Assessment of thermal infrared kernel-driven models over row-planted canopies
- Vol. 25, Issue 8, Pages: 1710-1721(2021)
Published: 07 August 2021
DOI: 10.11834/jrs.20211300
扫 描 看 全 文
浏览全部资源
扫码关注微信
Published: 07 August 2021 ,
扫 描 看 全 文
曹彪,杜永明,卞尊健,董亚冬,赵峰,胡添,冉雪婷,秦伯雄,历华,肖青,柳钦火.2021.热红外核驱动模型在垄行植被热辐射方向性特征拟合中的精度分析.遥感学报,25(8): 1710-1721
Cao B,Du Y M,Bian Z J,Dong Y D,Zhao F,Hu T,Ran X T,Qin B X,Li H,Xiao Q and Liu Q H. 2021. Assessment of thermal infrared kernel-driven models over row-planted canopies. National Remote Sensing Bulletin, 25(8):1710-1721
垄行种植是果园及农作物的常见种植结构,其冠层比连续和离散植被冠层具有更强的热辐射各向异性,开展垄行植被冠层的热辐射方向性校正对干旱监测等应用具有重要意义。热红外核驱动模型是热辐射方向性校正的基础,但现有核驱动模型在垄行植被冠层中的拟合精度未被讨论过。本文以在法国波尔多获取的两组不同朝向葡萄园冠层航空实测方向性特征为基础,对比分析了现有8个模型的拟合精度(含隶属可见光近红外核驱动建模扩展框架的Ross-Li、LSF-Li模型及隶属热红外核驱动建模通用框架的Vinnikov、RL、Vinnikov-RL、Vinnikov-Chen、LSF-RL、LSF-Chen模型),结果表明现有模型均无法拟合出垄行植被的行效应特征,精度整体较低(RMSE高达2 K,
R
2
低于0.7)且各个模型之间的拟合能力差异小,现有热红外核驱动模型均不适用于垄行植被冠层,有待在核驱动建模通用框架下发展可刻画垄行特征的新核。
The ignoring of the land surface thermal radiation directionality hampered the accuracy improvement of current land surface temperature products. It is urgent to develop a practical method to correct the angle effect for the products. More and more attention has been paid to the thermal infrared kernel-drive model because of its simplicity and accuracy. For natural surface
there are widely used eight kernel-driven models. Their fitting abilities over continuous and discrete canopies is well-known
however
no report discussed their performances over the important row-planted stage. The objective of this study is to assess the fitting abilities of all existing eight thermal infrared kernel-driven models over row-planted canopies based on airborne measured datasets.
Two multi-angle directional anisotropy datasets over row-planted vineyards were obtained through the airborne observation in several flights. The experiment sites were located at Château Talbot
Médoc region
30 km north of Bordeaux
France. All the measurements were combined and corrected from nadir temperature to derive the directional anisotropy at 1° steps for view zenith angle (0°—60°) and view azimuth angle (0°—360°). The multi-angle directional anisotropy values were used as input to estimate the kernel coefficients of two 3-parameter models within the traditional visible and near infrared framework (Ross-Li and LSF-Li)
two 3-parameter models within the new thermal infrared framework (Vinnikov and RL)
and four 4-parameter models within the new thermal infrared framework (Vinnikov-RL
Vinnikov-Chen
LSF-RL
LSF-Chen). Then
the forward simulated directional anisotropy values of all models were compared taking the airborne measured values as reference.
Results show that all eight kernel-driven models cannot simulate the row-structure signatures (i.e.
axisymmetric feature). They have an overall large RMSE about 2 K and a low
R
2
less than 0.7. In addition
the RMSE differences between the models are small. For the east-west canopy
RMSE is between 1.930 K and 2.153 K
R
2
is between 0.616 and 0.691. For the south-north canopy
RMSE is between 2.005 K and 2.353 K
R
2
is between 0.600 and 0.670. Therefore
developing a new specific kernel for row-structure to improve the fitting ability is demanded in the thermal infrared band currently.
