Monitoring chilling damage of corn in the Northeast China based on MODIS LST and meteorological data
- Pages: 1-13(2021)
DOI: 10.11834/jrs.20211045
Quote
扫 描 看 全 文
扫 描 看 全 文
Quote
黄然,黄健熙,张超,郭春明,庄立伟,吴开华,张竞成,张垚.XXXX.基于MODIS地表温度与气象数据的东北春玉米低温冷害监测方法研究.遥感学报,XX(XX): 1-13
HUANG Ran,HUANG Jianxi,ZHANG Chao,GUO Chunming,ZHUANG Liwei,WU Kaihua,ZHANG Jingcheng,ZHANG Yao. XXXX. Monitoring chilling damage of corn in the Northeast China based on MODIS LST and meteorological data. National Remote Sensing Bulletin, XX(XX):1-13
低温冷害是影响东北玉米生长发育及产量形成的主要气象灾害。以东北地区为研究区,利用2003到2015年的MODIS (Moderate Resolution Imaging Spectroradiometer)陆地表面温度(land surface temperature,简称LST)数据产品、植被指数(vegetation index, 简称VI)数据产品与气象站点观测的日平均气温数据,构建以LST、VI和太阳赤纬(Ds)为自变量的日平均气温估算模型;并结合时空数据融合方法,完成覆盖研究区的逐日的1km空间分辨率的日平均气温数据集;逐年计算≥10℃的积温;结合玉米障碍型低温冷害指标和延迟型冷害指标,开展研究区2003年到2015年研究区玉米低温冷害遥感监测。监测结果显示,本研究区在2003年、2005年、2006年、2009年和2011年遭受大范围的延迟型低温冷害,与相关文献和农业农村部种植业司玉米单产数据分析对比结果表明,玉米障碍型低温冷害和延迟型低温冷害遥感监测结果与实际情况相符。
Nowadays, corn has become one of the most important crops in China. This paper’s study area, including Jilin Province, Liaoning Province, Heilongjiang Province and the four eastern cities of Inner Mongolia Autonomous Region (Hulun Buir, Tongliao, Chifeng and Xing'an League) is the most important corn production area., and also located at the northern limit of maize planting area. And the temporal and spatial distribution of chilling damage is highly important to increase yield and quality. The objective of this paper is to integrate MODIS and meteorological data to monitoring corn chilling damage in Northeast China and the algorithm is computed in two steps. In the first step, the remote sensing estimation model of air temperature were established, and in the second step, the sterile-type chilling damage and delayed-type chilling damage on corn were monitored base on the full covered daily mean air temperature and the corn chilling damage indicator. Satellite data, including LST, EVI and quality control data derived from TERRA/AQUA -MODIS, and ground based data, including daily mean air temperature and phenological data observed by 234 meteorological stations, from 2003 to 2015 were collected to data analyzing, image processing, and mapping.The remote sensing estimation model of air temperature were established by multi-variated linear regression using cloud-free pixels’ MODIS LST, EVI and solar declination as independent variables and daily mean air temperature observed by meteorological stations were used as dependent variable. The meteorological stations were divided into two parts according to the coordinates. Daily mean air temperature measured by two thirds of station (156) from 2003 to 2013 were used to establish the daily average temperature estimation model and the remaining data includes the observations of 78 meteorological stations from 2003 to 2013 and the observation data of all stations in 2014 and 2015 are used for the validate the model. The MODIS EVI production is the 16day composited production. S-G filter with max were used to achieve daily EVI. The cloud-free pixels’ air temperature was calculated with estimated models using TERRA and AQUA daytime and nighttime data, respectively. Then the TERRA and AQUA daytime and nighttime derived daily mean air temperature data were merged based on the R,2, and RMSE to increase spatial cloud-free data. The validation results show that the models using TERRA or AQUA night LST data as predictors outperform those using daytime LST as predictors. A framework was proposed for the air temperature data fusion. The data fusion framework is based the fact that the MODIS TERRA and AQUA can provide day and night time LST and the merge of these data can increase spatial coverage. The daily mean air temperature dataset covering the whole study area with 1km spatial resolution from 2003 to 2015 was completed based on the retrieval models and the data fusion framework.This study provided a remote sensing monitoring method of sterile-type chilling damage and delayed-type chilling damage on corn. Low daily mean air temperature and its last days are the maize sterile-type chilling damage indicator. Corn sterile-type chilling damage was identified by integrating the corn chilling damage indicator and the daily mean air temperature data set. The result showed there were corn sterile-type chilling damage in 2003, 2006 and 2012. These were consistent with the meteorological observation. This research can be used to monitor the process of maize sterile-type chilling damage, take abatement measures to mitigate corn sterile-type chilling damage, and reduce disaster losses. Based on the full coverage daily mean air temperature dataset, the accumulated temperature of ≥10℃ from 2003 to 2015 were calculated. Combines with the indicators of delayed-type chilling damage on corn, the study area suffered from widespread delayed-type chilling damage in 2003, 2005, 2006, 2009 and 2011. Compared with the observation of meteorological stations, the results of this research match the actual situation.
