Rampart Craters in the Isidis Planitia, Mars: Remote sensing analysis and environment implications
- Vol. 25, Issue 7, Pages: 1374-1384(2021)
Published: 07 July 2021
DOI: 10.11834/jrs.20211052
扫 描 看 全 文
浏览全部资源
扫码关注微信
Published: 07 July 2021 ,
扫 描 看 全 文
芶盛,岳宗玉,邸凯昌,牛胜利.2021.火星伊西底斯平原的壁垒撞击坑:遥感分析及环境启示意义.遥感学报,25(7): 1374-1384
Gou S,Yue Z Y,Di K C and Niu S L. 2021. Rampart Craters in the Isidis Planitia, Mars: Remote sensing analysis and environment implications. National Remote Sensing Bulletin, 25(7):1374-1384
伊西底斯平原是中国首次火星探测任务“天问一号”的预选着陆区之一,地表广泛发育指纹地形和壁垒撞击坑。壁垒撞击坑具有一层或多层流态化的连续溅射物,一般被认为是地下富含水/冰的地层(以下简称“地下水冰层”)与超高速撞击体作用的产物,是分析火星当前和过去地下水冰层的关键研究对象。基于高分辨率影像,本文采用影像解译、形貌分析、撞击坑统计定年等方法,开展了伊西底斯平原壁垒撞击坑的遥感综合分析。解译发现该平原目前共存在120个壁垒撞击坑,它们的最小直径为1.5 km,连续溅射物平均分布在撞击坑周围约1.3个半径范围之内,且外观不规则程度(弯曲度)高。采用撞击坑直径—频率分布定年方法确定了15个连续溅射物保存完整的壁垒撞击坑的绝对模式年龄(地质年龄),发现它们全部形成于亚马逊纪。根据连续溅射物与指纹地形的空间叠加关系,本文推断构成指纹地形的锥状物形成于2.38—3.24 Ga(早亚马逊纪)。它们更可能是大量岩浆流过湿润或冰冻地面时下覆(融化)水分迅速气化而发生爆裂并冲破岩浆形成的无根锥/伪火山口。根据撞击坑直径和挖掘深度之间的经验关系,本文揭示伊西底斯平原有利于形成壁垒撞击坑的地下水冰层的平均埋藏深度至少稳定保持在1 km,并可能因火星自转倾角周期性变化对气候的影响而发生0.1 km的小幅上升或下降。本文研究成果对于重建伊西底斯平原地下水冰环境演变历史具有重要科学意义,并有望得到中国“天问一号”巡视器和轨道器次表层探测雷达探测结果的验证。
Isidis Planitia is a potential landing area for China’s first Mars exploration mission “Tianwen-1.” Fingerprint terrain and rampart crater are widely developed on the surface of Isidis Planitia. The rampart crater has one or more fluidized ejecta
which is generally considered the product of the interaction between the subsurface ice-rich layer and the hypervelocity impactor. Considering that water is an essential nutrient that nurtures and maintains all known life forms
the water evolution history of Mars has always been a research hotspot in the planetary community. Therefore
a detailed study on the rampart craters in the Isidis Planitia can provide strong constraints for analyzing the current and past subsurface ice-rich layers in this region.
Through the use of high-resolution optical images obtained by the Context Camera (CTX) onboard the Mars Reconnaissance Orbiter (MRO)
a comprehensive study has been performed on the rampart craters in the Isidis Planitia using image interpretation
morphologic analysis
and crater count dating. The morphometric parameters of the rampart craters
including ejecta mobility and lobateness
are calculated for all the identified rampart craters in this region. Moreover
the absolute model ages (AMAs) of representative rampart craters that have intact fluidized ejecta are determined by the Crater Size-Frequency Distribution (CSFD) measurement.
