Research progress of spaceborne passive remote sensing detection payload of greenhouse gases
- Vol. 27, Issue 4, Pages: 857-870(2023)
Published: 07 April 2023
DOI: 10.11834/jrs.20211149
扫 描 看 全 文
浏览全部资源
扫码关注微信
Published: 07 April 2023 ,
扫 描 看 全 文
汪钱盛,罗海燕,李志伟,施海亮,丁毅,熊伟.2023.温室气体星载被动遥感探测载荷研究进展.遥感学报,27(4): 857-870
Wang Q S,Luo H Y,Li Z W,Shi H L,Ding Y and Xiong W. 2023. Research progress of spaceborne passive remote sensing detection payload of greenhouse gases. National Remote Sensing Bulletin, 27(4):857-870
应对CO
2
和CH
4
等温室气体含量增加导致的全球气候变暖问题,促进碳减排已成为全球共识。建立完善的碳监测体系,利用星载平台进行被动遥感探测是当前温室气体观测的主要手段之一。本文以在轨成功应用的星载被动遥感探测载荷3种技术体制为基线,介绍了有效载荷的仪器指标,分析比较了各种技术的优缺点,结合未来温室气体探测计划,总结了温室气体星载被动遥感探测的发展趋势。将高分五号卫星大气主要温室气体监测仪在轨表现与新型干涉成像光谱技术相结合,分析其在高光谱分辨、高信噪比基础上进一步实现高空间分辨率的可行性,为研制具有实时动态、不同细分程度区域的碳监测能力的下一代温室气体载荷提供可能。
A global consensus has been made to promote carbon emission reduction in response to global warming caused by the increase of greenhouse gases
such as CO
2
and CH
4
. Spaceborne observation has the characteristics of large observation space and continuous observation time
which are among the main means of observing greenhouse gases at present. The establishment of a sound carbon monitoring system and spaceborne passive remote sensing of major greenhouse gases in the atmosphere will help to evaluate the impact of the greenhouse effect and guide human greenhouse gas emission activities
which is of great significance to human society.
Active satellite-borne remote sensing of greenhouse gases become successful through proper planning. Among the spaceborne passive remote sensing payloads of greenhouse gases successfully applied in orbit
three technical systems are mainly included: Michelson interference spectroscopy represented by GOSAT (Greenhouse gases Observing SATellite) and GAS (Greenhouse gases Absorption Spectrometer); grating spectroscopy represented by OCO (Orbiting Carbon Observatory) and ACGS; and spatial heterodyne interference spectroscopy represented by GMI (Greenhouse gases Monitoring Instrument). This study focuses on the analysis of these three typical technology systems and compares the advantages and disadvantages of different detection technologies. At the same time
comprehensive satellite payloads for the detection of greenhouse gases include IMG (Interferometric Monitor for Greenhouse gases)
SCIAMACHY (SCanning Imaging Absorption SpectroMeter CHartographY)
AIRS (Atmospheric Infrared Sounder)
ACE-FTS (Atmospheric Chemistry Experiment Fourier Transform Spectrometer)
IASI (Infrared Atmospheric Sounding Instrument)
and CrIS (Cross-track Infrared Sounder). Moreover
projects for the spaceborne passive remote sensing of greenhouse gases that include GeoCarb (Geostationary Carbon Observatory) and Copernicus CO
2
Monitoring Mission are introduced.
To meet the needs of the next generation of spaceborne remote sensing of greenhouse gases
combined with the in-orbit performance of the GMI on GF-5 and the research progress of the new spatial heterodyne interference imaging spectroscopy technology
the feasibility of further achieving high spatial resolution on the basis of hyperspectral resolution and high signal-to-noise ratio is analyzed. This study proposes a payload technology scheme with high timeliness and regional carbon monitoring capability of different subdivisions
which will provide a technical basis for the development of the next generation of detection payload for greenhouse gases.
Reviewing the development process of technologies for the spaceborne detection of greenhouse gases
six development trends of spaceborne passive remote sensing payloads of greenhouse gases are summarized: (1) specialization of detection load; (2) improvement of detection sensitivity; (3) wide width and high spatial resolution; (4) integration of multiple observation modes; (5) systematization of high/medium/ow orbit monitoring; (6) miniaturization of detection load.