卫星遥感MODIS陆地表面温度数据融合低温冷害春玉米
remote sensingMODISland surface temperaturedata fusionhilling damagecorn
Bourges B. 1985. Improvement in solar declination computation. Solar Energy, 4(35): 367-369 [DOI:10.1016/0038-092X(85) 90144-6http://dx.doi.org/10.1016/0038-092X(85)90144-6]
China Meteorological Administration. 2006. Yearbook of Meteorological Disasters in China (2005). Beijing:China Meteorological Press.(中国气象局. 2006. 中国气象灾害年鉴(2005) . 北京:气象出版社.)
China Meteorological Administration. 2008. Yearbook of Meteorological Disasters in China (2007). Beijing:China Meteorological Press. (中国气象局. 2008. 中国气象灾害年鉴(2007). 北京:气象出版社.)
China Meteorological Administration. 2010. Yearbook of Meteorological Disasters in China (2009). Beijing:China Meteorological Press. (中国气象局. 2010.中国气象灾害年鉴(2009). 北京:气象出版社.)
Cui D C. 1999.Frost, freezing and chilling damage. Chinese Journal of Agrometeorology, 20(01): 58-59
崔读昌. 1999. 关于冻害, 寒害, 冷害和霜冻. 中国农业气象, 20(01): 58-59 [ DOI:CNKI:SUN:ZGNY.0.1999-01-014]
Gao S H.2003. Dynamic monitoring of growth-delaying type cold damage for cor. Journal of Natural Disasters, 12(02):117-121
高素华. 玉米延迟型低温冷害的动态监测. 自然灾害学报, 12(02):117-121. [DOI: 10.3969/j.issn.1004-4574.2003.02. 021http://dx.doi.org/10.3969/j.issn.1004-4574.2003.02.021]
Guo J P, Tian Z H, Zhang J J. 2003. Forecasting models of heat index for corn in northeast china. Journal of Applied Meteorological Science, 14(05):626-633.
郭建平, 田志会, 张涓涓. 2003. 东北地区玉米热量指数的预测模型研究. 应用气象学报, 14(05):626-633. [DOI: 10.3969/j.issn.1001- 7313.2003.05.013http://dx.doi.org/10.3969/j.issn.1001-7313.2003.05.013]
Guo J P. 2009. Theory and practice of crop chilling damage monitoring and prediction. Beijing:China Meteorological Press. (郭建平. 2009. 农作物低温冷害监测预测理论与实践. 北京: 气象出版社)
Guo X L, Wang L G, Qiu J J, Li J H, Zhu B Q, Xiao J X, Gao M F. 2009. An Analysis of Cold Damage on Rice in Northeast China Based on GIS. Acta Agriculturae Universitatis Jiangxiensis (Natural Sciences Edition), 31(03):494-498.
郭晓丽, 王立刚, 邱建军, 李金华,祝必琴, 肖金香, 高懋芳. 2009. 基于GIS的东北地区水稻低温冷害区划研究. 江西农业大学学报,31(03):494-498. [DOI: 10.3969/j.issn.1000-2286.2009. 03.021http://dx.doi.org/10.3969/j.issn.1000-2286.2009.03.021]
He Y, Li Z, Xu S H, Wang Y, Ou Z R, Li Y H. 2012. Application of GIS in the Monitoring and Early Warning of Cold Damage to Rice in Guangxi. Journal of Catastrophology, 27(01):68-72.
何燕, 李政, 徐世宏, 王莹, 欧钊荣,李玉红. 2012. GIS在水稻“寒露风”冷害监测预警中的应用. 灾害学, 27(01):68-72. [DOI: 10.3969/j.issn.1000-811X.2012.01.014http://dx.doi.org/10.3969/j.issn.1000-811X.2012.01.014]
Huang J F, Wang X Z, Wang F M. 2013. Uncertainty in Paddy Rice Remote Sensing. Hangzhou: Zhejiang University press. (黄敬峰, 王秀珍, 王福民. 2013. 水稻卫星遥感不确定性研究. 杭州: 浙江大学出版社.)
