基本问题再思考. 地理学报, 71(4): 564-575 [DOI: 10.11821/dlxb201604003http://dx.doi.org/10.11821/dlxb201604003]
Liu Y, Yao X, Gong Y X, Kang C G, Shi X, Wang F H, Wang J E, Zhang Y, Zhao P F, Zhu D and Zhu X Y. 2020. Analytical methods and applications of spatial interactions in the era of big data. Acta Geographica Sinica, 75(7): 1523-1538
刘瑜, 姚欣, 龚咏喜, 康朝贵, 施迅, 王法辉, 王姣娥, 张毅, 赵鹏飞, 朱递, 朱欣焰. 2020. 大数据时代的空间交互分析方法和应用再论. 地理学报, 75(7): 1523-1538 [DOI: 10.11821/dlxb202007014http://dx.doi.org/10.11821/dlxb202007014]
Liu Y X, Cheng D Y, Pei T, Shu H, Ge X H, Ma T, Du Y Y, Ou Y, Wang M and Xu L M. 2020. Inferring gender and age of customers in shopping malls via indoor positioning data. Environment and Planning B: Urban Analytics and City Science, 47(9): 1672-1689 [DOI: 10.1177/2399808319841910http://dx.doi.org/10.1177/2399808319841910]
Meng X F and Du Z J. 2016. Research on the big data fusion: issues and challenges. Journal of Computer Research and Development, 53(2): 231-246
孟小峰, 杜治娟. 2016. 大数据融合研究: 问题与挑战. 计算机研究与发展, 53(2): 231-246 [DOI: 10.7544/issn1000-1239.2016.20150874http://dx.doi.org/10.7544/issn1000-1239.2016.20150874]
Niu N, Liu X P, Jin H, Ye X Y, Liu Y, Li X, Chen Y M and Li S Y. 2017. Integrating multi-source big data to infer building functions. International Journal of Geographical Information Science, 31(9): 1871-1890 [DOI: 10.1080/13658816.2017.1325489http://dx.doi.org/10.1080/13658816.2017.1325489]
Pei T, Guo S H, Yuan Y C, Zhang X Y, Yuan W, Gao A, Zhao Z Y and Xue C J. 2019a. Public security event themed web text structuring. Journal of Geo-Information Science, 21(1): 2-13
裴韬, 郭思慧, 袁烨城, 张雪英, 袁文, 高昂, 赵志远, 薛存金. 2019a. 面向公共安全事件的网络文本大数据结构化研究. 地球信息科学学报, 21(1): 2-13 [DOI: 10.12082/dqxxkx.2019.180680http://dx.doi.org/10.12082/dqxxkx.2019.180680]
Pei T, Liu Y X, Guo S H, Shu H, Du Y Y, Ma T and Zhou C H. 2019b. Principle of big geodata mining. Acta Geographica Sinica, 74(3): 586-598
裴韬, 刘亚溪, 郭思慧, 舒华, 杜云艳, 马廷, 周成虎. 2019b. 地理大数据挖掘的本质. 地理学报, 74(3): 586-598 [DOI: 10.11821/dlxb201903014http://dx.doi.org/10.11821/dlxb201903014]
Pei T, Sobolevsky S, Ratti C, Shaw S L, Li T and Zhou C H. 2014. A new insight into land use classification based on aggregated mobile phone data. International Journal of Geographical Information Science, 28(9): 1988-2007 [DOI: 10.1080/13658816.2014.913794http://dx.doi.org/10.1080/13658816.2014.913794]
Pei T, Wang X, Song C, Liu Y X, Huang Q, Shu H, Chen X, Guo S H and Zhou C H. 2021. Review on spatiotemporal analysis and modeling of COVID-19 pandemic. Journal of Geo-Information Science, 23(2): 188-210
裴韬, 王席, 宋辞, 刘亚溪, 黄强, 舒华, 陈晓, 郭思慧, 周成虎. 2021. COVID-19疫情时空分析与建模研究进展. 地球信息科学学报, 23(2): 188-210 [DOI: 10.12082/dqxxkx.2021.200434http://dx.doi.org/10.12082/dqxxkx.2021.200434]
Pohl C and Van Genderen J L. 1998. Review article multisensor image fusion in remote sensing: concepts, methods and applications. International Journal of Remote Sensing, 19(5): 823-854 [DOI: 10.1080/014311698215748http://dx.doi.org/10.1080/014311698215748].