温室气体被动遥感碳监测卫星载荷干涉成像光谱技术
greenhouse gasespassive remote sensingcarbon monitoringsatellite payloadinterference imaging spectroscopy
Aumann H H, Chahine M T, Gautier C, Goldberg M D, Kalnay E, McMillin L M, Revercomb H, Rosenkranz P W, Smith W L, Staelin D H, Strow L L and Susskind J. 2003. AIRS/AMSU/HSB on the aqua mission: Design, science objectives, data products, and processing systems. IEEE Transactions on Geoscience and Remote Sensing, 41(2): 253-264 [DOI: 10.1109/TGRS.2002.808356http://dx.doi.org/10.1109/TGRS.2002.808356]
Basilio R R, Bennett M W, Eldering A, Lawson P R and Rosenberg R A. 2019. Orbiting Carbon Observatory-3 (OCO-3), remote sensing from the International Space Station (ISS)//Proceedings of SPIE 11151, Sensors, Systems, and Next-Generation Satellites XXIII. Strasbourg: SPIE: 1115109 [DOI: 10.1117/12.2534996http://dx.doi.org/10.1117/12.2534996]
Blumstein D, Chalon G, Carlier T, Buil C, Hebert P, Maciaszek T, Ponce G, Phulpin T, Tournier B, Simeoni D, Astruc P, Clauss A, Kayal G and Jegou R. 2004. IASI instrument: technical overview and measured performances//Proceedings of SPIE 5543, Infrared Spaceborne Remote Sensing XII. Denver: SPIE: 196-207 [DOI: 10.1117/12.560907http://dx.doi.org/10.1117/12.560907]
Boone C D and Bernath P F. 2003. SciSat-1 mission overview and status//Proceedings of SPIE 5151, Earth Observing Systems VIII. San Diego: SPIE: 133-142 [DOI: 10.1117/12.504530http://dx.doi.org/10.1117/12.504530]
Bovensmann H, Burrows J P, Buchwitz M, Frerick J, Noël S, Rozanov V V, Chance K V and Goede A P H. 1999. SCIAMACHY: mission objectives and measurement modes. Journal of the Atmospheric Sciences, 56(2): 127-150 [DOI: 10.1175/1520-0469http://dx.doi.org/10.1175/1520-0469]
Bréon F M and Ciais P. 2010. Spaceborne remote sensing of greenhouse gas concentrations. Comptes Rendus Geoscience, 342(4/5): 412-424 [DOI: 10.1016/j.crte.2009.09.012http://dx.doi.org/10.1016/j.crte.2009.09.012]
Bril A, Maksyutov S, Belikov D, Oshchepkov S, Yoshida Y, Deutscher N M, Griffith D, Hase F, Kivi R, Morino I, Notholt J, Pollard D F, Sussmann R, Velazco V A and Warneke T. 2017. EOF-based regression algorithm for the fast retrieval of atmospheric CO2 total column amount from the GOSAT observations. Journal of Quantitative Spectroscopy and Radiative Transfer, 189: 258-266 [DOI: 10.1016/j.jqsrt.2016.12.005http://dx.doi.org/10.1016/j.jqsrt.2016.12.005]
Bruhwiler L, Basu S, Butler J H, Chatterjee A, Dlugokencky E, Kenney M A, McComiskey A, Montzka S A and Stanitski D. 2021. Observations of greenhouse gases as climate indicators. Climatic Change, 165(1): 12 [DOI: 10.1007/s10584-021-03001-7http://dx.doi.org/10.1007/s10584-021-03001-7]
Butz A, Guerlet S, Hasekamp O, Schepers D, Galli A, Aben I, Frankenberg C, Hartmann J M, Tran H, Kuze A, Keppel-Aleks G, Toon G, Wunch D, Wennberg P, Deutscher N, Griffith D, Macatangay R, Messerschmidt J, Notholt J and Warneke T. 2011. Toward accurate CO2 and CH4 observations from GOSAT. Geophysical Research Letters, 38(14): L14812 [DOI: 10.1029/2011GL047888http://dx.doi.org/10.1029/2011GL047888]