This study found that 120 rampart craters are currently located in the Isidis Planitia. Their minimum diameter is 1.5 km
and most of their layered ejecta are highly irregular (sinuous) and extend to approximately 1.3 crater radii from the rim. The AMAs of 15 rampart craters reveal that they all formed in the Amazonian. According to the spatial superposition relationship between the rampart crater and the fingerprint terrain
this study infers that that the cones of the fingerprint terrain were formed in the Early Amazonian between 2.38-3.24 Ga
and they are more likely to be rootless cones/pseudo craters formed by explosive steam that break through the lava surface when a voluminous magma flows through wet or frozen ground and vaporizes the underlying (melt) water. According to the empirical formula between crater diameter and excavation depth
this study reveals that the depth of the subsurface ice-rich layer that is conducive to the formation of rampart crater in the Isidis Planitia is currently stable at least approximately 1 km and may rise or fall slightly by 0.1 km because of the effect of periodic changes of Mars' tilt (obliquity) on the climate.
The results of this study are of great scientific significance for reconstructing the evolution history of the subsurface ice environment in the Isidis Planitia and are expected to be verified by the detection of the subsurface exploration radar onboard the rover and orbiter of the “Tianwen-1” probe.
火星伊西底斯平原天问一号壁垒撞击坑绝对模式年龄地下水冰层指纹地形
MarsIsidis PlanitiaTianwen-1rampart cratersabsolute model agessubsurface ice-rich layerthumbprint terrain
Barlow N G. 2005. A review of Martian impact crater ejecta structures and their implications for target properties//Kenkmann T, Hörz F and Deutsch A, eds. Large meteorite impacts III. Boulder: Geological Society of America: 433-442 [DOI: 10.1130/0-8137-2384-1.433http://dx.doi.org/10.1130/0-8137-2384-1.433]
Barlow N G. 2006. Impact craters in the northern hemisphere of Mars: layered ejecta and central pit characteristics. Meteoritics and Planetary Science, 41(10): 1425-1436 [DOI: 10.1111/j.1945-5100.2006.tb00427.xhttp://dx.doi.org/10.1111/j.1945-5100.2006.tb00427.x]
Barlow N G, Boyce J M, Costard F M, Craddock R A, Garvin J B, Sakimoto S E H, Kuzmin R O, Roddy D J and SoderblomL A. 2000. Standardizing the nomenclature of Martian impact crater ejecta morphologies. Journal of Geophysical Research, 105(E11): 26733-26738 [DOI: 10.1029/2000JE001258http://dx.doi.org/10.1029/2000JE001258]
Barlow N G and Bradley T L. 1990. Martian impact craters: correlations of ejecta and interior morphologies with diameter, latitude, and terrain. Icarus, 87(1): 156-179 [DOI: 10.1016/0019-1035(90)90026-6http://dx.doi.org/10.1016/0019-1035(90)90026-6]
Boyce J M, Mouginis-Mark P, Garbeil H and Tornabene L L. 2006. Deep impact craters in the isidis and southwestern utopia planitia regions of mars: high target material strength as a possible cause. Geophysical Research Letters, 33(6): L06202 [DOI: 10.1029/2005GL024462http://dx.doi.org/10.1029/2005GL024462]
Bridges J C, Seabrook A M, Rothery D A, Kim J R, Pillinger C T, Sims M R, Golombek M P, Duxbury T, Head J W, Haldemann A F C, Mitchell K L, Muller J P, Lewis S R, Moncrieff C, Wright I P, Grady M M and Morley J G. 2003. Selection of the landing site in isidis planitia of Mars probe beagle 2. Journal of Geophysical Research, 108(E1): 5001 [DOI: 10.1029/2001JE001820http://dx.doi.org/10.1029/2001JE001820]
Byrne S, Dundas C M, Kennedy M R, Mellon M T, McEwen A S, Cull S C, Daubar I J, Shean D E, Seelos K D, Murchie S L, Cantor B A, Arvidson R E, Edgett K S, Reufer A, Thomas N, Harrison T N, Posiolova L V and Seelos F P. 2009. Distribution of mid-latitude ground ice on mars from new impact craters. Science, 325(5948): 1674-1676 [DOI: 10.1126/science.1175307http://dx.doi.org/10.1126/science.1175307]