遥感地表温度热辐射方向性核驱动模型垄行植被
remote sensingland surface temperaturethermal radiation directionalitykernel-driven modelrow-planted canopy
Bian Z J, Qi J B, Wu S B, Wang Y S, Liu S Y, Xu B D, Du Y M, Cao B, Li H, Huang H G, Xiao Q and Liu Q H. 2021. A review on the development and application of three dimensional computer simulation mode of optical remote sensing. Journal of Remote Sensing, 25(2): 559-576
卞尊健, 漆建波, 吴胜标, 王雨生, 刘守阳, 徐保东, 杜永明, 曹彪, 历华, 黄华国, 肖青, 柳钦火. 2021. 光学遥感三维计算机模拟模型的研究进展与应用. 遥感学报, 25(2): 559-576 [DOI: 10.11834/jrs.20219274http://dx.doi.org/10.11834/jrs.20219274]
Bian Z J, Roujean J L, Cao B, Du Y M, Li H, Gamet P, Fang J Y, Xiao Q and Liu Q H. 2021. Modeling the directional anisotropy of fine-scale TIR emissions over tree and crop canopies based on UAV measurements. Remote Sensing of Environment, 252: 112150 [DOI: 10.1016/j.rse.2020.112150http://dx.doi.org/10.1016/j.rse.2020.112150]
Cao B, Gastellu-Etchegorry J P, Du Y M, Li H, Bian Z J, Hu T, Fan W J, Xiao Q and Liu Q H. 2019a. Evaluation of four kernel-driven models in the thermal infrared band. IEEE Transactions on Geoscience and Remote Sensing, 57(8): 5456-5475 [DOI: 10.1109/TGRS.2019.2899600http://dx.doi.org/10.1109/TGRS.2019.2899600]
Cao B, Guo M Z, Fan W J, Xu X R, Peng J J, Ren H Z, Du Y M, Li H, Bian Z J, Hu T, Xiao Q and Liu Q H. 2018. A new directional canopy emissivity model based on spectral invariants. IEEE Transactions on Geoscience and Remote Sensing, 56(12): 6911-6926 [DOI: 10.1109/TGRS.2018.2845678http://dx.doi.org/10.1109/TGRS.2018.2845678]
Cao B, Liu Q H, Du Y M, Roujean J L, Gastellu-Etchegorry J P, Trigo I F, Zhan W F, Yu Y Y, Cheng J, Jacob F, Lagouarde J P, Bian Z J, Li H, Hu T and Xiao Q. 2019b. A review of earth surface thermal radiation directionality observing and modeling: historical development, current status and perspectives. Remote Sensing of Environment, 232: 111304 [DOI: 10.1016/j.rse.2019.111304http://dx.doi.org/10.1016/j.rse.2019.111304]
Cao B, Roujean J L, Gastellu-Etchegorry J P, Liu Q H, Du Y M, Lagouarde J P, Huang H, Li H, Bian Z J, Hu T, Qin B X, Ran X T and Xiao Q. 2021. A general framework of kernel-driven modeling in the thermal infrared domain. Remote Sensing of Environment, 252: 112157 [DOI: 10.1016/j.rse.2020.112157http://dx.doi.org/10.1016/j.rse.2020.112157]
Chen J M and Cihlar J. 1997. A hotspot function in a simple bidirectional reflectance model for satellite applications. Journal of Geophysical Research: Atmospheres, 102(D22): 25907-25913 [DOI: 10.1029/97JD02010http://dx.doi.org/10.1029/97JD02010]
Chen Y H, Wu J T and Wang D D. 2018. Review of the study on generalized computer simulation of land surface thermal anisotropy. Advances in Earth Science, 33(6): 555-567
陈云浩, 吴佳桐, 王丹丹. 2018. 广义地表热辐射方向性计算机模拟研究进展. 地球科学进展, 33(6): 555-567 [DOI: 10.11867/j.issn.1001-8166.2018.06.0555http://dx.doi.org/10.11867/j.issn.1001-8166.2018.06.0555]