Châteauneuf F, Soucy M A and Buijs H. 2006. ACE-FTS instrument: extending mission lifetime//Proceedings of SPIE 6297, Infrared Spaceborne Remote Sensing XIV. San Diego: SPIE: 62970E [DOI: 10.1117/12.680059http://dx.doi.org/10.1117/12.680059]
Cheng L X, Tao J H, Yu C, Zhang Y, Fan M, Wang Y P, Chen Y L, Zhu L L, Gu J B and Chen L F. 2021. Tropospheric NO2 column density retrieval from the GF-5 EMI data. National Remote Sensing Bulletin, 25(11): 2313-2325
程良晓,陶金花,余超,张莹,范萌,王雅鹏,陈元琳,朱莉莉,顾坚斌,陈良富.2021.高分五号大气痕量气体差分吸收光谱仪对流层NO2柱浓度遥感反演研究.遥感学报, 25(11): 2313-2325 [DOI: 10.11834/jrs.20210303http://dx.doi.org/10.11834/jrs.20210303]
Chen L F, Shang H Z, Fan M, Tao J H, Husi L T, Zhang Y, Wang H M, Cheng L X, Zhang X X, Wei L S, Li M Y, Zou M M and Liu D D. 2021. Mission overview of the GF-5 satellite for atmospheric parameter monitoring. National Remote Sensing Bulletin, 25(9): 1917-1931
陈良富,尚华哲,范萌,陶金花,胡斯勒图,张莹,王红梅,程良晓,张欣欣,伟乐斯,李明阳,邹铭敏,刘冬冬.2021.高分五号卫星大气参数探测综述.遥感学报,25(9): 1917-1931 [DOI: 10.11834/jrs.20210582http://dx.doi.org/10.11834/jrs.20210582]
Chesnokova T Y, Chentsov A V, Rokotyan N V and Zakharov V I. 2015. Retrieval of content of greenhouse gases from atmospheric spectra of solar radiation with the use of different spectroscopic data on absorption lines. Atmospheric and Oceanic Optics, 28(5): 469-475 [DOI: 10.1134/S1024856015050036http://dx.doi.org/10.1134/S1024856015050036]
Climate Change Center, China Meteorological Administration. 2018. China Greenhouse Gas Bulletin of 2017. Beijing: China Meteorological Administration
中国气象局气候变化中心. 2018. 2017年中国温室气体公报. 北京: 中国气象局
Climate Change Center, China Meteorological Administration. 2019. Blue Paper of Climate Change 2019 in China. Beijing: China Meteorological Administration
中国气象局气候变化中心. 2019. 中国气候变化蓝皮书(2019). 北京: 中国气象局
Crisp D, Pollock H R, Rosenberg R, Chapsky L, Lee R A M, Oyafuso F A, Frankenberg C, O'Dell C W, Bruegge C J, Doran G B, Eldering A, Fisher B M, Fu D J, Gunson M R, Mandrake L, Osterman G B, Schwandner F M, Sun K, Taylor T E, Wennberg P O and Wunch D. 2017. The on-orbit performance of the Orbiting Carbon Observatory-2 (OCO-2) instrument and its radiometrically calibrated products. Atmospheric Measurement Techniques, 10(1): 59-81 [DOI: 10.5194/amt-10-59-2017http://dx.doi.org/10.5194/amt-10-59-2017]
Eldering A, Boland S, Solish B, Crisp D, Kahn P and Gunson M. 2012. High precision atmospheric CO2 measurements from space: the design and implementation of OCO-2//2012 IEEE Aerospace Conference. Big Sky: IEEE: 1-10 [DOI: 10.1109/aero.2012.6187176http://dx.doi.org/10.1109/aero.2012.6187176]
Eldering A, Taylor T E, O'Dell C W and Pavlick R. 2019. The OCO-3 mission: measurement objectives and expected performance based on 1 year of simulated data. Atmospheric Measurement Techniques, 12(4): 2341-2370 [DOI: 10.5194/amt-12-2341-2019http://dx.doi.org/10.5194/amt-12-2341-2019]
Foucher P Y, Chédin A, Armante R, Boone C, Crevoisier C and Bernath P. 2011. Carbon dioxide atmospheric vertical profiles retrieved from space observation using ACE-FTS solar occultation instrument. Atmospheric Chemistry and Physics, 11(6): 2455-2470 [DOI: 10.5194/acp-11-2455-2011http://dx.doi.org/10.5194/acp-11-2455-2011]