Carr M H, Crumpler L S, Cutts J A, Greeley R, Guest J E and Masursky H. 1977. Martian impact craters and emplacement of ejecta by surface flow. Journal of Geophysical Research, 82(28): 4055-4065 [DOI: 10.1029/JS082i028p04055http://dx.doi.org/10.1029/JS082i028p04055]
Carr M H, Masursky H, Baum W A, Blasius K R, Briggs G A, Cutts J A, Duxbury T, Greeley R, Guest J E, Smith B A, Soderblom L A, Veverka J and Wellman J B 1976. Preliminary results from the Viking orbiter imaging experiment. Science, 193(4255): 766-776 [DOI: 10.1126/science.193.4255.766http://dx.doi.org/10.1126/science.193.4255.766]
Costard F M. 1989. The spatial distribution of volatiles in the Martian hydrolithosphere. Earth, Moon, and Planets, 45(3): 265-290 [DOI: 10.1007/BF00057747http://dx.doi.org/10.1007/BF00057747]
Croft S K. 1985. The scaling of complex craters. Journal of Geophysical Research, 90(S02): C828-C842 [DOI: 10.1029/JB090iS02p0C828http://dx.doi.org/10.1029/JB090iS02p0C828]
Dickson J L, Kerber L A, Fassett C I and Ehlmann B L. 2018. A global, blended CTX mosaic of mars with vectorized seam mapping: a new mosaicking pipeline using principles of non-destructive image editing//Proceedings of the 49th Lunar and Planetary Science Conference. The Woodlands, Texas: LPI: 2480
Dundas C M, Bramson A M, Ojha L, Wray J J, Mellon M T, Byrne S, McEwen A S, Putzig N E, Viola D, Sutton S, Clark E and Holt J W. 2018. Exposed subsurface ice sheets in the Martian mid-latitudes. Science, 359(6372): 199-201 [DOI: 10.1126/science.aao1619http://dx.doi.org/10.1126/science.aao1619]
Edwards C S, Nowicki K J, Christensen P, Hill J, Gorelick N and Murray K. 2011. Mosaicking of global planetary image datasets: 1. Techniques and data processing for Thermal Emission Imaging System (THEMIS) multi-spectral data. Journal of Geophysical Research, 116(E10): E10008 [DOI: 10.1029/2011JE003857http://dx.doi.org/10.1029/2011JE003857]
Erkeling G, Reiss D, Hiesinger H, Ivanov M A, Hauber E and Bernhardt H. 2014. Landscape formation at the deuteronilus contact in southern Isidis Planitia, Mars: implications for an Isidis Sea? Icarus, 242: 329-351 [DOI: 10.1016/j.icarus.2014.08.015http://dx.doi.org/10.1016/j.icarus.2014.08.015]
Gou S, Yue Z, Di K and Zhang X. 2017. Advances in aqueous minerals detection on Martian surface. Journal of Remote Sensing, 21(4): 531-548
芶盛, 岳宗玉, 邸凯昌, 张霞. 2017. 火星表面含水矿物探测进展. 遥感学报, 21(4): 531-548 [DOI: 10.11834/jrs.20176335http://dx.doi.org/10.11834/jrs.20176335]
Gou S, Yue Z, Di K and Xu Y. 2018. Quantitative comparison of morphometric and hydrological characteristics of valley networks between Evros Vallis on Mars and Kaidu River in Tarim Basin as terrestrial analog. Journal of Remote Sensing, 22(2): 313-323
芶盛, 岳宗玉, 邸凯昌, 徐懿. 2018. 火星Evros Vallis与塔里木盆地开都河流域河网形态和水文特征比较研究. 遥感学报, 22(2): 313-323 [DOI: 10.11834/jrs.20187014http://dx.doi.org/10.11834/jrs.20187014]
Gou S, Yue Z Y, Di K C and Xu Y. 2019. Comparative study between rivers in Tarim Basin in northwest China and Evros Vallis on Mars. Icarus, 328: 127-140 [DOI: 10.1016/j.icarus.2019.03.017http://dx.doi.org/10.1016/j.icarus.2019.03.017]
Greeley R, Fink J, Gault D E, Snyder D B, Guest J E and Schultz P H. 1980. Impact cratering in viscous targets: laboratory experiments//Proceedings of the 11th Lunar Planetary Science Conference. Houston, Texas: 2075-2097
Grizzaffi P and Schultz P H. 1989. Isidis basin: site of ancient volatile-rich debris layer. Icarus, 77(2): 358-381 [DOI: 10.1016/0019-1035(89)90094-8http://dx.doi.org/10.1016/0019-1035(89)90094-8]
Head J W, Mustard J F, Kreslavsky M A, Milliken R E and Marchant D R. 2003. Recent ice ages on Mars. Nature, 426(6968): 797-802 [DOI: 10.1038/nature02114http://dx.doi.org/10.1038/nature02114]
Hiesinger H and Head III J W. 2003. Geology of the Isidis basin, Mars//Proceedings of the 34th Lunar and Planetary Science. League City, Texas: [s.
