Ground validation of land surface temperature and surface emissivity from thermal infrared remote sensing data
- Vol. 25, Issue 8, Pages: 1538-1566(2021)
Published: 07 August 2021
DOI: 10.11834/jrs.20211299
扫 描 看 全 文
浏览全部资源
扫码关注微信
Published: 07 August 2021 ,
扫 描 看 全 文
朱金顺,任华忠,叶昕,曾晖,聂婧,蒋晨琛,郭金鑫.2021.热红外遥感地表温度与发射率地面验证进展.遥感学报,25(8): 1538-1566
Zhu J S,Ren H Z,Ye X,Zeng H,Nie J,Jiang C C and Guo J X. 2021. Ground validation of land surface temperature and surface emissivity from thermal infrared remote sensing data: A review. National Remote Sensing Bulletin, 25(8):1538-1566
地表温度与发射率是地表—大气系统长波辐射和潜热通量交换的直接驱动力,是描述区域和全球尺度上地表能量平衡与水平衡的重要参数,其时空变化信息在气象预测、气候变化、水循环、地质勘探、农林监测和城市热环境等诸多领域具有广泛的应用。热红外遥感作为当前获取区域或全球尺度上地表温度和发射率的最有效手段之一,相较于传统的地面点位测量方法,具有空间覆盖范围大和重复观测等优势。对热红外遥感定量反演的地表温度与发射率产品进行地表真实性验证,有利于发现遥感数据自身或其反演算法的缺陷,确定产品的精度与不确定度,便于遥感产品的应用与推广。本文首先回顾了地表温度和发射率的定义,阐述了热红外遥感可反演、地面可测量的地表温度和发射率的科学内涵,并对利用热红外遥感数据反演地表温度和发射率的理论和方法作了概述;对地表温度和发射率地面验证的框架体系、验证指标进行总结,建立了基于精度、精确度、不确定度、完整性和稳定性的验证评价指标体系;总结了地表温度和地表发射率的地面验证方法、地面测量方法、辅助数据的获取方法、地表温度地面测量的采样方法,以及在验证异质非同温地表时从点到像元尺度的地表温度尺度转换方法等,分析了地面验证过程的主要误差来源;归纳了目前地表温度和地表发射率主要验证站点、观测网络及其空间分布特征;最后,本文讨论了地表温度与发射率地面验证存在的若干问题,并对地表温度与发射率验证工作的发展前景和趋势进行了相关展望。
Land Surface Temperature (LST) and Land Surface Emissivity (LSE) are the direct driving force of long wave radiation and latent heat flux exchange at the surface-atmosphere interface
which are also two important parameters on surface energy budget balance and water balance at regional or global scales
its temporal and spatial variations on surface-atmosphere interface have a wide range of applications on weather forecasting
climate change
water cycle
geological exploration
agriculture
forestry monitoring and the urban thermal environment research
and many other scientific fields. Remote sensing provides an effective approach to obtain LST and LSE at global scale rather than point measurements for its rather wider spatial coverage and temporal revisit convenience. The validation of quantitative retrieval on LST and LSE products is conducive to find the defects of remote sensing data processing or drawbacks on retrieval algorithms
as well as clarify the accuracy and uncertainty of the operational products
which is of great convenience for the application and popularity of these products. In this paper
firstly different definitions of LST and LSE are reviewed
and then the scientific connotation of LST and LSE which can be retrieved from thermal infrared remote sensing data and measured from in-situ experiments is explained. The theoretical background
such as radiative transfer theory and methods of LST and LSE retrieval from remote sensing data are then summarized and outlined. After that
the framework of LST and LSE validation are summarized systematically
the validation metrics of LST and LSE derived from remotes sensing data including accuracy
precision
uncertainty
completeness and stability is constructed. Based on the validation framework
the methods of ground validation for LST and LSE are introduced (including directly validation and indirectly comparison)
and followed by the methods of ground measurements of LST or related auxiliary data. The method of scale conversion method from point level to pixel level for heterogeneous and non-isothermal surfaces are emphasized and analyzed
and the main error sources of LST validation and LSE validation are discussed
respectively. A summarization of the main sites or networks for the validation of LST and LSE is conducted and the spatial distribution and the main characteristics (such as heterogeneity
land cover) of the typical LST and LSE validation sites or networks are briefly analyzed. The current LST and LSE products derived from satellite remote sensing data
which utilize the abovementioned validation sites or networks are summarized to report their validation accuracy or uncertainty
and related development on validation of LST and LSE are reviewed. Finally
some problems of validation of LST and LSE are also presented
and then the future outlook and trends of validation are outlined and justified.
热红外遥感地表温度发射率地面验证真实性检验
thermal infrared remote sensingland surface temperatureemissivityground validationverification
Agbor C F and Makinde E O. 2018. Land surface temperature mapping using geoinformation techniques. Geoinformatics FCE CTU, 17(1): 17-32 [DOI: 10.14311/gi.17.1.2http://dx.doi.org/10.14311/gi.17.1.2]
Aliabad F A, Zare M and Malamiri H G. 2021. Comparison of the accuracy of daytime land surface temperature retrieval methods using Landsat 8 images in arid regions. Infrared Physics and Technology, 115: 103692 [DOI: 10.1016/j.infrared.2021.103692http://dx.doi.org/10.1016/j.infrared.2021.103692]
Anderson M C, Allen R G, Morse A and Kustas W P. 2012. Use of Landsat thermal imagery in monitoring evapotranspiration and managing water resources. Remote Sensing of Environment, 122: 50-65 [DOI: 10.1016/j.rse.2011.08.025http://dx.doi.org/10.1016/j.rse.2011.08.025]
Avdan U and Jovanovska G. 2016. Algorithm for automated mapping of land surface temperature using LANDSAT 8 satellite data. Journal of Sensors, 2016: 1480307 [DOI: 10.1155/2016/1480307http://dx.doi.org/10.1155/2016/1480307]
Baldridge A M, Hook S J, Grove C I and Rivera G. 2009. The ASTER spectral library version 2.0. Remote Sensing of Environment, 113(4): 711-715 [DOI: 10.1016/j.rse.2008.11.007http://dx.doi.org/10.1016/j.rse.2008.11.007]
Barducci A and Pippi I. 1996. Temperature and emissivity retrieval from remotely sensed images using the "grey body emissivity" method. IEEE Transactions on Geoscience and Remote Sensing, 34(3): 681-695 [DOI: 10.1109/36.499748http://dx.doi.org/10.1109/36.499748]
Barsi J A, Hook S J, Schott J R, Raqueno N G and Markham B L. 2007. Landsat-5 thematic mapper thermal band calibration update. IEEE Geoscience and Remote Sensing Letters, 4(4): 552-555 [DOI: 10.1109/LGRS.2007.896322http://dx.doi.org/10.1109/LGRS.2007.896322]
Barsi J A, Schott J R, Hook S J, Raqueno N G, Markham B L and Radocinski R G. 2014. Landsat-8 thermal infrared sensor (TIRS) vicarious radiometric calibration. Remote Sensing, 6(11): 11607-11626 [DOI: 10.3390/rs61111607http://dx.doi.org/10.3390/rs61111607]
Bayat B, Camacho F, Nickeson J, Cosh M, Bolten J, Vereecken H and Montzka C. 2021. Toward operational validation systems for global satellite-based terrestrial essential climate variables. International Journal of Applied Earth Observation and Geoinformation, 95: 102240 [DOI: 10.1016/j.jag.2020.102240http://dx.doi.org/10.1016/j.jag.2020.102240]
Becker F and Li Z L. 1995. Surface temperature and emissivity at various scales: definition, measurement and related problems. Remote Sensing Revie ws, 12(3/4): 225-253 [DOI: 10.1080/02757259509532286http://dx.doi.org/10.1080/02757259509532286]
Berk A, Anderson G P, Acharya P K, Bernstein L S, Muratov L, Lee J, Fox M, Adler-Golden S M, Chetwynd J H, Hoke M L, Lockwood R B, Gardner J A, Cooley T W, Borel C C, Lewis P E and Shettle E P. 2006. MODTRAN5: 2006 update//Proceedings Volume 6233, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XII. Florida, United States: SPIE [DOI: 10.1117/12.665077http://dx.doi.org/10.1117/12.665077]
Berk A, Anderson G P, Bernstein L S, Acharya P K, Dothe H, Matthew M W, Adler-Golden S M, Chetwynd J H, Richtsmeier S C, Pukall B, Allred C L, Jeong L S and Hoke M L. 1999. MODTRAN4 radiative transfer modeling for atmospheric correction//Proceedings Volume 3756, Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research III. Denver, CO, United States: SPIE: 348-353 [DOI: 10.1117/12.366388http://dx.doi.org/10.1117/12.366388]
Bian Z J, Roujean J L, Cao B, Du Y M, Li H, Gamet P, Fang J Y, Xiao Q and Liu Q H. 2021. Modeling the directional anisotropy of fine-scale TIR emissions over tree and crop canopies based on UAV measurements. Remote Sensing of Environment, 252: 112150 [DOI: 10.1016/j.rse.2020.112150http://dx.doi.org/10.1016/j.rse.2020.112150]
Bojinski S, Verstraete M, Peterson T C, Richter C, Simmons A and Zemp M. 2014. The concept of essential climate variables in support of climate research, applications, and policy. Bulletin of the American Meteorological Society, 95(9): 1431-1443 [DOI: 10.1175/BAMS-D-13-00047.1http://dx.doi.org/10.1175/BAMS-D-13-00047.1]
Borbas E E and Ruston B C. 2010. The RTTOV UWiremis IR Land Surface Emissivity Module. EUMETSAT
Borel C C. 1997. Iterative Retrieval of Surface Emissivity and Temperature for a Hyperspectral Sensor. LA-UR-97-3012; CONF-9705196-. Los Alamos National Laboratory
Brogniez G, Pietras C, Legrand M, Dubuisson P and Haeffelin M. 2003. A high-accuracy multiwavelength radiometer for in situ measurements in the thermal infrared. Part II: Behavior in field experiments. Journal of Atmospheric and Oceanic Technology, 20(7): 1023-1033 [DOI: 10.1175/1520-0426(2003)20<1023:ahmrfi>2.0.co;2http://dx.doi.org/10.1175/1520-0426(2003)20<1023:ahmrfi>2.0.co;2]
Buettner K J K and Kern C D. 1965. The determination of infrared emissivities of terrestrial surfaces. Journal of Geophysical Research, 70(6): 1329-1337 [DOI: 10.1029/JZ070i006p01329http://dx.doi.org/10.1029/JZ070i006p01329]
Cao B, Liu Q H, Du Y M, Roujean J L, Gastellu-Etchegorry J P, Trigo I F, Zhan W F, Yu Y Y, Cheng J, Jacob F, Lagouarde J P, Bian Z J, Li H, Hu T and Xiao Q. 2019. A review of earth surface thermal radiation directionality observing and modeling: historical development, current status and perspectives. Remote Sensing of Environment, 232: 111304 [DOI: 10.1016/j.rse.2019.111304http://dx.doi.org/10.1016/j.rse.2019.111304]
Caselles V, Coll C and Valor E. 1997. Land surface emissivity and temperature determination in the whole HAPEX-Sahel area from AVHRR data. International Journal of Remote Sensing, 18(5): 1009-1027 [DOI: 10.1080/014311697218548http://dx.doi.org/10.1080/014311697218548]
Chen S S, Ren H Z, Liu R Y, Tao Y Z, Zheng Y T and Liu H C. 2021a. Mapping sandy land using the new sand differential emissivity index from thermal infrared emissivity data. IEEE Transactions on Geoscience and Remote Sensing, 59(7): 5464-5478 [DOI: 10.1109/tgrs.2020.3022772http://dx.doi.org/10.1109/tgrs.2020.3022772]
Chen W, Pinker R T, Ma Y T, Hulley G, Borbas E, Islam T, Cawse-Nicholson K A, Hook S, Hain C and Basara J. 2021b. Land surface temperature from GOES-East and GOES-West. Journal of Atmospheric and Oceanic Technology, 38(4): 843-858 [DOI: 10.1175/jtech-d-20-0086.1http://dx.doi.org/10.1175/jtech-d-20-0086.1]
Cheng J and Liang S L. 2014. Estimating the broadband longwave emissivity of global bare soil from the MODIS shortwave albedo product. Journal of Geophysical Research: Atmospheres, 119(2): 614-634 [DOI: 10.1002/2013JD020689http://dx.doi.org/10.1002/2013JD020689]