Gautam Y K, Sharma K, Tyagi S, Ambedkar A K, Chaudhary M and Singh B P. 2021. Nanostructured metal oxide semiconductor-based sensors for greenhouse gas detection: progress and challenges. Royal Society Open Science, 8(3): 201324 [DOI: 10.1098/rsos.201324http://dx.doi.org/10.1098/rsos.201324]
Han M L and Li B C. 2017. Embarked on a journey to global greenhouse gases emission observation: China’s first Fourier-transform spectrometer for GHG observation remote sensor. Space International, (12): 16-17
韩美玲, 李碧岑. 2017. 我国走向“碳索”新征程实现全球温室气体排放监测——解读我国首台干涉型高光谱温室气体遥感器. 国际太空, (12): 16-17 [DOI: 10.3969/j.issn.1009-2366.2017.12.004http://dx.doi.org/10.3969/j.issn.1009-2366.2017.12.004]
IPCC. 2018. Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. Geneva: IPCC
Issa H, Marpu P, Jallad A H and Al Marar A. 2020. Data processing workflow for the greenhouse gases monitoring CubeSat mission-MeznSat//2020 Mediterranean and Middle-East Geoscience and Remote Sensing Symposium (M2GARSS). Tunis: IEEE: 192-195 [DOI: 10.1109/M2GARSS47143.2020.9105202http://dx.doi.org/10.1109/M2GARSS47143.2020.9105202]
Kobayashi H, Ogawa T, Shimoda H, Shimota A, Kondo K, Kadokura S, Yoshigahara C, Uehara Y and Yoshida I. 1998. IMG: precursor of the high-resolution FTIR on the satellite//Proceedings of SPIE 3501, Optical Remote Sensing of the Atmosphere and Clouds. Beijing: SPIE: 23-33 [DOI: 10.1117/12.577934http://dx.doi.org/10.1117/12.577934]
Liang A L, Gong W, Han G and Xiang C Z. 2017. Comparison of satellite-observed XCO2 from GOSAT, OCO-2, and ground-based TCCON. Remote Sensing, 9(10): 1033 [DOI: 10.3390/rs9101033http://dx.doi.org/10.3390/rs9101033]
Luo H Y, Li Z W, Wu Y, Qiu Z W, Shi H L, Wang Q S and Xiong W. 2023. Greenhouse Gases Monitoring Instrument on GaoFen-5 Satellite-II: Optical Design and Evaluation. Remote Sensing, 15(4):1105 [DOI: 10.3390/rs15041105http://dx.doi.org/10.3390/rs15041105]
Luo H Y, Xiong W, Shi H L and Li Z W. 2017. Study for signal-to-noise ratio of spatial heterodyne spectrometer. Acta Optica Sinica, 37(6): 0612001
罗海燕, 熊伟, 施海亮, 李志伟. 2017. 空间外差干涉光谱仪信噪比研究. 光学学报, 37(6): 0612001 [DOI: 10.3788/AOS201737.0612001http://dx.doi.org/10.3788/AOS201737.0612001]
Mager R, Fricke W, Burrows J P, Frerick J and Bovensmann H. 1997. SCIAMACHY: a new generation of hyperspectral remote sensing instrument//Proceedings of SPIE 3106, Spectroscopic Atmospheric Monitoring Techniques. Munich: SPIE: 84-94 [DOI: 10.1117/12.274707http://dx.doi.org/10.1117/12.274707]
Morse P G, Bates J C, Miller C R, Chahine M T, O'Callaghan F, Aumann H H and Karnik A R. 1999. Development and test of the atmospheric infrared sounder (AIRS) for the NASA earth observing system (EOS)//Proceedings of SPIE 3870, Sensors, Systems, and Next-Generation Satellites III. Florence: SPIE: 281-292 [DOI: 10.1117/12.373196http://dx.doi.org/10.1117/12.373196]
Nakajima M, Suto H, Yotsumoto K, Shiomi K and Hirabayashi T. 2017. Fourier transform spectrometer on GOSAT and GOSAT-2//Proceedings of SPIE 10563, International Conference on Space Optics — ICSO 2014. Tenerife: SPIE: 105634O [DOI: 10.1117/12.2304062http://dx.doi.org/10.1117/12.2304062]