Huang R, Zhang C, Huang J X, Zhu D H, Wang L M, Liu J. 2015. Mapping of Daily Mean Air Temperature in Agricultural Regions Using Daytime and Nighttime Land Surface Temperatures Derived from TERRA and AQUA MODIS Data. Remote Sensing, 7, 8728-8756. [DOI: 10.3390/rs70708728http://dx.doi.org/10.3390/rs70708728]
Huete A R, Liu H Q, Batchily K and van Leeuwen W. 1997. A Comparison of Vegetation Indices Over a Global Set of Tm Images for EOS-MODIS. Remote Sensing of Environment, 59(3): 440-451
Huete A R, Didan K, Miura T, Rodriguez E P, Gao X and Ferreira L G. 2002. Overview of the Radiometric and Biophysical Performance of the MODIS Vegetation Indices. Remote Sensing of Environment, 83(1): 195-213
Li S, Wang L L, Chen L, Jiang L X, Zhang H J, Qin X. 2013. The Comprehensive Risk Evaluation Model of Chilling Injury to Maize in Heilongjiang Province. Journal of Natural Resources, 28(04):635-645.
李帅, 王晾晾, 陈莉, 姜丽霞, 张洪杰, 覃雪. 2013. 黑龙江省玉米低温冷害风险综合评估模型研究. 自然资源学报, 28(04):635-645. [DOI: 10.11849/zrzyxb. 2013.04.010http://dx.doi.org/10.11849/zrzyxb.2013.04.010]
Ma S Q, Liu Y Y, Wang Q. 2006. Dynamic prediction and evaluation method of maize chilling damage. Chinese Journal Of Applied Ecology, 17(10):1905-1910.
马树庆, 刘玉英, 王琪. 2006. 玉米低温冷害动态评估和预测方法. 应用生态学报, 17(10):1905-1910.
Mao L X, Wei L. 2015. Handbook of crop meteorological services. Beijing:China Meteorological Press
毛留喜, 魏丽编. 2015.大宗作物气象服务手册. 北京: 气象出版社.[DOI: 10.1080/01431161.2012.716538http://dx.doi.org/10.1080/01431161.2012.716538]
Savitzky A and Golay M J E. 1964. Smoothing and Differentiation of Data by Simplified Least Square Procedure. Analytical Chemistry, 36(8): 1627-1639. [DOI: 10.1021/ac60319a045http://dx.doi.org/10.1021/ac60319a045]
Tan Y J. 2014. Study on the yield of maize and chilling damage in Northeast China based on remote sensing crop model. Chinese Academy of Meteorological Sciences. (檀艳静. 2014.
基于遥感作物模型的东北玉米产量和低温冷害模拟研究. 中国气象科学研究院.
Wan Z M and Li Z L. 2011. MODIS Land Surface Temperature and Emissivity. In: Ramachandran B., Justice C., Abrams M. (eds) Land Remote Sensing and Global Environmental Change. Remote Sensing and Digital Image Processing, vol 11.
Springer, New York,. 563-577. [DOI: 10.1007/978-1-4419- 6749-7_25http://dx.doi.org/10.1007/978-1-4419-6749-7_25]
Wang C Y. 2008. Research on chilling damage of crops in northeast China. Beijing:China Meteorological Press. (王春乙. 2008.东北地区农作物低温冷害研究. 北京: 气象出版社.)
Wang C Y. 2010. Research on major agrometeorological disasters in China. Beijing:China Meteorological Press(王春乙. 2010. 中国重大农业气象灾害研究. 北京: 气象出版社.)
Wang R C, Huang J F. 2002. Rice yield estimation with remote sensing. Beijing: China Agriculture Press
王人潮, 黄敬峰. 2002. 水稻遥感估产. 北京: 中国农业出版社
Xiong X, Che N, Barnes W L. 2006. Terra MODIS on-orbit spectral characterization and performance. IEEE Transactions on Geoscience & Remote Sensing, 2006, 44(8):2198-2206.[ DOI: 10.1109/TGRS.2006.872083]
Yan T L, Wang P X. 2008. Technology remote sensing and agriculture application. Beijing: China Agricultural University Press. (严泰来, 王鹏新. 2008. 遥感技术与农业应用. 北京: 中国农业大学出版社)
Yang F Y, Guo J P, Ma S Q, Long Z C, Zhu Y J, Zhao J F. 2012. Technical specification for assessment of cold damage to spring maize in Northern China. Beijing:China Meteorological Press.
杨霏云,郭建平,马树庆,龙志长,朱玉洁,赵俊芳. 2012. 北方春玉米冷害评估技术规范. 北京:气象出版社
Zhang D R.1993. Test report on chilling damage of Maize. Chinese Journal of Agrometeorology, 14(05): 32-34
张德荣. 1993. 玉米低温冷害试验报告. 中国农业气象, 14(05):32-34. [DOI:CNKI:SUN:ZGNY.0.1993-05-011http://dx.doi.org/CNKI:SUN:ZGNY.0.1993-05-011]
Zhao Z W.2018. Risk assessment, remote sensing monitoring, and loss assessment of cold damage on maize in Shaanxi, Gansu and Ningxia provinces. Zhejiang University. (赵哲文. 2018. 陕甘宁三省(区)玉米低温冷害风险评估、遥感监测与损失评估研究[D]. 浙江大学.)
相关文章
相关作者
相关机构