Cheng J, Liang S L, Dong L X, Ren B Y and Shi L P. 2014a. Validation of the moderate-resolution imaging spectroradiometer land surface emissivity products over the Taklimakan Desert. Journal of Applied Remote Sensing, 8: 083675 [DOI: 10.1117/1.JRS.8.083675http://dx.doi.org/10.1117/1.JRS.8.083675]
Cheng J, Liang S L, Wang J D and Li X W. 2010. A stepwise refining algorithm of temperature and emissivity separation for hyperspectral thermal infrared data. IEEE Transactions on Geoscience and Remote Sensing, 48(3): 1588-1597 [DOI: 10.1109/tgrs.2009.2029852http://dx.doi.org/10.1109/tgrs.2009.2029852]
Cheng J, Liang S L, Yao Y J, Ren B Y, Shi L P and Liu H. 2014b. A comparative study of three land surface broadband emissivity datasets from satellite data. Remote Sensing, 6(1): 111-134 [DOI: 10.3390/rs6010111http://dx.doi.org/10.3390/rs6010111]
Cheng J, Liang S L, Yao Y J and Zhang X T. 2013. Estimating the optimal broadband emissivity spectral range for calculating surface longwave net radiation. IEEE Geoscience and Remote Sensing Letters, 10(2): 401-405 [DOI: 10.1109/LGRS.2012.2206367http://dx.doi.org/10.1109/LGRS.2012.2206367]
Coll C, Caselles V, Galve J M, Valor E, Niclòs R, Sánchez J M and Rivas R. 2005. Ground measurements for the validation of land surface temperatures derived from AATSR and MODIS data. Remote Sensing of Environment, 97(3): 288-300 [DOI: 10.1016/j.rse.2005.05.007http://dx.doi.org/10.1016/j.rse.2005.05.007]
Coll C, Caselles V, Valor E and Niclòs R. 2012a. Comparison between different sources of atmospheric profiles for land surface temperature retrieval from single channel thermal infrared data. Remote Sensing of Environment, 117: 199-210 [DOI: 10.1016/j.rse.2011.09.018http://dx.doi.org/10.1016/j.rse.2011.09.018]
Coll C, Galve J M, Niclòs R, Valor E and Barberà M J. 2019a. Angular variations of brightness surface temperatures derived from dual-view measurements of the Advanced Along-Track Scanning Radiometer using a new single band atmospheric correction method. Remote Sensing of Environment, 223: 274-290 [DOI: 10.1016/j.rse.2019.01.021http://dx.doi.org/10.1016/j.rse.2019.01.021]
Coll C, Galve J M, Sanchez J M and Caselles V. 2010. Validation of Landsat-7/ETM+ thermal-band calibration and atmospheric correction with ground-based measurements. IEEE Transactions on Geoscience and Remote Sensing, 48(1): 547-555 [DOI: 10.1109/tgrs.2009.2024934http://dx.doi.org/10.1109/tgrs.2009.2024934]
Coll C, Niclòs R, Puchades J, García-Santos V, Miguel G J, Perez-Planells L, Valor E and Theocharous E. 2019b. Laboratory calibration and field measurement of land surface temperature and emissivity using thermal infrared multiband radiometers. International Journal of Applied Earth Observation and Geoinformation, 78: 227-239 [DOI: 10.1016/j.jag.2019.02.002http://dx.doi.org/10.1016/j.jag.2019.02.002]
Coll C, Valor E, Galve J M, Mira M, Bisquert M, García-Santos V, Caselles E and Caselles V. 2012b. Long-term accuracy assessment of land surface temperatures derived from the Advanced Along-Track Scanning Radiometer. Remote Sensing of Environment, 116: 211-225 [DOI: 10.1016/j.rse.2010.01.027http://dx.doi.org/10.1016/j.rse.2010.01.027]
Coll C, Wan Z M and Galve J M. 2009. Temperature-based and radiance-based validations of the V5 MODIS land surface temperature product. Journal of Geophysical Research: Atmospheres, 114: D20102 [DOI: 10.1029/2009jd012038http://dx.doi.org/10.1029/2009jd012038]
Combs A C, Weickmann H K, Mader C and Tebo A. 1965. Application of infrared radiometers to meteorology. Journal of Applied Meteorology and Climatology, 4(2): 253-262 [DOI: 10.1175/1520-0450(1965)004<0253:aoirtm>2.0.co;2http://dx.doi.org/10.1175/1520-0450(1965)004<0253:aoirtm>2.0.co;2]
Coudert B, Ottlé C, Boudevillain B, Demarty J and Guillevic P. 2006. Contribution of thermal infrared remote sensing data in multiobjective calibration of a dual-source SVAT model. Journal of Hydrometeorology, 7(3): 404-420 [DOI: 10.1175/JHM503.1http://dx.doi.org/10.1175/JHM503.1]
De Gruijter J, Brus D J, Bierkens M F and Knotters M. 2006. Sampling for Natural Resource Monitoring. Berlin Heidelberg: Springer [DOI: 10.1007/3-540-33161-1http://dx.doi.org/10.1007/3-540-33161-1]
Dodd E M, and Ghent D J. 2019. Ground-Based Observations for Validation (GBOV) of Copernicus Global Land Products-Algorithm Theoretical Basis Document Land Surface Temperature (LP7)[EB/OL]. [2021-03-08]https://gbov.acri.fr/public/docs/products/2019-11/GBOV-ATBD-LP7_v2.0-LST.pdfhttps://gbov.acri.fr/public/docs/products/2019-11/GBOV-ATBD-LP7_v2.0-LST.pdf
Dodd E M A, Veal K L, Ghent D J, van den Broeke M R and Remedios J J. 2019. Toward a combined surface temperature data set for the arctic from the along-track scanning radiometers. Journal of Geophysical Research: Atmospheres, 124(13): 6718-6736 [DOI: 10.1029/2019JD030262http://dx.doi.org/10.1029/2019JD030262]
Dong L X, Hu J Y, Tang S H and Min M. 2013. Field validation of the GLASS land surface broadband emissivity database using pseudo-invariant sand dune sites in northern China. International Journal of Digital Earth, 6(S1): 96-112 [DOI: 10.1080/17538947.2013.822573http://dx.doi.org/10.1080/17538947.2013.822573]
Duan S B, Li Z L, Li H, Göttsche F M, Wu H, Zhao W, Leng P, Zhang X and Coll C. 2019. Validation of Collection 6 MODIS land surface temperature product using in situ measurements. Remote Sensing of Environment, 225: 16-29 [DOI: 10.1016/j.rse.2019.02.020http://dx.doi.org/10.1016/j.rse.2019.02.020]
Duan S B, Li Z L, Wu H, Leng P, Gao M F and Wang C G. 2018. Radiance-based validation of land surface temperature products derived from Collection 6 MODIS thermal infrared data. International Journal of Applied Earth Observation and Geoinformation, 70: 84-92 [DOI: 10.1016/j.jag.2018.04.006http://dx.doi.org/10.1016/j.jag.2018.04.006]
Ermida S L, Soares P, Mantas V, Göttsche F M and Trigo I F. 2020. Google earth engine open-source code for land surface temperature estimation from the landsat series. Remote Sensing, 12(9): 1471 [DOI: 10.3390/rs12091471http://dx.doi.org/10.3390/rs12091471]
Ermida S L, Trigo I F, DaCamara C C, Göttsche F M, Olesen F S and Hulley G. 2014. Validation of remotely sensed surface temperature over an oak woodland landscape — The problem of viewing and illumination geometries. Remote Sensing of Environment, 148: 16-27 [DOI: 10.1016/j.rse.2014.03.016http://dx.doi.org/10.1016/j.rse.2014.03.016]
Eyre J, Andersson E, Charpentier E, Ferranti L, Lafeuille J, Ondras M, Pailleux J, Rabier F and Riishojgaard L P. 2010. Requirements of numerical weather prediction for observations of the oceans//Proceedings of OceanObs’09: Sustained Ocean Observations and Information for Society. Venice, Italy: ESA Publication: 272-276 [DOI: 10.5270/oceanobs09.cwp.26http://dx.doi.org/10.5270/oceanobs09.cwp.26]
Feltz M, Borbas E, Knuteson R, Hulley G and Hook S. 2018. The combined ASTER MODIS Emissivity over land (CAMEL) Part 2: uncertainty and validation. Remote Sensing, 10(5): 664 [DOI: 10.3390/rs10050664http://dx.doi.org/10.3390/rs10050664]
Gallo K, Hale R, Tarpley D and Yu Y Y. 2011. Evaluation of the relationship between air and land surface temperature under clear- and cloudy-sky conditions. Journal of Applied Meteorology and Climatology, 50(3): 767-775 [DOI: 10.1175/2010JAMC2460.1http://dx.doi.org/10.1175/2010JAMC2460.1]
Gao S G, Zhu Z L, Liu S M, Jin R, Yang G C and Tan L. 2014. Estimating the spatial distribution of soil moisture based on Bayesian maximum entropy method with auxiliary data from remote sensing. International Journal of Applied Earth Observation and Geoinformation, 32: 54-66 [DOI: 10.1016/j.jag.2014.03.003http://dx.doi.org/10.1016/j.jag.2014.03.003]
García-Santos V, Galve J M, Valor E, Caselles V and Coll C. 2012. Estimation of atmospheric water vapour content from direct measurements of radiance in the thermal infrared region. Remote Sensing Letters, 3(1): 31-38 [DOI: 10.1080/01431161.2010.531060http://dx.doi.org/10.1080/01431161.2010.531060]
Ge Y, Jin Y, Stein A, Chen Y H, Wang J H, Wang J F, Cheng Q M, Bai H X, Liu M X and Atkinson P M. 2019. Principles and methods of scaling geospatial Earth science data. Earth-Science Reviews, 197: 102897 [DOI: 10.1016/j.earscirev.2019.102897http://dx.doi.org/10.1016/j.earscirev.2019.102897]
Ge Y, Liang Y Z, Wang J H, Zhao Q Y and Liu S M. 2015. Upscaling sensible heat fluxes with area-to-area regression kriging. IEEE Geoscience and Remote Sensing Letters, 12(3): 656-660 [DOI: 10.1109/LGRS.2014.2355871http://dx.doi.org/10.1109/LGRS.2014.2355871]
Ghent D. 2017. S3 Validation Report-SLSTR[EB/OL]. [2020-03-30]https://sentinel.esa.int/documents/247904/3320896/Sentinel-3-SLSTR-Level-2-Land-Validation-Reporthttps://sentinel.esa.int/documents/247904/3320896/Sentinel-3-SLSTR-Level-2-Land-Validation-Report
Ghent D. 2020. Gap Analysis Report - LST ground stations. Copernicus Space Component Validation for Land Surface Temperature, Aerosol Optical Depth and Water Vapor Sentinel-3 Products Project[EB/OL]. [2020-03-31]https://law-data.acri-st.fr/website-documents/LAW.UOL.D11.002-v1.1_Gap%20analysis%20report%20-%20LST%20ground%20stations.pdf?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credential=law-web%2F20210709%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20210709T091737Z&X-Amz-Expires=604800&X-Amz-SignedHeaders=host&X-Amz-Signature=42cb5329b8db1e1d8fd76d7797a71d338f0171e9f111b61b8b5dd47a3b44f388https://law-data.acri-st.fr/website-documents/LAW.UOL.D11.002-v1.1_Gap%20analysis%20report%20-%20LST%20ground%20stations.pdf?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credential=law-web%2F20210709%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20210709T091737Z&X-Amz-Expires=604800&X-Amz-SignedHeaders=host&X-Amz-Signature=42cb5329b8db1e1d8fd76d7797a71d338f0171e9f111b61b8b5dd47a3b44f388
Ghent D, Kaduk J, Remedios J, Ardö J and Balzter H. 2010. Assimilation of land surface temperature into the land surface model JULES with an ensemble Kalman filter. Journal of Geophysical Research: Atmospheres, 115: D19112 [DOI: 10.1029/2010jd014392http://dx.doi.org/10.1029/2010jd014392]
Gillespie A, Rokugawa S, Matsunaga T, Cothern J S, Hook S and Kahle A B. 1998. A temperature and emissivity separation algorithm for Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images. IEEE Transactions on Geoscience and Remote Sensing, 36(4): 1113-1126 [DOI: 10.1109/36.700995http://dx.doi.org/10.1109/36.700995]
Gillespie A R, Rokugawa S, Hook S J, Matsunaga T and Kahle A B. 1999. Temperature/Emissivity Separation Algorithm Theoretical Basis Document, Version 2.4. ATBD Contract NAS5-31372. NASA.