Qin W F. 2018. Research on Big Data Fusion Model based on Tensor. Jilin: Northeast Electric Power University
秦文斐. 2018. 基于张量的大数据融合模型研究. 吉林: 东北电力大学
Shen Z H. 2020. An analysis of the applications and challenges of deep learning in urban big data fusion. China CIO News, (3): 164, 166
申占恒. 2020. 深度学习在城市大数据融合中的应用与挑战分析. 信息系统工程, (3): 164, 166 [DOI: 10.3969/j.issn.1001-2362.2020.03.075]
Song J C, Lin T, Li X H and Prishchepov A V. 2018. Mapping urban functional zones by integrating very high spatial resolution remote sensing imagery and points of interest: a case study of Xiamen, China. Remote Sensing, 10(11): 1737 [DOI: 10.3390/rs10111737http://dx.doi.org/10.3390/rs10111737]
Soto V and Frías-Martínez E. 2011. Automated land use identification using cell-phone records//Proceedings of the 3rd ACM international workshop on MobiArch. Bethesda, Maryland, USA: Association for Computing Machinery: 17-22 [DOI: 10.1145/2000172.2000179http://dx.doi.org/10.1145/2000172.2000179]
Tuan Y F. 1977. Space and Place: The Perspective of Experience. Minneapolis: University of Minnesota Press
Wang J H, Obradovich N and Zheng S Q. 2020. A 43-million-person investigation into weather and expressed sentiment in a changing climate. One Earth, 2(6): 568-577 [DOI: 10.1016/j.oneear.2020.05.016http://dx.doi.org/10.1016/j.oneear.2020.05.016]
Wang J Y, Su Y X, Ling G M, Chen C and Chen W Z. 2020. Designing a tourism flow research methodology based on multi-dimensional big data fusion analysis - a case study in Guangzhou City, China. Scientific and Technological Innovation Information, (5): 59-60
王嘉茵, 苏宇新, 凌国明, 陈忱, 陈伟钊. 2020. 基于多维度大数据融合分析的旅游流研究方法设计——以广州市为例. 科学技术创新, (5): 59-60 [DOI: 10.3969/j.issn.1673-1328.2020.05.036]
Wang N, Du Y Y, Liang F Y, Yi J W and Wang H M. 2019. Spatiotemporal changes of urban rainstorm-related micro-blogging activities in response to rainstorms: a case study in Beijing, China. Applied Sciences, 9(21): 4629 [DOI: 10.3390/app9214629http://dx.doi.org/10.3390/app9214629]
Weng Y L and Tian Q J. 2003. Analysis and evaluation of method on remote sensing data fusion. Remote Sensing Information, (3): 49-54
翁永玲, 田庆久. 2003. 遥感数据融合方法分析与评价综述. 遥感信息, (3): 49-54 [DOI: 10.3969/j.issn.1000-3177.2003.03.015]
Wu X H, Xiao Y, Li L S and Wang G J. 2017. Review and prospect of the emergency management of urban rainstorm waterlogging based on big data fusion. Chinese Science Bulletin, 62(9): 920-927
吴先华, 肖杨, 李廉水, 王国杰. 2017. 大数据融合的城市暴雨内涝灾害应急管理述评. 科学通报, 62(9): 920-927 [DOI: 10.1360/N972016-01080http://dx.doi.org/10.1360/N972016-01080]
Xing H F, Meng Y and Shi Y. 2018. A dynamic human activity-driven model for mixed land use evaluation using social media data. Transactions in GIS, 22(5): 1130-1151 [DOI: 10.1111/tgis.12447http://dx.doi.org/10.1111/tgis.12447]
Xu J, Xu Y, Hu L and Wang Z B. 2020. Discovering spatio-temporal patterns of human activity on the Qinghai-Tibet Plateau based on crowdsourcing positioning data. Acta Geographica Sinica, 75(7): 1406-1417