n.]: 1261
Hiesinger H, Rohkamp D, Sturm S, Thiessen F and Reiss D. 2009. Geology, ages, morphology, and morphometry of thumbprint terrain in isidis planitia, Mars//Proceedings of the 40th Lunar and Planetary Science Conference.The Woodlands, Texas: [s.
n.]: 1953
Hubbard G S, Naderi F M and Garvin J B. 2002. Following the water, the new program for Mars exploration. Acta Astronautica, 51(1/9): 337-350 [DOI: 10.1016/S0094-5765(02)00067-Xhttp://dx.doi.org/10.1016/S0094-5765(02)00067-X]
Hynek B M, Beach M and Hoke M R T. 2010. Updated global map of Martian valley networks and implications for climate and hydrologic processes. Journal of Geophysical Research, 115(E9): E09008 [DOI: 10.1029/2009JE003548http://dx.doi.org/10.1029/2009JE003548]
Ivanov M A, Hiesinger H, Erkeling G, Hielscher F J and Reiss D. 2012. Major episodes of geologic history of Isidis Planitia on Mars. Icarus, 218(1): 24-46 [DOI: 10.1016/j.icarus.2011.11.029http://dx.doi.org/10.1016/j.icarus.2011.11.029]
Kargel J S. 1986. Morphologic variations of martian rampart crater ejecta and their dependencies and implications//Proceedings of the 17th Lunar and Planetary Science Conference. Houston, Texas: 410-411
Karlsson N B, Schmidt L S and Hvidberg C S. 2015. Volume of Martian midlatitude glaciers from radar observations and ice flow modeling. Geophysical Research Letters, 42(8): 2627-2633 [DOI: 10.1002/2015gl063219http://dx.doi.org/10.1002/2015gl063219]
Kneissl T, van Gasselt S and Neukum G. 2011. Map-projection-independent crater size-frequency determination in GIS environments—New software tool for ArcGIS. Planetary and Space Science, 59(11/12): 1243-1254 [DOI: 10.1016/j.pss.2010.03.015http://dx.doi.org/10.1016/j.pss.2010.03.015]
Kuzmin R O, Bobina N N, Zabalueva E V and Shashkina V P. 1988. Inhomogeneities in the upper levels of the Martian cryolithosphere//Proceedings of the 19th Lunar and Planetary Science Conference. Houston, Texas: [s.
n.]: 655-656
Levrard B, Forget F, Montmessin F and Laskar J. 2004. Recent ice-rich deposits formed at high latitudes on Mars by sublimation of unstable equatorial ice during low obliquity. Nature, 431(7012): 1072-1075 [DOI: 10.1038/nature03055http://dx.doi.org/10.1038/nature03055]
Li L, Yue Z Y, Di K C and Peng M. 2015. Observations of Martian layered ejecta craters and constraints on their formation mechanisms. Meteoritics and Planetary Science, 50(3): 508-522 [DOI: 10.1111/maps.12438http://dx.doi.org/10.1111/maps.12438]
Malin M C, Bell III J F, Cantor B A, Caplinger M A, Calvin W M, Clancy R T, Edgett K S, Edwards L, Haberle R M, James P B, Lee S W, Ravine M A, Thomas P C and Wolff M J. 2007. Context camera investigation on board the Mars reconnaissance orbiter. Journal of Geophysical Research, 112(E5): E05S04 [DOI: 10.1029/2006JE002808http://dx.doi.org/10.1029/2006JE002808]
McCauley J F, Carr M H, Cutts J A, Hartmann W K, Masursky H, Milton D J, Sharp R P and Wilhelms D E. 1972. Preliminary Mariner 9 report on the geology of Mars. Icarus, 17(2): 289-327 [DOI: 10.1016/0019-1035(72)90003-6http://dx.doi.org/10.1016/0019-1035(72)90003-6]
Michael G G, Kneissl T and Neesemann A. 2016. Planetary surface dating from crater size-frequency distribution measurements: poisson timing analysis. Icarus, 277: 279-285 [DOI: 10.1016/j.icarus.2016.05.019http://dx.doi.org/10.1016/j.icarus.2016.05.019]