Göttsche F M and Hulley G C. 2012. Validation of six satellite-retrieved land surface emissivity products over two land cover types in a hyper-arid region. Remote Sensing of Environment, 124: 149-158 [DOI: 10.1016/j.rse.2012.05.010http://dx.doi.org/10.1016/j.rse.2012.05.010]
Göttsche F M, Olesen F and Bork-Unkelbach A. 2015. In-situ land surface emissivity retrieved from FTIR spectroscopic measurements at Gobabeb, Namibia//EGU General Assembly Conference Abstracts. [s.l.]: EGU
Göttsche F M, Olesen F S and Bork-Unkelbach A. 2013. Validation of land surface temperature derived from MSG/SEVIRI with in situ measurements at Gobabeb, Namibia. International Journal of Remote Sensing, 34(9/10): 3069-3083 [DOI: 10.1080/01431161.2012.716539http://dx.doi.org/10.1080/01431161.2012.716539]
Göttsche F M, Olesen F S, Trigo I F, Bork-Unkelbach A and Martin M A. 2016. Long term validation of land surface temperature retrieved from MSG/SEVIRI with continuous in-situ measurements in Africa. Remote Sensing, 8(5): 410 [DOI: 10.3390/rs8050410http://dx.doi.org/10.3390/rs8050410]
Guillevic P, Göttsche F M, Nickeson J, Hulley G, Ghent D, Yu Y Y, Trigo I, Hook S, Sobrino J A, Remedios J, Román M and Camacho F. 2018. Land Surface Temperature Product Validation Best Practice Protocol. Version 1.1. Committee on Earth Observation Satellites Working Group on Calibration and Validation Land Product Validation Subgroup[EB/OL]. [2021-04-05]https://lpvs.gsfc.nasa.gov/PDF/CEOS_LST_PROTOCOL_Feb2018_v1.1.0_light.pdfhttps://lpvs.gsfc.nasa.gov/PDF/CEOS_LST_PROTOCOL_Feb2018_v1.1.0_light.pdf
Guillevic P C, Biard J C, Hulley G C, Privette J L, Hook S J, Olioso A, Göttsche F M, Radocinski R, Román M O, Yu Y Y and Csiszar I. 2014. Validation of Land Surface Temperature products derived from the Visible Infrared Imaging Radiometer Suite (VIIRS) using ground-based and heritage satellite measurements. Remote Sensing of Environment, 154: 19-37 [DOI: 10.1016/j.rse.2014.08.013http://dx.doi.org/10.1016/j.rse.2014.08.013]
Guillevic P C, Privette J L, Coudert B, Palecki M A, Demarty J, Ottlé C and Augustine J A. 2012. Land Surface Temperature product validation using NOAA’s surface climate observation networks—Scaling methodology for the Visible Infrared Imager Radiometer Suite (VIIRS). Remote Sensing of Environment, 124: 282-298 [DOI: 10.1016/j.rse.2012.05.004http://dx.doi.org/10.1016/j.rse.2012.05.004]
GUM. 2008. JCGM 100:2008: Evaluation of Measurement Data — Guide to the Expression of Uncertainty in Measurement. Joint Committee for Guides in Metrology, JCGM[EB/OL]. [2021-04-05]https://www.bipm.org/documents/20126/2071204/JCGM_100_2008_E.pdf/cb0ef43f-baa5-11cf-3f85-4dcd86f77bd6https://www.bipm.org/documents/20126/2071204/JCGM_100_2008_E.pdf/cb0ef43f-baa5-11cf-3f85-4dcd86f77bd6
Guo J X, Ren H Z, Zheng Y T, Lu S Z and Dong J J. 2020. Evaluation of land surface temperature retrieval from Landsat 8/TIRS images before and after stray light correction using the SURFRAD dataset. Remote Sensing, 12(6): 1023 [DOI: 10.3390/rs12061023http://dx.doi.org/10.3390/rs12061023]
Hachem S, Duguay C R and Allard M. 2012. Comparison of MODIS-derived land surface temperatures with ground surface and air temperature measurements in continuous permafrost terrain. The Cryosphere, 6(1): 51-69 [DOI: 10.5194/tc-6-51-2012http://dx.doi.org/10.5194/tc-6-51-2012]
Hale R C, Gallo K P, Tarpley D and Yu Y Y. 2011. Characterization of variability at in situ locations for calibration/validation of satellite-derived land surface temperature data. Remote Sensing Letters, 2(1): 41-50 [DOI: 10.1080/01431161.2010.490569http://dx.doi.org/10.1080/01431161.2010.490569]
Heidinger A K, Laszlo I, Molling C C and Tarpley D. 2013. Using SURFRAD to verify the NOAA single-channel land surface temperature algorithm. Journal of Atmospheric and Oceanic Technology, 30(12): 2868-2884 [DOI: 10.1175/jtech-d-13-00051.1http://dx.doi.org/10.1175/jtech-d-13-00051.1]
Hook S J, Cawse-Nicholson K, Barsi J, Radocinski R, Hulley G C, Johnson W R, Rivera G and Markham B. 2020. In-flight validation of the ECOSTRESS, Landsats 7 and 8 thermal infrared spectral channels using the Lake Tahoe CA/NV and Salton Sea CA automated validation sites. IEEE Transactions on Geoscience and Remote Sensing, 58(2): 1294-1302 [DOI: 10.1109/TGRS.2019.2945701http://dx.doi.org/10.1109/TGRS.2019.2945701]
Hook S J, Chander G, Barsi J A, Alley R E, Abtahi A, Palluconi F D, Markham B L, Richards R C, Schladow S G and Helder D L. 2004. In-flight validation and recovery of water surface temperature with Landsat-5 thermal infrared data using an automated high-altitude lake validation site at Lake Tahoe. IEEE Transactions on Geoscience and Remote Sensing, 42(12): 2767-2776 [DOI: 10.1109/TGRS.2004.839092http://dx.doi.org/10.1109/TGRS.2004.839092]
Hook S J, Clodius W B, Balick L, Alley R E, Abtahi A, Richards R C and Schladow S G. 2005. In-flight validation of mid- and thermal infrared data from the Multispectral Thermal Imager (MTI) using an automated high-altitude validation site at Lake Tahoe CA/NV, USA. IEEE Transactions on Geoscience and Remote Sensing, 43(9): 1991-1999 [DOI: 10.1109/TGRS.2005.853191http://dx.doi.org/10.1109/TGRS.2005.853191]
Hook S J and Kahle A B. 1996. The micro fourier transform interferometer (μFTIR) — A new field spectrometer for acquisition of infrared data of natural surfaces. Remote Sensing of Environment, 56(3): 172-181 [DOI: 10.1016/0034-4257(95)00231-6http://dx.doi.org/10.1016/0034-4257(95)00231-6]
Hook S J, Vaughan R G, Tonooka H and Schladow S G. 2007. Absolute radiometric in-flight validation of mid infrared and thermal infrared data from ASTER and MODIS on the terra spacecraft using the Lake Tahoe, CA/NV, USA, automated validation site. IEEE Transactions on Geoscience and Remote Sensing, 45(6): 1798-1807 [DOI: 10.1109/TGRS.2007.894564http://dx.doi.org/10.1109/TGRS.2007.894564]
Hu M G, Wang J H, Ge Y, Liu M X, Liu S M, Xu Z W and Xu T R. 2015. Scaling flux tower observations of sensible heat flux using weighted area-to-area regression Kriging. Atmosphere, 6(8): 1032-1044 [DOI: 10.3390/atmos6081032http://dx.doi.org/10.3390/atmos6081032]
Hulley G C and Ghent D. 2019. Taking the Temperature of the Earth: Steps towards Integrated Understanding of Variability and Change. [s.l.]: Elsevier [DOI: 10.1016/C2017-0-01600-2http://dx.doi.org/10.1016/C2017-0-01600-2]
Hulley G C, Ghent D, Göttsche F M, Guillevic P C, Mildrexler D J and Coll C. 2019. Land surface temperature/ (/Hulley G C and Ghent D, eds. Taking the Temperature of the Earth: Steps towards Integrated Understanding of Variability and Change. [s.l.]: Elsevier: 57-127) [DOI: 10.1016/B978-0-12-814458-9.00003-4]
Hulley G C, Göttsche F M, Rivera G, Hook S J, Freepartner R J, Martin M A, Cawse-Nicholson K and Johnson W R. 2021. Validation and quality assessment of the ECOSTRESS Level-2 land surface temperature and emissivity product. IEEE Transactions on Geoscience and Remote Sensing, 1-23 [DOI: 10.1109/TGRS.2021.3079879http://dx.doi.org/10.1109/TGRS.2021.3079879]
Hulley G C and Hook S J. 2009. The North American ASTER land surface emissivity database (NAALSED) Version 2.0. Remote Sensing of Environment, 113(9): 1967-1975 [DOI: 10.1016/j.rse.2009.05.005http://dx.doi.org/10.1016/j.rse.2009.05.005]
Hulley G C and Hook S J. 2011. Generating consistent land surface temperature and emissivity products between ASTER and MODIS data for earth science research. IEEE Transactions on Geoscience and Remote Sensing, 49(4): 1304-1315 [DOI: 10.1109/tgrs.2010.2063034http://dx.doi.org/10.1109/tgrs.2010.2063034]
Hulley G C, Hook S J and Baldridge A M. 2009. Validation of the North American ASTER Land Surface Emissivity Database (NAALSED) version 2.0 using pseudo-invariant sand dune sites. Remote Sensing of Environment, 113(10): 2224-2233 [DOI: 10.1016/j.rse.2009.06.005http://dx.doi.org/10.1016/j.rse.2009.06.005]
Hulley G C, Hughes C G and Hook S J. 2012. Quantifying uncertainties in land surface temperature and emissivity retrievals from ASTER and MODIS thermal infrared data. Journal of Geophysical Research: Atmospheres, 117(D23) [DOI: 10.1029/2012JD018506]
Hulley G C, Malakar N and Freepartner R. 2016. Moderate Resolution Imaging Spectroradiometer (MODIS) land surface temperature and emissivity product (MxD21) algorithm theoretical basis document collection-6[EB/OL].JPL Publication 12-17. [2021-05-20].https://lpdaac.usgs.gov/documents/107/MOD21_ATBD.pdfhttps://lpdaac.usgs.gov/documents/107/MOD21_ATBD.pdf
Islam T, Hulley G C, Malakar N K, Radocinski R G, Guillevic P C and Hook S J. 2017. A physics-based algorithm for the simultaneous retrieval of land surface temperature and emissivity from VIIRS thermal infrared data. IEEE Transactions on Geoscience and Remote Sensing, 55(1): 563-576 [DOI: 10.1109/TGRS.2016.2611566http://dx.doi.org/10.1109/TGRS.2016.2611566]
Jiménez C, Prigent C, Catherinot J, Rossow W, Liang P and Moncet J L. 2012. A comparison of ISCCP land surface temperature with other satellite and in situ observations. Journal of Geophysical Research: Atmospheres, 117(D8): D08111 [DOI: 10.1029/2011jd017058http://dx.doi.org/10.1029/2011jd017058]