Duan S B, Ru C, Li Z L, Wang M M, Xu H Q, Li H, Wu P H, Zhan W F, Zhou J, Zhao W, Ren H Z, Wu H, Tang B H, Zhang X, Shang Guo F and Qin Z H. 2021. Reviews of methods for land surface temperature retrieval from Landsat thermal infrared data. National Remote Sensing Bulletin, 25(8): 1591-1617
段四波, 茹晨, 李召良, 王猛猛, 徐涵秋, 历华, 吴鹏海, 占文凤, 周纪, 赵伟, 任华忠, 吴骅, 唐伯惠, 张霞,尚 国琲, 覃志豪. 2021. Landsat卫星热红外数据地表温度遥感反演研究进展. 遥感学报, 25(8): 1591-1617 [DOI: 10.11834/jrs.20211296http://dx.doi.org/10.11834/jrs.20211296]
Du Y M, Cao B, Li H, Bian Z J, Qin B X, Xiao Q, Liu Q H, Zeng Y J and Su Z B. 2020. Modeling directional brightness temperature (DBT) over crop canopy with effects of intra-row heterogeneity. Remote Sensing, 12(17): 2667 [DOI: 10.3390/rs12172667http://dx.doi.org/10.3390/rs12172667]
Duffour C, Lagouarde J P and Roujean J L. 2016. A two parameter model to simulate thermal infrared directional effects for remote sensing applications. Remote Sensing of Environment, 186: 250-261 [DOI: 10.1016/j.rse.2016.08.012http://dx.doi.org/10.1016/j.rse.2016.08.012]
Ermida S L, Trigo I F, DaCamara C C and Roujean J L. 2018. Assessing the potential of parametric models to correct directional effects on local to global remotely sensed LST. Remote Sensing of Environment, 209: 410-422 [DOI: 10.1016/j.rse.2018.02.066http://dx.doi.org/10.1016/j.rse.2018.02.066]
Gastellu-Etchegorry J P, Lauret N, Yin T G, Landier L, Kallel A, Malenovský Z, Al Bitar A, Aval J, Benhmida S, Qi J B, Medjdoub G, Guilleux J, Chavanon E, Cook B, Morton D, Chrysoulakis N and Mitraka Z. 2017. DART: recent advances in remote sensing data modeling with atmosphere, polarization, and chlorophyll fluorescence. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10(6): 2640-2649 [DOI: 10.1109/jstars.2017.2685528http://dx.doi.org/10.1109/jstars.2017.2685528]
Hu T, Cao B, Du Y M, Li H, Wang C, Bian Z J, Sun D L and Liu Q H. 2017. Estimation of surface upward longwave radiation using a direct physical algorithm. IEEE Transactions on Geoscience and Remote Sensing, 55(8): 4412-4426 [DOI: 10.1109/TGRS.2017.2692261http://dx.doi.org/10.1109/TGRS.2017.2692261]
Lagouarde J P, Dayau S, Moreau P and Guyon D. 2014. Directional anisotropy of brightness surface temperature over vineyards: case study over the Medoc region (SW France). IEEE Geoscience and Remote Sensing Letters, 11(2): 574-578 [DOI: 10.1109/LGRS.2013.2282492http://dx.doi.org/10.1109/LGRS.2013.2282492]
Lagouarde J P and Irvine M. 2008. Directional anisotropy in thermal infrared measurements over Toulouse city centre during the CAPITOUL measurement campaigns: first results. Meteorology and Atmospheric Physics, 102: 173-185 [DOI: 10.1007/s00703-008-0325-4http://dx.doi.org/10.1007/s00703-008-0325-4]
Li X W, Strahler A H and Friedl M A. 1999. A conceptual model for effective directional emissivity from nonisothermal surfaces. IEEE Transactions on Geoscience and Remote Sensing, 37(5): 2508-2517 [DOI: 10.1109/36.789646http://dx.doi.org/10.1109/36.789646]