Michael G G and Neukum G. 2010. Planetary surface dating from crater size-frequency distribution measurements: Partial resurfacing events and statistical age uncertainty. Earth and Planetary Science Letters, 294(3/4): 223-229 [DOI: 10.1016/j.epsl.2009.12.041http://dx.doi.org/10.1016/j.epsl.2009.12.041]
Mouginis-Mark P. 1979. Martian fluidized crater morphology: variations with crater size, latitude, altitude, and target material. Journal of Geophysical Research, 84(B14): 8011-8022 [DOI: 10.1029/JB084iB14p08011http://dx.doi.org/10.1029/JB084iB14p08011]
Mouginis-Mark P J. 1987. Water or ice in the Martian regolith?: clues from rampart craters seen at very high resolution. Icarus, 71(2): 268-286 [DOI: 10.1016/0019-1035(87)90152-7http://dx.doi.org/10.1016/0019-1035(87)90152-7]
Murchie S L, Mustard J F, Ehlmann B L, Milliken R E, Bishop J L, McKeown N K, Dobrea E Z N, Seelos F P, Buczkowski D L, Wiseman S M, Arvidson R E, Wray J J, Swayze G, Clark R N, Des Marais D J, McEwen A S and Bibring J P. 2009. A synthesis of Martian aqueous mineralogy after 1 Mars year of observations from the Mars Reconnaissance Orbiter. Journal of Geophysical Research, 114(E2): E00D06 [DOI: 10.1029/2009JE003342http://dx.doi.org/10.1029/2009JE003342]
Neukum G, Koenig B, Fechtig H and Storzer D. 1975. Cratering in the earth-moon system - consequences for age determination by crater counting//Proceedings of the 6th Lunar Science Conference. Houston, Texas: Pergamon Press, Inc.: 2597-2620
Osterloo M M, Hamilton V E, Bandfield J L, Glotch T D, Baldridge A M, Christensen P R, Tornabene L L and Anderson F S. 2008. Chloride-bearing materials in the southern highlands of Mars. Science, 319(5870): 1651-1654 [DOI: 10.1126/science.1150690http://dx.doi.org/10.1126/science.1150690]
Reiss D, Hauber E, Michael G, Jaumann R, Neukum G and the HRSC Co‐Investigator Team. 2005. Small rampart craters in an equatorial region on Mars: implications for near-surface water or ice. Geophysical Research Letters, 32(10): L10202 [DOI: 10.1029/2005GL022758http://dx.doi.org/10.1029/2005GL022758]
Robbins S J and Hynek B M. 2012. A new global database of Mars impact craters ≥ 1 km: 1. Database creation, properties, and parameters. Journal of Geophysical Research, 117(E5): E05004 [DOI: 10.1029/2011JE003966http://dx.doi.org/10.1029/2011JE003966]
Smith P H, Tamppari L K, Arvidson R E, Bass D, Blaney D, Boynton W V, Carswell A, Catling D C, Clark B C, Duck T, DeJong E, Fisher D, Goetz W, Gunnlaugsson H P, Hecht M H, Hipkin V, Hoffman J, Hviid S F, Keller H U, Kounaves S P, Lange C F, Lemmon M T, Madsen M B, Markiewicz W J, Marshall J, McKay C P, Mellon M T, Ming D W, Morris R V, Pike W T, Renno N, Staufer U, Stoker C, Taylor P, Whiteway J A and Zent A P. 2009. H2O at the phoenix landing site. Science, 325(5936): 58-61 [DOI: 10.1126/science.1172339http://dx.doi.org/10.1126/science.1172339]
Stewart S T, O'Keefe J D and Ahrens T J. 2001. The relationship between rampart crater morphologies and the amount of subsurface ice//Proceedings of the 32nd Lunar and Planetary Science Conference. Houston, Texas: [s.
n.]: 2092
Tanaka K L, Skinner J A, Dohm J M, Irwin III R P, Kolb E J, FortezzoC M, Platz T, Michael G G and Hare T M. 2014. Geologic Map of Mars. U.S. Geological Survey [DOI: 10.3133/sim3292].