Jiménez-Muñoz J C and Sobrino J A. 2003. A generalized single-channel method for retrieving land surface temperature from remote sensing data. Journal of Geophysical Research: Atmospheres, 108(D22): 4688 [DOI: 10.1029/2003jd003480http://dx.doi.org/10.1029/2003jd003480]
Jin M L and Liang S L. 2006. An improved land surface emissivity parameter for land surface models using global remote sensing observations. Journal of Climate, 19(12): 2867-2881 [DOI: 10.1175/JCLI3720.1http://dx.doi.org/10.1175/JCLI3720.1]
Jin R, Li X, Ma M G, Ge Y, Liu S M, Xiao Q, Wen J G, Zhao K, Xin X P, Ran Y H, Liu Q H and Zhang R H. 2017. Key methods and experiment verification for the validation of quantitative remote sensing products. Advances in Earth Science, 32(6): 630-642
晋锐, 李新, 马明国, 葛咏, 刘绍民, 肖青, 闻建光, 赵凯, 辛晓平, 冉有华, 柳钦火, 张仁华. 2017. 陆地定量遥感产品的真实性检验关键技术与试验验证. 地球科学进展, 32(6): 630-642 [DOI: 10.11867/j.issn.1001-8166.2017.06.0630http://dx.doi.org/10.11867/j.issn.1001-8166.2017.06.0630]
Kahle A B, Madura D P and Soha J M. 1980. Middle infrared multispectral aircraft scanner data: analysis for geological applications. Applied Optics, 19(14): 2279-2290 [DOI: 10.1364/AO.19.002279http://dx.doi.org/10.1364/AO.19.002279]
Kang J, Jin R and Li X. 2015. Regression Kriging-based upscaling of soil moisture measurements from a wireless sensor network and multiresource remote sensing information over heterogeneous cropland. IEEE Geoscience and Remote Sensing Letters, 12(1): 92-96 [DOI: 10.1109/LGRS.2014.2326775http://dx.doi.org/10.1109/LGRS.2014.2326775]
Kang J, Jin R, Li X and Zhang Y. 2017. Block Kriging with measurement errors: a case study of the spatial prediction of soil moisture in the middle reaches of Heihe River Basin. IEEE Geoscience and Remote Sensing Letters, 14(1): 87-91 [DOI: 10.1109/LGRS.2016.2628767http://dx.doi.org/10.1109/LGRS.2016.2628767]
Kondratyev K Y. 1969. Radiation in the Atmosphere. London: Academic Press
Korb A R, Salisbury J W and D’Aria D M. 1999. Thermal-infrared remote sensing and Kirchhoff’s law: 2. Field measurements. Journal of Geophysical Research: Solid Earth, 104(B7): 15339-15350 [DOI: 10.1029/97jb03537http://dx.doi.org/10.1029/97jb03537]
Krishnan P, Kochendorfer J, Dumas E J, Guillevic P C, Baker C B, Meyers T P and Martos B. 2015. Comparison of in-situ, aircraft, and satellite land surface temperature measurements over a NOAA Climate Reference Network site. Remote Sensing of Environment, 165: 249-264 [DOI: 10.1016/j.rse.2015.05.011http://dx.doi.org/10.1016/j.rse.2015.05.011]
Krishnan P, Meyers T P, Hook S J, Heuer M, Senn D and Dumas E J. 2020. Intercomparison of in situ sensors for ground-based land surface temperature measurements. Sensors, 20(18): 5268 [DOI: 10.3390/s20185268http://dx.doi.org/10.3390/s20185268]
Kuenzer C and Dech S. 2013. Thermal Infrared Remote Sensing. Dordrecht: Springer [DOI: 10.1007/978-94-007-6639-6http://dx.doi.org/10.1007/978-94-007-6639-6]
Lan X Y, Zhao E Y, Leng P, Li Z L, Labed J, Nerry F, Zhang X and Shang G F. 2021. Alternative Physical method for retrieving land surface temperatures from hyperspectral thermal infrared data: application to IASI observations. IEEE Transactions on Geoscience and Remote Sensing, 1-12 [DOI: 10.1109/TGRS.2021.3056103http://dx.doi.org/10.1109/TGRS.2021.3056103]
Langsdale M F, Dowling T P, Wooster M, Johnson J, Grosvenor M J, de Jong M C, Johnson W R, Hook S J and Rivera G. 2020a. Inter-comparison of field- and laboratory-derived surface emissivities of natural and manmade materials in support of land surface temperature (LST) remote sensing. Remote Sensing, 12(24): 4127 [DOI: 10.3390/rs12244127http://dx.doi.org/10.3390/rs12244127]
Langsdale M F, Wooster M, Harrison J J, Koehl M, Hecker C, Hook S J, Abbott E, Johnson W R, Maturilli A, Poutier L, Lau I C and Brucker F. 2020b. Spectral Emissivity (SE) measurement uncertainties across 2.5—14 μm derived from a round-robin study made across international laboratories. Remote Sensing, 13(1): 102 [DOI: 10.3390/rs13010102http://dx.doi.org/10.3390/rs13010102]
Le Page M and Zribi M. 2019. Analysis and predictability of drought in northwest Africa using optical and microwave satellite remote sensing products. Scientific Reports, 9(1): 1466 [DOI: 10.1038/s41598-018-37911-xhttp://dx.doi.org/10.1038/s41598-018-37911-x]
Legrand M, Pietras C, Brogniez G, Haeffelin M, Abuhassan N K and Sicard M. 2000. A high-accuracy multiwavelength radiometer for in situ measurements in the thermal infrared. Part I: characterization of the instrument. Journal of Atmospheric and Oceanic Technology, 17(9): 1203-1214 [DOI: 10.1175/1520-0426(2000)017<1203:ahamrf>2.0.co;2http://dx.doi.org/10.1175/1520-0426(2000)017<1203:ahamrf>2.0.co;2]
Li H, Li R B, Yang Y K, Cao B, Bian Z J, Hu T, Du Y M, Sun L and Liu Q H. 2021. Temperature-based and radiance-based validation of the collection 6 MYD11 and MYD21 land surface temperature products over barren surfaces in northwestern China. IEEE Transactions on Geoscience and Remote Sensing, 59(2): 1794-1807 [DOI: 10.1109/TGRS.2020.2998945http://dx.doi.org/10.1109/TGRS.2020.2998945]
Li H, Sun D L, Yu Y Y, Wang H Y, Liu Y L, Liu Q H, Du Y M, Wang H S and Cao B. 2014a. Evaluation of the VIIRS and MODIS LST products in an arid area of Northwest China. Remote Sensing of Environment, 142: 111-121 [DOI: 10.1016/j.rse.2013.11.014http://dx.doi.org/10.1016/j.rse.2013.11.014]
Li J, Li J L, Weisz E and Zhou D K. 2007. Physical retrieval of surface emissivity spectrum from hyperspectral infrared radiances. Geophysical Research Letters, 34(16): L16812 [DOI: 10.1029/2007GL030543http://dx.doi.org/10.1029/2007GL030543]
Li J, Wu H and Li Z L. 2020. An optimal sampling method for multi-temporal land surface temperature validation over heterogeneous surfaces. ISPRS Journal of Photogrammetry and Remote Sensing, 169: 29-43 [DOI: 10.1016/j.isprsjprs.2020.08.024http://dx.doi.org/10.1016/j.isprsjprs.2020.08.024]
Li S S and Jiang G M. 2018. Land surface temperature retrieval from Landsat-8 data with the generalized split-window algorithm. IEEE Access, 6: 18149-18162 [DOI: 10.1109/ACCESS.2018.2818741http://dx.doi.org/10.1109/ACCESS.2018.2818741]
Li S M, Yu Y Y, Sun D L, Tarpley D, Zhan X W and Chiu L. 2014b. Evaluation of 10 year AQUA/MODIS land surface temperature with SURFRAD observations. International Journal of Remote Sensing, 35(3): 830-856 [DOI: 10.1080/01431161.2013.873149http://dx.doi.org/10.1080/01431161.2013.873149]
Li X, Cheng G D, Liu S M, Xiao Q, Ma M G, Jin R, Che T, Liu Q H, Wang W Z, Qi Y, Wen J G, Li H Y, Zhu G F, Guo J W, Ran Y H, Wang S G, Zhu Z L, Zhou J, Hu X L and Xu Z W. 2013c. Heihe watershed allied telemetry experimental research (HiWATER): scientific objectives and experimental design. Bulletin of the American Meteorological Society, 94(8): 1145-1160 [DOI: 10.1175/BAMS-D-12-00154.1http://dx.doi.org/10.1175/BAMS-D-12-00154.1]
Li X, Jin R, Liu S M, Ge Y, Xiao Q, Liu Q H, Ma M G and Ran Y H. 2016. Upscaling research in HiWATER: Progress and prospects. Journal of Remote Sensing, 20(5): 921-932
李新, 晋锐, 刘绍民, 葛咏, 肖青, 柳钦火, 马明国, 冉有华. 2016. 黑河遥感试验中尺度上推研究的进展与前瞻. 遥感学报, 20(5): 921-932 [DOI: 10.11834/jrs.20166241http://dx.doi.org/10.11834/jrs.20166241]
Li X, Liu S M, Li H X, Ma Y F, Wang J H, Zhang Y, Xu Z W, Xu T R, Song L S, Yang X F, Lu Z, Wang Z Y and Guo Z X. 2018. Intercomparison of six Upscaling evapotranspiration methods: from site to the satellite pixel. Journal of Geophysical Research: Atmospheres, 123(13): 6777-6803 [DOI: 10.1029/2018JD028422http://dx.doi.org/10.1029/2018JD028422]
Li X W and Wang J D. 1999. The definition of effective emissivity of land surface at the scale of remote sensing pixels. Chinese Science Bulletin, 44(23): 2154-2158 [DOI: 10.1007/BF03182699http://dx.doi.org/10.1007/BF03182699]
Li X W and Wang J D. 1999. The definition of effective emissivity of land surface at the scale of remote sensing pixels. Chinese Science Bulletin, 44(23): 2154-2158
李小文, 王锦地. 1999. 地表非同温象元发射率的定义问题. 科学通报, 44(15): 1612-1617 [DOI: 10.1360/csb1999-44-15-1612http://dx.doi.org/10.1360/csb1999-44-15-1612]
Li X W, Wang J D and Strahler A H. 1999. Scale effect of Planck’s law over nonisothermal blackbody surface. Science in China Series E: Technological Sciences, 42(6): 652-656
李小文, 王锦地, Strahler A H. 1999. 非同温黑体表面上Planck定律的尺度效应. 中国科学E辑: 技术科学, 29(5): 422-426 [DOI: 10.3969/j.issn.1674-7259.1999.05.007http://dx.doi.org/10.3969/j.issn.1674-7259.1999.05.007]
Li Z L, Tang B H, Wu H, Ren H Z, Yan G J, Wan Z M, Trigo I F, and Sobrino J A. 2013a. Satellite-derived land surface temperature: current status and perspectives. Remote Sensing of Environment, 131: 14-37 [DOI: 10.1016/j.rse.2012.12.008http://dx.doi.org/10.1016/j.rse.2012.12.008]
Li Z L, Wu H, Wang N, Qiu S, Sobrino J A, Wan Z M, Tang B H and Yan G J. 2013b. Land surface emissivity retrieval from satellite data. International Journal of Remote Sensing, 34(9/10): 3084-3127 [DOI: 10.1080/01431161.2012.716540http://dx.doi.org/10.1080/01431161.2012.716540]
Lin Y P, Chu H J, Wang C L, Yu H H and Wang Y C. 2009. Remote sensing data with the conditional latin hypercube sampling and geostatistical approach to delineate landscape changes induced by large chronological physical disturbances. Sensors, 9(1): 148-174 [DOI: 10.3390/s90100148http://dx.doi.org/10.3390/s90100148]