许珺, 徐阳, 胡蕾, 王振波. 2020. 基于位置大数据的青藏高原人类活动时空模式. 地理学报, 75(7): 1406-1417 [DOI: 10.11821/dlxb202007006http://dx.doi.org/10.11821/dlxb202007006]
Yan P C. 2019. Analysis on the application of large data fusion in public security video surveillance. Digital Technology and Application, 37(9): 30-31
颜培超. 2019. 浅析公共安全视频监控大数据融合应用. 数字技术与应用, 37(9): 30-31 [DOI: 10.19695/j.cnki.cn12-1369.2019.09.17http://dx.doi.org/10.19695/j.cnki.cn12-1369.2019.09.17]
Yao F G, Zhong X X and Zhou J C. 2018. Granular computing: a new method of intelligent modeling for big data fusion. Journal of Nanjing University of Science and Technology, 42(4): 503-510
姚富光, 钟先信, 周靖超. 2018. 粒计算: 一种大数据融合智能建模新方法. 南京理工大学学报, 42(4): 503-510 [DOI: 10.14177/j.cnki.32-1397n.2018.42.04.017http://dx.doi.org/10.14177/j.cnki.32-1397n.2018.42.04.017]
Zhang F, Wu L, Zhu D and Liu Y. 2019. Social sensing from street-level imagery: a case study in learning spatio-temporal urban mobility patterns. ISPRS Journal of Photogrammetry and Remote Sensing, 153: 48-58 [DOI: 10.1016/j.isprsjprs.2019.04.017http://dx.doi.org/10.1016/j.isprsjprs.2019.04.017]
Zhang H, Yu P, Li G and Yu J. 2019. “One Map” planning based spatial plan information sharing. Planners, 35(21): 11-15
张恒, 于鹏, 李刚, 于靖. 2019. 空间规划信息资源共享下的“一张图”建设探讨. 规划师, 35(21): 11-15 [DOI: 10.3969/j.issn.1006-0022.2019.21.002http://dx.doi.org/10.3969/j.issn.1006-0022.2019.21.002]
Zhang J X. 2011. The trend of development of multi-source remote sensing data fusion. Geomatics World, 9(2): 18-20
张继贤. 2011. 多源遥感数据融合的发展趋势. 地理信息世界, 9(2): 18-20 [DOI: 10.3969/j.issn.1672-1586.2011.02.004http://dx.doi.org/10.3969/j.issn.1672-1586.2011.02.004]
Zhang L F, Peng M Y, Sun X J, Cen Y and Tong Q X. 2019. Progress and bibliometric analysis of remote sensing data fusion methods (1992—2018). Journal of Remote Sensing, 23(4): 603-619
张立福, 彭明媛, 孙雪剑, 岑奕, 童庆禧. 2019. 遥感数据融合研究进展与文献定量分析(1992—2018). 遥感学报, 23(4): 603-619 [DOI: 10.11834/jrs.20199073http://dx.doi.org/10.11834/jrs.20199073]
Zhang L P and Shen H F. 2016. Progress and future of remote sensing data fusion. Journal of Remote Sensing, 20(5): 1050-1061
张良培, 沈焕锋. 2016. 遥感数据融合的进展与前瞻. 遥感学报, 20(5): 1050-1061 [DOI: 10.11834/jrs.20166243http://dx.doi.org/10.11834/jrs.20166243]
Zhang L Y, Pei T, Wang X, Wu M B, Song C, Guo S H and Chen Y J. 2020. Quantifying the urban visual perception of Chinese traditional-style building with street view images. Applied Sciences, 10(17): 5963 [DOI: 10.3390/app10175963http://dx.doi.org/10.3390/app10175963]
Zhu Y Q, Tan Y J, Zhang J T, Mao B, Shen J and Ji C F. 2015. A framework of Hadoop based geology big data fusion and mining technologies. Acta Geodaetica et Cartographica Sinica, 44(S1): 152-159
朱月琴, 谭永杰, 张建通, 毛波, 沈婕, 汲超飞. 2015. 基于Hadoop的地质大数据融合与挖掘技术框架. 测绘学报, 44(S1): 152-159 [DOI: 10.11947/j.AGCS.2015.F059
相关文章
相关作者
相关机构