Touma J and Wisdom J. 1993. The chaotic obliquity of Mars. Science, 259(5099): 1294-1297 [DOI: 10.1126/science.259.5099.1294http://dx.doi.org/10.1126/science.259.5099.1294]
Wan W X, Wang C, Li C L and Wei Y. 2020. China’s first mission to Mars. Nature Astronomy, 4(7): 721 [DOI: 10.1038/s41550-020-1148-6http://dx.doi.org/10.1038/s41550-020-1148-6]
Warner N H, Gupta S, Calef F, Grindrod P, Boll N and Goddard K. 2015. Minimum effective area for high resolution crater counting of martian terrains. Icarus, 245: 198-240 [DOI: 10.1016/j.icarus.2014.09.024http://dx.doi.org/10.1016/j.icarus.2014.09.024]
Weiss D K and Head J W. 2013. Formation of double-layered ejecta craters on Mars: a glacial substrate model. Geophysical Research Letters, 40(15): 3819-3824 [DOI: 10.1002/grl.50778http://dx.doi.org/10.1002/grl.50778]
Weiss D K and Head J W. 2014. Ejecta mobility of layered ejecta craters on Mars: assessing the influence of snow and ice deposits. Icarus, 233: 131-146 [DOI: 10.1016/j.icarus.2014.01.038http://dx.doi.org/10.1016/j.icarus.2014.01.038]
Weiss D K and Head J W. 2017. Evidence for stabilization of the ice-cemented cryosphere in earlier martian history: Implications for the current abundance of groundwater at depth on Mars. Icarus, 288: 120-147 [DOI: 10.1016/j.icarus.2017.01.018http://dx.doi.org/10.1016/j.icarus.2017.01.018]
Werner S C. 2005. Major aspects of the chronostratigraphy and geologic evolutionary history of Mars. Berlin: Freie Universität Berlin
Wilhelms D E. 1973. Comparison of Martian and lunar multiringed circular basins. Journal of Geophysical Research, 78(20): 4084-4095 [DOI: 10.1029/JB078i020p04084http://dx.doi.org/10.1029/JB078i020p04084]
Wohletz K H and Sheridan M F. 1983. Martian rampart crater ejecta: experiments and analysis of melt-water interaction. Icarus, 56(1): 15-37 [DOI: 10.1016/0019-1035(83)90125-2http://dx.doi.org/10.1016/0019-1035(83)90125-2]
Woronow A. 1981. Preflow stresses in Martian rampart ejecta blankets: a means of estimating the water content. Icarus, 45(2): 320-330 [DOI: 10.1016/0019-1035(81)90037-3http://dx.doi.org/10.1016/0019-1035(81)90037-3]
Ye P J, Sun Z Z, Rao W and Meng L Z. 2017. Mission overview and key technologies of the first Mars probe of China. Science China Technological Sciences, 60(5): 649-657 [DOI: 10.1007/s11431-016-9035-5http://dx.doi.org/10.1007/s11431-016-9035-5]
Young J. 1940. A statistical investigation of diameter and distribution of lunar craters. Journal of the British Astronomical Association, 50: 309-326
Zou Y L, Zhu Y, Bai Y F, Wang L G, Jia Y Z, Shen W H, Fan Y, Liu Y, Wang C, Zhang A B, Yu G B, Dong J H, Shu R, He Z P, Zhang T L, Du A M, Fan M Y, Yang J F, Zhou B, Wang Y and Peng Y Q. 2021. Scientific objectives and payloads of Tianwen-1, China’s first Mars exploration mission. Advances in Space Research, 67(2): 812-823 [DOI: 10.1016/j.asr.2020.11.005http://dx.doi.org/10.1016/j.asr.2020.11.005]
相关作者
相关机构