Liu S M, Xu Z W, Song L S, Zhao Q Y, Ge Y, Xu T R, Ma Y F, Zhu Z L, Jia Z Z and Zhang F. 2016. Upscaling evapotranspiration measurements from multi-site to the satellite pixel scale over heterogeneous land surfaces. Agricultural and Forest Meteorology, 230-231: 97-113 [DOI: 10.1016/j.agrformet.2016.04.008http://dx.doi.org/10.1016/j.agrformet.2016.04.008]
Liu Y L, Yu Y Y, Yu P, Göttsche F M and Trigo I F. 2015. Quality assessment of S-NPP VIIRS land surface temperature product. Remote Sensing, 7(9): 12215-12241 [DOI: 10.3390/rs70912215http://dx.doi.org/10.3390/rs70912215]
Loveless M, Borbas E E, Knuteson R, Cawse-Nicholson K, Hulley G and Hook S. 2021. Climatology of the combined ASTER MODIS emissivity over land (CAMEL) Version 2. Remote Sensing, 13(1): 111 [DOI: 10.3390/rs13010111http://dx.doi.org/10.3390/rs13010111]
Luan H J, Tian Q J, Yu T, Hu X L, Huang Y, Liu L, Du L T and Wei X. 2013. Review of up-scaling of quantitative remote sensing. Advances in Earth Science, 28(6): 657-664
栾海军, 田庆久, 余涛, 胡新礼, 黄彦, 刘李, 杜灵通, 魏曦. 2013. 定量遥感升尺度转换研究综述. 地球科学进展, 28(6): 657-664
Luan H J, Tian Q J, Zhang X X, Nie Q and Zhu X L. 2018. Trends on scaling research for land surface parameters in quantitative remote sensing. Advances in Earth Science, 33(5): 483-492
栾海军, 田庆久, 章欣欣, 聂芹, 朱晓玲. 2018. 定量遥感地表参数尺度转换研究趋势探讨. 地球科学进展, 33(5): 483-492 [DOI: 10.11867/j.issn.1001-8166.2018.05.0483http://dx.doi.org/10.11867/j.issn.1001-8166.2018.05.0483]
Ma J, Zhou J, Liu S M and Wang Y J. 2017. Review on validation of remotely sensed land surface temperature. Advances in Earth Science, 32(6): 615-629
马晋, 周纪, 刘绍民, 王钰佳. 2017. 卫星遥感地表温度的真实性检验研究进展. 地球科学进展, 32(6): 615-629 [DOI: 10.11867/j.issn.1001-8166.2017.06.0615http://dx.doi.org/10.11867/j.issn.1001-8166.2017.06.0615]
Malakar N K and Hulley G C. 2016. A water vapor scaling model for improved land surface temperature and emissivity separation of MODIS thermal infrared data. Remote Sensing of Environment, 182: 252-264 [DOI: 10.1016/j.rse.2016.04.023http://dx.doi.org/10.1016/j.rse.2016.04.023]
Malakar N K, Hulley G C, Hook S J, Laraby K, Cook M andSchott J R. 2018. An operational land surface temperature product for Landsat thermal data: methodology and validation. IEEE Transactions on Geoscience and Remote Sensing, 56(10): 5717-5735 [DOI: 10.1109/TGRS.2018.2824828http://dx.doi.org/10.1109/TGRS.2018.2824828]
Martin M A, Ghent D, Pires A C, Göttsche F M, Cermak J and Remedios J J. 2019. Comprehensive in situ validation of five satellite land surface temperature data sets over multiple stations and years. Remote Sensing, 11(5): 479 [DOI: 10.3390/rs11050479http://dx.doi.org/10.3390/rs11050479]
Mas J F and Flores J J. 2008. The application of artificial neural networks to the analysis of remotely sensed data. International Journal of Remote Sensing, 29(3): 617-663 [DOI: 10.1080/01431160701352154http://dx.doi.org/10.1080/01431160701352154]
Masiello G, Serio C, Venafra S, Poutier L and Göttsche F M. 2019. SEVIRI hyper-fast forward model with application to emissivity retrieval. Sensors, 19(7): 1532 [DOI: 10.3390/s19071532http://dx.doi.org/10.3390/s19071532]
Meerdink S K, Hook S J, Roberts D A and Abbott E A. 2019. The ECOSTRESS spectral library version 1.0. Remote Sensing of Environment, 230: 111196 [DOI: 10.1016/j.rse.2019.05.015http://dx.doi.org/10.1016/j.rse.2019.05.015]
Meng X C, Cheng J and Liang S L. 2017. Estimating land surface temperature from Feng Yun-3C/MERSI data using a new land surface emissivity scheme. Remote Sensing, 9(12): 1247 [DOI: 10.3390/rs9121247http://dx.doi.org/10.3390/rs9121247]
Meng X C, Cheng J, Zhao S H, Liu S H and Yao Y J. 2019. Estimating land surface temperature from Landsat-8 Data using the NOAA JPSS enterprise algorithm. Remote Sensing, 11(2): 155 [DOI: 10.3390/rs11020155http://dx.doi.org/10.3390/rs11020155]
Merchant C J, Matthiesen S, Rayner N A, Remedios J J, Jones P D, Olesen F, Trewin B, Thorne P W, Auchmann R, Corlett G K, Guillevic P C and Hulley G C. 2013. The surface temperatures of Earth: steps towards integrated understanding of variability and change. Geoscientific Instrumentation, Methods and Data Systems, 2(2): 305-321 [DOI: 10.5194/gi-2-305-2013http://dx.doi.org/10.5194/gi-2-305-2013]
Mildrexler D J, Zhao M S and Running S W. 2011. A global comparison between station air temperatures and MODIS land surface temperatures reveals the cooling role of forests. Journal of Geophysical Research: Biogeosciences, 116(G3): G03025 [DOI: 10.1029/2010jg001486http://dx.doi.org/10.1029/2010jg001486]
Miller J, Gerace A, Eon R, Montanaro M, Kremens R and Wehle J. 2020. Low-cost radiometer for landsat land surface temperature validation. Remote Sensing, 12(3): 416 [DOI: 10.3390/rs12030416http://dx.doi.org/10.3390/rs12030416]
Minasny B and McBratney A B. 2006. A conditioned Latin hypercube method for sampling in the presence of ancillary information. Computers and Geosciences, 32(9): 1378-1388 [DOI: 10.1016/j.cageo.2005.12.009http://dx.doi.org/10.1016/j.cageo.2005.12.009]
Mira M, Schmugge T J, Valor E, Caselles V and Coll C. 2009. Comparison of thermal infrared emissivities retrieved with the two-lid box and the TES methods with laboratory spectra. IEEE Transactions on Geoscience and Remote Sensing, 47(4): 1012-1021 [DOI: 10.1109/tgrs.2008.2008901http://dx.doi.org/10.1109/tgrs.2008.2008901]
Mittaz J, Merchant C J and Woolliams E R. 2019. Applying principles of metrology to historical Earth observations from satellites. Metrologia, 56(3): 032002 [DOI: 10.1088/1681-7575/ab1705http://dx.doi.org/10.1088/1681-7575/ab1705]
Mohamadi B, Chen S S, Balz T, Gulshad K and McClure S C. 2019. Normalized method for land surface temperature monitoring on coastal reclaimed areas. Sensors, 19(22): 4836 [DOI: 10.3390/s19224836http://dx.doi.org/10.3390/s19224836]
Mokhtari A, Noory H, Pourshakouri F, Haghighatmehr P, Afrasiabian Y, Razavi M, Fereydooni F and Naeni A S. 2019. Calculating potential evapotranspiration and single crop coefficient based on energy balance equation using Landsat 8 and Sentinel-2. ISPRS Journal of Photogrammetry and Remote Sensing, 154: 231-245 [DOI: 10.1016/j.isprsjprs.2019.06.011http://dx.doi.org/10.1016/j.isprsjprs.2019.06.011]
Mulder V L, de Bruin S and Schaepman M E. 2013. Representing major soil variability at regional scale by constrained Latin Hypercube Sampling of remote sensing data. International Journal of Applied Earth Observation and Geoinformation, 21: 301-310 [DOI: 10.1016/j.jag.2012.07.004http://dx.doi.org/10.1016/j.jag.2012.07.004]
Mushkin A, Gillespie A R, Abbott E A, Batbaatar J, Hulley G, Tan H, Tratt D M and Buckland K N. 2020. Validation of ASTER emissivity retrieval using the Mako airborne TIR imaging spectrometer at the algodones dune field in Southern California, USA. Remote Sensing, 12(5): 815 [DOI: 10.3390/rs12050815http://dx.doi.org/10.3390/rs12050815]
Ndossi M I and Avdan U. 2016. Inversion of land surface temperature (LST) using terra ASTER data: a comparison of three algorithms. Remote Sensing, 8(12): 993 [DOI: 10.3390/rs8120993http://dx.doi.org/10.3390/rs8120993]
Nerry F, Labed J and Stoll M P. 1988. Emissivity signatures in the thermal IR band for remote sensing: calibration procedure and method of measurement. Applied Optics, 27(4): 758-764 [DOI: 10.1364/ao.27.000758http://dx.doi.org/10.1364/ao.27.000758]
Nerry F, Labed J and Stoll M P. 1990. Spectral properties of land surfaces in the thermal infrared: 2. Field method for spectrally averaged emissivity measurements. Journal of Geophysical Research: Solid Earth, 95(B5): 7045-7054 [DOI: 10.1029/jb095ib05p07045http://dx.doi.org/10.1029/jb095ib05p07045]
Niclòs R, Pérez-Planells L, Coll C, Valiente J A and Valor E. 2018. Evaluation of the S-NPP VIIRS land surface temperature product using ground data acquired by an autonomous system at a rice paddy. ISPRS Journal of Photogrammetry and Remote Sensing, 135: 1-12 [DOI: 10.1016/j.isprsjprs.2017.10.017http://dx.doi.org/10.1016/j.isprsjprs.2017.10.017]
Niclòs R, Puchades J, Coll C, Barberà M J, Pérez-Planells L, Valiente J A and Sánchez J M. 2021. Evaluation of Landsat-8 TIRS data recalibrations and land surface temperature split-window algorithms over a homogeneous crop area with different phenological land covers. ISPRS Journal of Photogrammetry and Remote Sensing, 174: 237-253 [DOI: 10.1016/j.isprsjprs.2021.02.005http://dx.doi.org/10.1016/j.isprsjprs.2021.02.005]
Niclòs R, Valiente J A, Barberà M J and Coll C. 2015. An autonomous system to take angular thermal-infrared measurements for validating satellite products. Remote Sensing, 7(11): 15269-15294 [DOI: 10.3390/rs71115269http://dx.doi.org/10.3390/rs71115269]
Nie J, Ren H Z, Zheng Y T, Ghent D and Tansey K. 2021. Land surface temperature and emissivity retrieval from nighttime middle-infrared and thermal-infrared Sentinel-3 images. IEEE Geoscience and Remote Sensing Letters, 18(5): 915-919 [DOI: 10.1109/lgrs.2020.2986326http://dx.doi.org/10.1109/lgrs.2020.2986326]
Norman J M and Becker F. 1995. Terminology in thermal infrared remote sensing of natural surfaces. Agricultural and Forest Meteorology, 77(3/4): 153-166 [DOI: 10.1016/0168-1923(95)02259-zhttp://dx.doi.org/10.1016/0168-1923(95)02259-z]