Noël S, Bramstedt K, Hilker M, Liebing P, Plieninger J, Reuter M, Rozanov A, Sioris C E, Bovensmann H and Burrows J P. 2016. Stratospheric CH4 and CO2 profiles derived from SCIAMACHY solar occultation measurements. Atmospheric Measurement Techniques, 9(4): 1485-1503 [DOI: 10.5194/amt-9-1485-2016http://dx.doi.org/10.5194/amt-9-1485-2016]
Olsen K S, Strong K, Walker K A, Boone C D, Raspollini P, Plieninger J, Bader W, Conway S, Grutter M, Hannigan J W, Hase F, Jones N, De Mazière M, Notholt J, Schneider M, Smale D, Sussmann R and Saitoh N. 2017. Comparison of the GOSAT TANSO-FTS TIR CH4 volume mixing ratio vertical profiles with those measured by ACE-FTS, ESA MIPAS, IMK-IAA MIPAS, and 16 NDACC stations. Atmospheric Measurement Techniques, 10(10): 3697-3718 [DOI: 10.5194/amt-10-3697-2017http://dx.doi.org/10.5194/amt-10-3697-2017]
Palmer P I. 2008. Quantifying sources and sinks of trace gases using space-borne measurements: current and future science. Philosophical Transactions of the Royal Society A Mathematical, Physical and Engineering Sciences, 366(1885): 4509-4528 [DOI: 10.1098/rsta.2008.0176http://dx.doi.org/10.1098/rsta.2008.0176]
Polonsky I N, O'Brien D M, Kumer J B, O'Dell C W and The geoCARB Team. 2014. Performance of a geostationary mission, geoCARB, to measure CO2, CH4 and CO column-averaged concentrations. Atmospheric Measurement Techniques, 7(4): 959-981 [DOI: 10.5194/amt-7-959-2014http://dx.doi.org/10.5194/amt-7-959-2014]
Shi H L, Li Z W, Ye H H, Luo H Y, Xiong W and Wang X H. 2021. First level 1 product results of the greenhouse gas monitoring instrument on the gaofen-5 satellite. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 59(2): 899-914 [DOI: 10.1109/TGRS.2020.2998729http://dx.doi.org/10.1109/TGRS.2020.2998729]
Shi H L, Xiong W, Li Z W and Luo H Y. 2019. Quality analysis of on-orbit observation data of greenhouse gases monitoring instrument. Aerospace Shanghai, 36(S2): 161-166
施海亮, 熊伟, 李志伟, 罗海燕. 2019. 大气主要温室气体监测仪在轨观测数据质量分析. 上海航天, 36(S2): 161-166 [DOI: 10.19328/j.cnki.1006-1630.2019.S.024http://dx.doi.org/10.19328/j.cnki.1006-1630.2019.S.024]
Shi H L, Xiong W, Luo H Y, Li Z W and Wu J. 2013. Novel hyper-spectral technology for atmospheric carbon dioxide detection. Opto-Electronic Engineering, 40(8): 36-41
施海亮, 熊伟, 罗海燕, 李志伟, 吴军. 2013. 新型超光谱大气CO2遥感探测技术. 光电工程, 40(8): 36-41 [DOI: 10.3969/j.issn.1003-501X.2013.08.007http://dx.doi.org/10.3969/j.issn.1003-501X.2013.08.007]
Shimoda H and Ogawa T. 1997. Interferometric monitor for greenhouse gases (IMG)//Proceedings of SPIE 3221, Sensors, Systems, and Next-Generation Satellites. London: SPIE: 110-120 [DOI: 10.1117/12.298071http://dx.doi.org/10.1117/12.298071]
Simeoni D, Astruc P, Miras D, Alis C, Andreis O, Scheidel D, Degrelle C, Nicol P, Bailly B, Guiard P, Clauss A, Blumstein D, Maciaszek T, Chalon G, Carlier T and Kayal G. 2004. Design and development of IASI instrument//Proceedings of SPIE 5543, Infrared Spaceborne Remote Sensing XII. Denver: SPIE: 208-219 [DOI: 10.1117/12.561090http://dx.doi.org/10.1117/12.561090]
Stumpf K D and Overbeck J A. 2002. CrIS optical system design//Proceedings of SPIE 4486, Infrared Spaceborne Remote Sensing IX. San Diego: SPIE: 437-444 [DOI: 10.1117/12.455126http://dx.doi.org/10.1117/12.455126]