Ogawa K, Schmugge T and Rokugawa S. 2008. Estimating broadband emissivity of arid regions and its seasonal variations using thermal infrared remote sensing. IEEE Transactions on Geoscience and Remote Sensing, 46(2): 334-343 [DOI: 10.1109/TGRS.2007.913213http://dx.doi.org/10.1109/TGRS.2007.913213]
Peng W F, Zhou J M, Wen L J, Xue S and Dong L J. 2017. Land surface temperature and its impact factors in Western Sichuan Plateau, China. Geocarto International, 32(8): 919-934 [DOI: 10.1080/10106049.2016.1188167http://dx.doi.org/10.1080/10106049.2016.1188167]
Peng Z X, Zhou J and Li M S. 2016. Review of methods for simulating land surface temperature at the pixel scale based on ground measurements over heterogeneous surface. Advances in Earth Science, 31(5): 471-480
彭志兴, 周纪, 李明松. 2016. 基于地面观测的异质性下垫面像元尺度地表温度模拟研究进展. 地球科学进展, 31(5): 471-480 [DOI: 10.11867/j.issn.1001-8166.2016.05.0471http://dx.doi.org/10.11867/j.issn.1001-8166.2016.05.0471]
Peres L F and DaCamara C C. 2004. Land surface temperature and emissivity estimation based on the two-temperature method: sensitivity analysis using simulated MSG/SEVIRI data. Remote Sensing of Environment, 91(3/4): 377-389 [DOI: 10.1016/j.rse.2004.03.011http://dx.doi.org/10.1016/j.rse.2004.03.011]
Pinheiro A C T, Privette J L and Guillevic P. 2006. Modeling the observed angular anisotropy of land surface temperature in a Savanna. IEEE Transactions on Geoscience and Remote Sensing, 44(4): 1036-1047 [DOI: 10.1109/TGRS.2005.863827http://dx.doi.org/10.1109/TGRS.2005.863827]
Pinker R T, Sun D L, Hung M P, Li C and Basara J B. 2009. Evaluation of satellite estimates of land surface temperature from GOES over the United States. Journal of Applied Meteorology and Climatology, 48(1): 167-180 [DOI: 10.1175/2008jamc1781.1http://dx.doi.org/10.1175/2008jamc1781.1]
Prata A J. 1993. Land surface temperatures derived from the advanced very high resolution radiometer and the along-track scanning radiometer: 1.Theory. Journal of Geophysical Research: Atmospheres, 98(D9): 16689-16702 [DOI: 10.1029/93JD01206http://dx.doi.org/10.1029/93JD01206]
Prata A J, Caselles V, Coll C, Sobrino J A and Ottlé C. 1995. Thermal remote sensing of land surface temperature from satellites: current status and future prospects. Remote Sensing Reviews, 12(3/4): 175-224 [DOI: 10.1080/02757259509532285http://dx.doi.org/10.1080/02757259509532285]
Prata D F. 2003. Land Surface Temperature Measurement from Space: AATSR Algorithm Theoretical Basis Document [EB/OL]. [2021-05-04]https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.142.3562&rep=rep1&type=pdfhttps://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.142.3562&rep=rep1&type=pdf
Qian Y G, Li Z L and Nerry F. 2013. Evaluation of land surface temperature and emissivities retrieved from MSG/SEVIRI data with MODIS land surface temperature and emissivity products. International Journal of Remote Sensing, 34(9/10): 3140-3152 [DOI: 10.1080/01431161.2012.716538http://dx.doi.org/10.1080/01431161.2012.716538]
Qin Z, Berliner P R and Karnieli A. 2005. Ground temperature measurement and emissivity determination to understand the thermal anomaly and its significance on the development of an arid environmental ecosystem in the sand dunes across the Israel–Egypt border. Journal of Arid Environments, 60(1): 27-52 [DOI: 10.1016/j.jaridenv.2004.03.017http://dx.doi.org/10.1016/j.jaridenv.2004.03.017]
Qin Z, Karnieli A and Berliner P. 2001. A mono-window algorithm for retrieving land surface temperature from Landsat TM data and its application to the Israel-Egypt border region. International Journal of Remote Sensing, 22(18): 3719-3746 [DOI: 10.1080/01431160010006971http://dx.doi.org/10.1080/01431160010006971]
Qiu X F, Jia G R, Zhao H J and Zhang C. 2021. Antinoise estimation of temperature and emissivity for FTIR spectrometer data using spectral polishing filters: design and comparison. IEEE Transactions on Geoscience and Remote Sensing, 59(4): 3292-3308 [DOI: 10.1109/TGRS.2020.3008783http://dx.doi.org/10.1109/TGRS.2020.3008783]
Quan J L, Chen Y H, Zhan W F, Wang J F, Voogt J and Li J. 2014. A hybrid method combining neighborhood information from satellite data with modeled diurnal temperature cycles over consecutive days. Remote Sensing of Environment, 155: 257-274 [DOI: 10.1016/j.rse.2014.08.034http://dx.doi.org/10.1016/j.rse.2014.08.034]
Quan J L, Zhan W F, Chen Y H, Wang M J and Wang J F. 2016. Time series decomposition of remotely sensed land surface temperature and investigation of trends and seasonal variations in surface urban heat islands. Journal of Geophysical Research: Atmospheres, 121(6): 2638-2657 [DOI: 10.1002/2015JD024354http://dx.doi.org/10.1002/2015JD024354]
Ren H Z, Liang S L, Yan G J and Cheng J. 2013. Empirical algorithms to map global broadband emissivities over vegetated surfaces. IEEE Transactions on Geoscience and Remote Sensing, 51(5): 2619-2631 [DOI: 10.1109/tgrs.2012.2216887http://dx.doi.org/10.1109/tgrs.2012.2216887]
Ren H Z, Liu R Y, Qin Q M, Fan W J, Yu L and Du C. 2017. Mapping finer-resolution land surface emissivity using Landsat images in China. Journal of Geophysical Research: Atmospheres, 122(13): 6764-6781 [DOI: 10.1002/2017jd026910http://dx.doi.org/10.1002/2017jd026910]
Ren H Z, Liu R Y, Yan G J, Mu X H, Li Z L, Nerry F and Liu Q. 2014. Angular normalization of land surface temperature and emissivity using multiangular middle and thermal infrared data. IEEE Transactions on Geoscience and Remote Sensing, 52(8): 4913-4931 [DOI: 10.1109/tgrs.2013.2285924http://dx.doi.org/10.1109/tgrs.2013.2285924]
Ren H Z, Ye X, Nie J, Meng J J, Fan W J, Qin Q M, Liang Y Z and Liu H C. 2021. Retrieval of land surface temperature, emissivity, and atmospheric parameters from hyperspectral thermal infrared image using a feature-band linear-format hybrid algorithm. IEEE Transactions on Geoscience and Remote Sensing, 1-15 [DOI: 10.1109/tgrs.2020.3047381http://dx.doi.org/10.1109/tgrs.2020.3047381]
Rubio E, Caselles V and Badenas C. 1997. Emissivity measurements of several soils and vegetation types in the 8—14, μm Wave band: analysis of two field methods. Remote Sensing of Environment, 59(3): 490-521 [DOI: 10.1016/S0034-4257(96)00123-Xhttp://dx.doi.org/10.1016/S0034-4257(96)00123-X]
Rubio E, Caselles V, Coll C, Valour E and Sospedra F. 2003. Thermal-infrared emissivities of natural surfaces: improvements on the experimental set-up and new measurements. International Journal of Remote Sensing, 24(24): 5379-5390 [DOI: 10.1080/0143116031000102412http://dx.doi.org/10.1080/0143116031000102412]
Sabol D E, Gillespie A R, Abbott E and Yamada G. 2009. Field validation of the ASTER Temperature-Emissivity Separation algorithm. Remote Sensing of Environment, 113(11): 2328-2344 [DOI: 10.1016/j.rse.2009.06.008http://dx.doi.org/10.1016/j.rse.2009.06.008]
Salisbury J W and D’Aria S D. 1992. Emissivity of terrestrial materials in the 8—14 μm atmospheric window. Remote Sensing of Environment, 42(2): 83-106 [DOI: 10.1016/0034-4257(92)90092-xhttp://dx.doi.org/10.1016/0034-4257(92)90092-x]
Salisbury J W, Wald A and D’Aria D M. 1994. Thermal-infrared remote sensing and Kirchhoff’s law: 1. Laboratory measurements. Journal of Geophysical Research: Solid Earth, 99(B6): 11897-11911 [DOI: 10.1029/93jb03600http://dx.doi.org/10.1029/93jb03600]
Saunders R, Hocking J, Turner E, Rayer P, Rundle D, Brunel P, Vidot J, Roquet P, Matricardi M, Geer A, Bormann N and Lupu C. 2018. An update on the RTTOV fast radiative transfer model (currently at version 12). Geoscientific Model Development, 11(7): 2717-2737 [DOI: 10.5194/gmd-11-2717-2018http://dx.doi.org/10.5194/gmd-11-2717-2018]
Saunders R, Matricardi M and Brunel P. 1999. An improved fast radiative transfer model for assimilation of satellite radiance observations. Quarterly Journal of the Royal Meteorological Society, 125(556): 1407-1425 [DOI: 10.1002/qj.1999.49712555615http://dx.doi.org/10.1002/qj.1999.49712555615]
Schneider P, Ghent D, Corlett G, Prata F and Remedios J. 2012. AATSR Validation: LST Validation Protocol[EB/OL]. [2021-03-08]http://lst.nilu.no/Portals/73/Docs/Reports/UL-NILU-ESA-LST-LVP-Issue1-Rev0-1604212.pdfhttp://lst.nilu.no/Portals/73/Docs/Reports/UL-NILU-ESA-LST-LVP-Issue1-Rev0-1604212.pdf
Sekertekin A and Bonafoni S. 2020a. Land surface temperature retrieval from Landsat 5, 7, and 8 over rural areas: assessment of different retrieval algorithms and emissivity models and toolbox implementation. Remote Sensing, 12(2): 294 [DOI: 10.3390/rs12020294http://dx.doi.org/10.3390/rs12020294]
Sekertekin A and Bonafoni S. 2020b. Sensitivity analysis and validation of daytime and nighttime land surface temperature retrievals from Landsat 8 using different algorithms and emissivity models. Remote Sensing, 12(17): 2776 [DOI: 10.3390/rs12172776http://dx.doi.org/10.3390/rs12172776]
Seybold M. 2016. GEOS-R Series: Advanced Baseline Imager (ABI) L2+ Land Surface Temperature (LST) Beta, Provisional, and Full Validation Readiness, Implementation, and Management Plan (RIMP). GOES-R Ground Segment[EB/OL]. [2021-04-18]https://www.goes-r.gov/products/RIMPs/RIMP_ABI-L2_LST_v.1.0.pdfhttps://www.goes-r.gov/products/RIMPs/RIMP_ABI-L2_LST_v.1.0.pdf
Silvestri M, Romaniello V, Hook S, Musacchio M, Teggi S and Buongiorno M F. 2020. First comparisons of surface temperature estimations between ECOSTRESS, ASTER and Landsat 8 over Italian volcanic and geothermal areas. Remote Sensing, 12(1): 184 [DOI: 10.3390/rs12010184http://dx.doi.org/10.3390/rs12010184]
Simó G, García-Santos V, Jiménez M A, Martínez-Villagrasa D, Picos R, Caselles V and Cuxart J. 2016. Landsat and local land surface temperatures in a heterogeneous terrain compared to MODIS values. Remote Sensing, 8(10): 849 [DOI: 10.3390/rs8100849http://dx.doi.org/10.3390/rs8100849]
Snyder W C, Wan Z, Zhang Y and Feng Y Z. 1998. Classification-based emissivity for land surface temperature measurement from space. International Journal of Remote Sensing, 19(14): 2753-2774 [DOI: 10.1080/014311698214497http://dx.doi.org/10.1080/014311698214497]
Snyder W C, Wan Z M, Zhang Y L and Feng Y Z. 1997. Requirements for satellite land surface temperature validation using a silt playa. Remote Sensing of Environment, 61(2): 279-289 [DOI: 10.1016/S0034-4257(97)00044-8http://dx.doi.org/10.1016/S0034-4257(97)00044-8]
Sobrino J A, Jiménez-Muñoz J C, Soria G, Romaguera M, Guanter L, Moreno J, Plaza A and Martinez P. 2008. Land surface emissivity retrieval from different VNIR and TIR sensors. IEEE Transactions on Geoscience and Remote Sensing, 46(2): 316-327 [DOI: 10.1109/tgrs.2007.904834http://dx.doi.org/10.1109/tgrs.2007.904834]
Sobrino J A, Raissouni N and Li Z L. 2001. A comparative study of land surface emissivity retrieval from NOAA data. Remote Sensing of Environment, 75(2): 256-266 [DOI: 10.1016/S0034-4257(00)00171-1http://dx.doi.org/10.1016/S0034-4257(00)00171-1]
Sobrino J A, Sòria G and Prata A J. 2004. Surface temperature retrieval from Along Track Scanning Radiometer 2 data: algorithms and validation. Journal of Geophysical Research: Atmospheres, 109(D11): D11101 [DOI: 10.1029/2003JD004212http://dx.doi.org/10.1029/2003JD004212]
Srivastava P K, Majumdar T J and Bhattacharya A K. 2009. Surface temperature estimation in Singhbhum Shear Zone of India using Landsat-7 ETM+ thermal infrared data. Advances in Space Research, 43(10): 1563-1574 [DOI: 10.1016/j.asr.2009.01.023http://dx.doi.org/10.1016/j.asr.2009.01.023]
Tang B H. 2018. Nonlinear split-window algorithms for estimating land and sea surface temperatures from simulated Chinese Gaofen-5 satellite data. IEEE Transactions on Geoscience and Remote Sensing, 56(11): 6280-6289 [DOI: 10.1109/TGRS.2018.2833859http://dx.doi.org/10.1109/TGRS.2018.2833859]
Tang B H, Shao K, Li Z L, Wu H, Nerry F and Zhou G Q. 2015. Estimation and validation of land surface temperatures from Chinese second-generation Polar-Orbit FY-3A VIRR data. Remote Sensing, 7(3): 3250-3273 [DOI: 10.3390/rs70303250http://dx.doi.org/10.3390/rs70303250]
Townshend J R G, Justice C O, Skole D, Malingreau J P, Cihlar J, Teillet P, Sadowski F andRuttenberg S. 1994. The 1 km resolution global data set: needs of the International Geosphere Biosphere Programme. International Journal of Remote Sensing, 15(17): 3417-3441 [DOI: 10.1080/01431169408954338http://dx.doi.org/10.1080/01431169408954338]
Trigo I F, Boussetta S, Viterbo P, Balsamo G, Beljaars A and Sandu I. 2015. Comparison of model land skin temperature with remotely sensed estimates and assessment of surface-atmosphere coupling. Journal of Geophysical Research: Atmospheres, 120(23): 12096-12111 [DOI: 10.1002/2015JD023812http://dx.doi.org/10.1002/2015JD023812]
Trigo I F, Ermida S L, Martins J P A, Gouveia C M, Göttsche F M and Freitas S C. 2021. Validation and consistency assessment of land surface temperature from geostationary and polar orbit platforms: SEVIRI/MSG and AVHRR/Metop. ISPRS Journal of Photogrammetry and Remote Sensing, 175: 282-297 [DOI: 10.1016/j.isprsjprs.2021.03.013http://dx.doi.org/10.1016/j.isprsjprs.2021.03.013]
Trigo I F, Monteiro I T, Olesen F and Kabsch E. 2008. An assessment of remotely sensed land surface temperature. Journal of Geophysical Research: Atmospheres, 113(D17): D17108 [DOI: 10.1029/2008jd010035http://dx.doi.org/10.1029/2008jd010035]
Urban M, Eberle J, Hüttich C, Schmullius C and Herold M. 2013. Comparison of satellite-derived land surface temperature and air temperature from meteorological stations on the pan-arctic scale. Remote Sensing, 5(5): 2348-2367 [DOI: 10.3390/rs5052348http://dx.doi.org/10.3390/rs5052348]
Valor E, Sánchez J M, Niclòs R, Moya R, Barberà M J, Caselles V and Coll C. 2018. Comparison of in situ land surface temperatures measured with radiometers and pyrgeometers: consequences for calibration and validation of thermal infrared sensors//IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium. Valencia, Spain: IEEE: 7961-7964 [DOI: 10.1109/IGARSS.2018.8518136http://dx.doi.org/10.1109/IGARSS.2018.8518136]
Van de Griend A A, Owe M, Groen M and Stoll M P. 1991. Measurement and spatial variation of thermal infrared surface emissivity in a savanna environment. Water Resources Research, 27(3): 371-379 [DOI: 10.1029/90wr02616http://dx.doi.org/10.1029/90wr02616]
Vanhellemont Q. 2020. Combined land surface emissivity and temperature estimation from Landsat 8 OLI and TIRS. ISPRS Journal of Photogrammetry and Remote Sensing, 166: 390-402 [DOI: 10.1016/j.isprsjprs.2020.06.007http://dx.doi.org/10.1016/j.isprsjprs.2020.06.007]
Wan Z M. 1999. MODIS land-surface temperature algorithm theoretical basis document (LST ATBD)[EB/OL].Santa Barbara: Institute for Computational Earth System Science, University of California. [2020-11-23]https://modis.gsfc.nasa.gov/data/atbd/atbd_mod11.pdfhttps://modis.gsfc.nasa.gov/data/atbd/atbd_mod11.pdf
Wan Z M. 2014. New refinements and validation of the collection-6 MODIS land-surface temperature/emissivity product. Remote Sensing of Environment, 140: 36-45 [DOI: 10.1016/j.rse.2013.08.027http://dx.doi.org/10.1016/j.rse.2013.08.027]
Wan Z M and Dozier J. 1996. A generalized split-window algorithm for retrieving land-surface temperature from space. IEEE Transactions on Geoscience and Remote Sensing, 34(4): 892-905 [DOI: 10.1109/36.508406http://dx.doi.org/10.1109/36.508406]
Wan Z M and Li Z L. 1997. A physics-based algorithm for retrieving land-surface emissivity and temperature from EOS/MODIS data. IEEE Transactions on Geoscience and Remote Sensing, 35(4): 980-996 [DOI: 10.1109/36.602541http://dx.doi.org/10.1109/36.602541]
Wan Z M and Li Z L. 2008. Radiance-based validation of the V5 MODIS land-surface temperature product. International Journal of Remote Sensing, 29(17/18): 5373-5395 [DOI: 10.1080/01431160802036565http://dx.doi.org/10.1080/01431160802036565]
Wan Z M, Zhang Y, Zhang Q and Li Z L. 2004. Quality assessment and validation of the MODIS global land surface temperature. International Journal of Remote Sensing, 25(1): 261-274 [DOI: 10.1080/0143116031000116417http://dx.doi.org/10.1080/0143116031000116417]
Wan Z M, Zhang Y L, Zhang Q C and Li Z L. 2002. Validation of the land-surface temperature products retrieved from Terra Moderate Resolution Imaging Spectroradiometer data. Remote Sensing of Environment, 83(1/2): 163-180 [DOI: 10.1016/S0034-4257(02)00093-7http://dx.doi.org/10.1016/S0034-4257(02)00093-7]
Wang H S, Yu Y Y, Yu P and Liu Y L. 2020a. Land surface emissivity product for NOAA JPSS and GOES-R missions: methodology and evaluation. IEEE Transactions on Geoscience and Remote Sensing, 58(1): 307-318 [DOI: 10.1109/TGRS.2019.2936297http://dx.doi.org/10.1109/TGRS.2019.2936297]
Wang J F, Stein A, Gao B B and Ge Y. 2012. A review of spatial sampling. Spatial Statistics, 2: 1-14 [DOI: 10.1016/j.spasta.2012.08.001http://dx.doi.org/10.1016/j.spasta.2012.08.001]
Wang J F, Zhang T L and Fu B J. 2016a. A measure of spatial stratified heterogeneity. Ecological Indicators, 67: 250-256 [DOI: 10.1016/j.ecolind.2016.02.052http://dx.doi.org/10.1016/j.ecolind.2016.02.052]
Wang J H, Ge Y, Heuvelink G B M and Zhou C H. 2015. Upscaling in situ soil moisture observations to pixel averages with spatio-temporal geostatistics. Remote Sensing, 7(9): 11372-11388 [DOI: 10.3390/rs70911372http://dx.doi.org/10.3390/rs70911372]
Wang K C and Liang S L. 2009. Evaluation of ASTER and MODIS land surface temperature and emissivity products using long-term surface longwave radiation observations at SURFRAD sites. Remote Sensing of Environment, 113(7): 1556-1565 [DOI: 10.1016/j.rse.2009.03.009http://dx.doi.org/10.1016/j.rse.2009.03.009]
Wang K C, Wan Z M, Wang P C, Sparrow M, Liu J M, Zhou X J and Haginoya S. 2005. Estimation of surface long wave radiation and broadband emissivity using Moderate Resolution Imaging Spectroradiometer (MODIS) land surface temperature/emissivity products. Journal of Geophysical Research: Atmospheres, 110(D11): D11109 [DOI: 10.1029/2004jd005566http://dx.doi.org/10.1029/2004jd005566]
Wang M M, Zhang Z J, Hu T and Liu X G. 2019. A practical single-channel algorithm for land surface temperature retrieval: application to Landsat series data. Journal of Geophysical Research: Atmospheres, 124(1): 299-316 [DOI: 10.1029/2018jd029330http://dx.doi.org/10.1029/2018jd029330]
Wang M M, Zhang Z J, Hu T, Wang G Z, He G J, Zhang Z M, Li H, Wu Z J and Liu X G. 2020b. An efficient framework for producing Landsat-based land surface temperature data using Google earth engine. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13: 4689-4701 [DOI: 10.1109/JSTARS.2020.3014586http://dx.doi.org/10.1109/JSTARS.2020.3014586]