Tsuno K, Kameda Y, Kondoh K and Hirai S. 1991. Interferometric monitor for greenhouse gasses for ADEOS//Proceedings of SPIE 1490, Future European and Japanese Remote-Sensing Sensors and Programs. Orlando: SPIE: 222-232 [DOI: 10.1117/12.46628http://dx.doi.org/10.1117/12.46628]
World Meteorological Organization. 2020. WMO Greenhouse Gas Bulletin: the State of Greenhouse Gases in the Atmosphere Based on Global Observations Through 2019. WMO
Wang Y P, Tao J H, Cheng L X, Yu C, Fan M, Zhang Y, Chen Y L, Zhu L L, Gu J B and Chen L F. 2021. Feasibility analysis and preliminary results of formaldehyde retrieval based on Environmental trace gases Monitoring Instrument onboard GF-5 satellite. National Remote Sensing Bulletin, 25(10): 2040-2052
王雅鹏,陶金花,程良晓,余超,范萌,张莹,陈元琳,朱莉莉,顾坚斌,陈良富.2021.高分五号大气痕量气体差分吸收光谱仪甲醛反演可行性分析及初步结果.遥感学报, 25(10): 2040-2052, 25(10): 2040-2052 [DOI: 10.11834/jrs.20210302http://dx.doi.org/10.11834/jrs.20210302]
Xiong W. 2018. Hyperspectral greenhouse gases monitor instrument (GMI) for spaceborne payload. Spacecraft Recovery and Remote Sensing, 39(3): 14-24
熊伟. 2018. 星载超光谱大气主要温室气体监测仪载荷. 航天返回与遥感, 39(3): 14-24 [DOI: 10.3969/j.issn.1009-8518.2018.03.002http://dx.doi.org/10.3969/j.issn.1009-8518.2018.03.002]
Xiong W. 2019a. Greenhouse gases Monitoring Instrument (GMI) on GF-5 satellite (invited). Infrared and Laser Engineering, 48(3): 0303002
熊伟. 2019a. “高分五号”卫星大气主要温室气体监测仪(特邀). 红外与激光工程, 48(3): 0303002 [DOI: 10.3788/IRLA201948.0303002http://dx.doi.org/10.3788/IRLA201948.0303002]
Xiong W. 2019b. Optimum design and data analysis of greenhouse gases monitoring instrument on GF-5 satellite. Aerospace Shanghai, 36(S2): 167-172
熊伟. 2019b. 高分五号卫星大气主要温室气体监测仪优化设计及数据分析. 上海航天, 36(S2): 167-172 [DOI: 10.19328/j.cnki.1006-1630.2019.S.025http://dx.doi.org/10.19328/j.cnki.1006-1630.2019.S.025]
Yang Z D, Bi Y M, Wang Q, Zheng Y Q and Yin Z S. 2016. China’s first dedicated hyperspectral satellite for detecting consistency of CO2 set to get into orbit. Space International, (12): 13-17
杨忠东, 毕研盟, 王倩, 郑玉权, 尹增山. 2016. 即将入轨的我国首颗测量大气二氧化碳的专用高光谱卫星. 国际太空, (12): 13-17 [DOI: 10.3969/j.issn.1009-2366.2016.12.003http://dx.doi.org/10.3969/j.issn.1009-2366.2016.12.003]
Yoshida Y, Ota Y, Eguchi N, Kikuchi N, Nobuta K, Tran H, Morino I and Yokota T. 2011. Retrieval algorithm for CO2 and CH4 column abundances from short-wavelength infrared spectral observations by the Greenhouse gases observing satellite. Atmospheric Measurement Techniques, 4(4): 717-734 [DOI: 10.5194/amt-4-717-2011http://dx.doi.org/10.5194/amt-4-717-2011]
Zhang X Y, Meng X Y, Zhou M Q, Bai W G, Zhou L H, Hu Y M and Yu X. 2018. Review of the validation of atmospheric CO2 from satellite hyper spectral remote sensing. Climate Change Research, 14(6): 602-612
张兴赢, 孟晓阳, 周敏强, 白文广, 周丽花, 胡玥明, 余骁. 2018. 卫星高光谱大气CO2探测精度验证研究进展. 气候变化研究进展, 14(6): 602-612 [DOI: 10.12006/j.issn.1673-1719.2018.070http://dx.doi.org/10.12006/j.issn.1673-1719.2018.070]
Zhang X Y, Wang F, Wang W H, Huang F X, Chen B L, Gao L, Wang S P, Yan H H, Ye H H, Si F Q, Hong J, Li X Y, Cao Q, Che H Z and Li Z Q. 2020. The development and application of satellite remote sensing for atmospheric compositions in China. Atmospheric Research, 245:105056 [DOI: 10.1016/j.atmosres.2020.105056http://dx.doi.org/10.1016/j.atmosres.2020.105056]
相关文章
相关作者
相关机构