Wang N, Wu H, Nerry F, Li C R and Li Z L. 2011. Temperature and emissivity retrievals from hyperspectral thermal infrared data using linear spectral emissivity constraint. IEEE Transactions on Geoscience and Remote Sensing, 49(4): 1291-1303 [DOI: 10.1109/tgrs.2010.2062527http://dx.doi.org/10.1109/tgrs.2010.2062527]
Wang S G, Li X, Ge Y, Jin R, Ma M G, Liu Q H, Wen J G and Liu S M. 2016b. Validation of regional-scale remote sensing products in China: from site to network. Remote Sensing, 8(12): 980 [DOI: 10.3390/rs8120980http://dx.doi.org/10.3390/rs8120980]
Wang X N and Prigent C. 2020. Comparisons of diurnal variations of land surface temperatures from numerical weather prediction analyses, infrared satellite estimates and in situ measurements. Remote Sensing, 12(3): 583 [DOI: 10.3390/rs12030583http://dx.doi.org/10.3390/rs12030583]
Weng Q H. 2009. Thermal infrared remote sensing for urban climate and environmental studies: methods, applications, and trends. ISPRS Journal of Photogrammetry and Remote Sensing, 64(4): 335-344 [DOI: 10.1016/j.isprsjprs.2009.03.007http://dx.doi.org/10.1016/j.isprsjprs.2009.03.007]
Wu X D, Xiao Q, Wen J G, Liu Q, You D Q, Dou B C and Tang Y. 2017. Upscaling in situ albedo for validation of coarse scale albedo product over heterogeneous surfaces. International Journal of Digital Earth, 10(6): 604-622 [DOI: 10.1080/17538947.2016.1247300http://dx.doi.org/10.1080/17538947.2016.1247300]
Wu X D, Xiao Q, Wen J G, You D Q and Hueni A. 2019. Advances in quantitative remote sensing product validation: overview and current status. Earth-Science Reviews, 196: 102875 [DOI: 10.1016/j.earscirev.2019.102875http://dx.doi.org/10.1016/j.earscirev.2019.102875]
Yang J J, Zhou J, Göttsche F M, Long Z Y, Ma J and Luo R. 2020. Investigation and validation of algorithms for estimating land surface temperature from Sentinel-3 SLSTR data. International Journal of Applied Earth Observation and Geoinformation, 91: 102136 [DOI: 10.1016/j.jag.2020.102136http://dx.doi.org/10.1016/j.jag.2020.102136]
Yang Y K, Li H, Sun L, Du Y M, Cao B, Liu Q H and Zhu J S. 2019. Land surface temperature and emissivity separation from GF-5 visual and infrared multispectral imager data. Journal of Remote Sensing, 23(6): 1132-1146
杨以坤, 历华, 孙林, 杜永明, 曹彪, 柳钦火, 朱金山. 2019. 高分五号全谱段光谱成像仪地表温度与发射率反演. 遥感学报, 23(6): 1132-1146 [DOI: 10.11834/jrs.20198053http://dx.doi.org/10.11834/jrs.20198053]
Yao Y, Chen X and Qian J. 2019. A review on the methodology of scale issues in quantitative remote sensing. Scientia Geographica Sinica, 39(3): 367-376
姚远, 陈曦, 钱静. 2019. 定量遥感尺度转换方法研究进展. 地理科学, 39(3): 367-376 [DOI: 10.13249/j.cnki.sgs.2019.03.002http://dx.doi.org/10.13249/j.cnki.sgs.2019.03.002]
Yin C L, Meng F and Yu Q R. 2020a. Calculation of land surface emissivity and retrieval of land surface temperature based on a spectral mixing model. Infrared Physics and Technology, 108: 103333 [DOI: 10.1016/j.infrared.2020.103333http://dx.doi.org/10.1016/j.infrared.2020.103333]
Yin G F, Li A N, Zeng Y L, Xu B D, Zhao W, Nan X, Jin H A and Bian J H. 2016. A cost-constrained sampling strategy in support of LAI product validation in mountainous areas. Remote Sensing, 8(9): 704 [DOI: 10.3390/rs8090704http://dx.doi.org/10.3390/rs8090704]
Yin L C, Wang X F, Feng X M, Fu B J and Chen Y Z. 2020b. A comparison of SSEBop-model-based evapotranspiration with eight evapotranspiration products in the Yellow River Basin, China. Remote Sensing, 12(16): 2528 [DOI: 10.3390/rs12162528http://dx.doi.org/10.3390/rs12162528]
Yu W P and Ma M G. 2015. Scale mismatch between in situ and remote sensing observations of land surface temperature: implications for the validation of remote sensing LST products. IEEE Geoscience and Remote Sensing Letters, 12(3): 497-501 [DOI: 10.1109/LGRS.2014.2347953http://dx.doi.org/10.1109/LGRS.2014.2347953]
Yu W P, Ma M G, Li Z L, Tan J L and Wu A D. 2017. New scheme for validating remote-sensing land surface temperature products with station observations. Remote Sensing, 9(12): 1210 [DOI: 10.3390/rs9121210http://dx.doi.org/10.3390/rs9121210]
Yu W P, Ma M G, Wang X F, Geng L Y, Tan J L and Shi J. 2014a. Evaluation of MODIS LST products using longwave radiation ground measurements in the northern arid region of China. Remote Sensing, 6(11): 11494-11517 [DOI: 10.3390/rs61111494http://dx.doi.org/10.3390/rs61111494]
Yu W P, Ma M G, Yang H, Tan J L and Li X L. 2019. Supplement of the radiance-based method to validate satellite-derived land surface temperature products over heterogeneous land surfaces. Remote Sensing of Environment, 230: 111188 [DOI: 10.1016/j.rse.2019.05.007http://dx.doi.org/10.1016/j.rse.2019.05.007]
Yu X L, Guo X L and Wu Z C. 2014b. Land surface temperature retrieval from Landsat 8 TIRS—Comparison between radiative transfer equation-based method, split window algorithm and single channel method. Remote Sensing, 6(10): 9829-9852 [DOI: 10.3390/rs6109829http://dx.doi.org/10.3390/rs6109829]
Yu Y Y, Tarpley D, Privette J L, Flynn L E, Xu H, Chen M, Vinnikov K Y, Sun D L and Tian Y H. 2012. Validation of GOES-R satellite land surface temperature algorithm using SURFRAD ground measurements and statistical estimates of error properties. IEEE Transactions on Geoscience and Remote Sensing, 50(3): 704-713 [DOI: 10.1109/TGRS.2011.2162338http://dx.doi.org/10.1109/TGRS.2011.2162338]
Zarei A, Shah-Hosseini R, Ranjbar S and Hasanlou M. 2021. Validation of non-linear split window algorithm for land surface temperature estimation using sentinel-3 satellite imagery: case study; Tehran Province, Iran. Advances in Space Research, 67(12): 3979-3993 [DOI: 10.1016/j.asr.2021.02.019http://dx.doi.org/10.1016/j.asr.2021.02.019]
Zeng Y, Li J, Liu Q, Qu Y, Huete A R, Xu B, Yin G and Zhao J. 2015. An optimal sampling design for observing and validating long-term leaf area index with temporal variations in spatial heterogeneities. Remote Sensing, 7(2): 1300-1319 [DOI: 10.3390/rs70201300http://dx.doi.org/10.3390/rs70201300]
Zhang J L, Li X H, Yang R J, Liu Q, Zhao L and Dou B C. 2017. An extended Kriging method to interpolate near-surface soil moisture data measured by wireless sensor networks. Sensors, 17(6): 1390 [DOI: 10.3390/s17061390http://dx.doi.org/10.3390/s17061390]
Zhang R H, Tian J, Li Z L, Su H B and Chen S H . 2010. Principles and methods for the validation of quantitative remote sensing products. Scientia Sinica (Terrae), 40(02), 211-222
张仁华, 田静, 李召良, 苏红波, 陈少辉. 2010. 定量遥感产品真实性检验的基础与方法. 中国科学:地球科学, 40(02), 211-222 [DOI: 10.1360/zd2010-40-2-211http://dx.doi.org/10.1360/zd2010-40-2-211]
Zhang Y, Li Z L and Li J. 2014. Comparisons of emissivity observations from satellites and the ground at the CRCS Dunhuang Gobi site. Journal of Geophysical Research: Atmospheres, 119(22): 13026-13041 [DOI: 10.1002/2014jd022216http://dx.doi.org/10.1002/2014jd022216]
Zhang Y X, Li X, Wei W, Zhai W C, Zhang Y N and Zheng X B. 2019. Infrared characteristics of Dunhuang site based on multichannel temperature and emissivity separation algorithm. Acta Optica Sinica, 39(10): 1028003
张允祥, 李新, 韦玮, 翟文超, 张艳娜, 郑小兵. 2019. 基于多通道温度与发射率分离算法的敦煌场地红外特性研究. 光学学报, 39(10): 1028003 [DOI: 10.3788/aos201939.1028003http://dx.doi.org/10.3788/aos201939.1028003]
Zhang Z M, He G J, Wang M M, Long T F, Wang G Z and Zhang X M. 2016. Validation of the generalized single-channel algorithm using Landsat 8 imagery and SURFRAD ground measurements. Remote Sensing Letters, 7(8): 810-816 [DOI: 10.1080/2150704x.2016.1190475http://dx.doi.org/10.1080/2150704x.2016.1190475]
Zhao E Y, Gao C X and Yao Y Y. 2020b. New land surface temperature retrieval algorithm for heavy aerosol loading during nighttime from Gaofen-5 satellite data. Optics Express, 28(2): 2583-2599 [DOI: 10.1364/OE.382813http://dx.doi.org/10.1364/OE.382813]
Zhao E Y, Han Q J and Gao C X. 2020a. Surface temperature retrieval from Gaofen-5 observation and its validation. IEEE Access, 9: 9403-9410 [DOI: 10.1109/ACCESS.2020.3047951http://dx.doi.org/10.1109/ACCESS.2020.3047951]
Zheng Y T, Ren H Z, Guo J X, Ghent D, Tansey K, Hu X B, Nie J and Chen S S. 2019. Land surface temperature retrieval from Sentinel-3A sea and land surface temperature radiometer, using a split-window algorithm. Remote Sensing, 11(6): 650 [DOI: 10.3390/rs11060650http://dx.doi.org/10.3390/rs11060650]
Zhou J, Li J, Zhang L X, Hu D Y and Zhan W F. 2012. Intercomparison of methods for estimating land surface temperature from a Landsat-5 TM image in an arid region with low water vapour in the atmosphere. International Journal of Remote Sensing, 33(8): 2582-2602 [DOI: 10.1080/01431161.2011.617396http://dx.doi.org/10.1080/01431161.2011.617396]
Zhou J, Liu S M, Li M S, Zhan W F, Xu Z W and Xu T R. 2016. Quantification of the scale effect in downscaling remotely sensed land surface temperature. Remote Sensing, 8(12): 975 [DOI: 10.3390/rs8120975http://dx.doi.org/10.3390/rs8120975]
Zhou J, Zhan W F, Hu D Y and Zhao X. 2010. Improvement of mono-window algorithm for retrieving land surface temperature from HJ-1B satellite data. Chinese Geographical Science, 20(2): 123-131 [DOI: 10.1007/s11769-010-0123-zhttp://dx.doi.org/10.1007/s11769-010-0123-z]
相关文章
相关作者
相关机构