Li X W, Wang J D and Strahler A H. 1999. Scale effect of Planck’s law over nonisothermal blackbody surface. Science in China Series E: Technological Sciences, 42(6): 652-656
李小文, 王锦地, Strahler A H. 1999. 非同温黑体表面上Planck定律的尺度效应. 中国科学E辑, 29(5): 422-426 [DOI: 10.1007/BF02917003http://dx.doi.org/10.1007/BF02917003]
Li Z L, Tang B H, Wu H, Ren H Z, Yan G J, Wan Z M, Trigo I F and Sobrino J A. 2013. Satellite-derived land surface temperature: current status and perspectives. Remote Sensing of Environment, 131: 14-37 [DOI: 10.1016/j.rse.2012.12.008http://dx.doi.org/10.1016/j.rse.2012.12.008]
Liu M, Tang R L, Li Z L, Gao M F and Yao Y J. 2021. Progress of data-driven remotely sensed retrieval methods and products on land surface evapotranspiration. National Remote Sensing Bulletin, 25(8): 1517-1537
刘萌, 唐荣林, 李召良, 高懋芳, 姚云军. 2021. 数据驱动的蒸散发遥感反演方法及产品研究进展. 遥感学报, 25(8): 1517-1537 [DOI: 10.11834/jrs.20211310http://dx.doi.org/10.11834/jrs.20211310]
Liu Q H, Huang H G, Qin W H, Fu K H and Li X W. 2007. An extended 3-D radiosity-graphics combined model for studying thermal-emission directionality of crop canopy. IEEE Transactions on Geoscience and Remote Sensing, 45(9): 2900-2918 [DOI: 10.1109/TGRS.2007.902272http://dx.doi.org/10.1109/TGRS.2007.902272]
Liu X Y, Tang B H and Li Z L. 2018. Evaluation of three parametric models for estimating directional thermal radiation from simulation, airborne, and satellite data. Remote Sensing, 10(3): 420 [DOI: 10.3390/rs10030420http://dx.doi.org/10.3390/rs10030420]
Liu X Y, Tang B H, Li Z L and Rasmussen M O. 2020b. Influence of temperature inertia on thermal radiation directionality modeling based on geometric optical model. IEEE Transactions on Geoscience and Remote Sensing, 58(5): 3445-3457 [DOI: 10.1109/TGRS.2019.2956258http://dx.doi.org/10.1109/TGRS.2019.2956258]
Liu X Y, Tang B H, Li Z L, Zhang X and Shang G F. 2020a. On the derivation of geometric optical kernels for directional thermal radiation. Earth and Space Science, 7(1): e2019EA000895 [DOI: 10.1029/2019EA000895http://dx.doi.org/10.1029/2019EA000895]
Lucht W, Schaaf C B and Strahler A H. 2000. An algorithm for the retrieval of albedo from space using semiempirical BRDF models. IEEE Transactions on Geoscience and Remote Sensing, 38(2): 977-998 [DOI: 10.1109/36.841980http://dx.doi.org/10.1109/36.841980]
Ma W, Chen Y H, Zhan W F and Zhou J. 2013. Thermal anisotropy model for simulated three dimensional urban targets. Journal of Remote Sensing, 17(1): 62-76
马伟, 陈云浩, 占文凤, 周纪. 2013. 城市模拟目标的3维热辐射方向性模型. 遥感学报, 17(1): 62-76 [DOI: 10.11834/jrs.20131361http://dx.doi.org/10.11834/jrs.20131361]
Monteith J L and Szeicz G. 1962. Radiative temperature in the heat balance of natural surfaces. Quarterly Journal of the Royal Meteorological Society, 88(378): 496-507 [DOI: 10.1002/qj.49708837811http://dx.doi.org/10.1002/qj.49708837811]
Peng J J, Liu Q, Liu Q H, Li J H, Ma H Z and Fang L. 2011. Kernel-driven model fitting of multi-angle thermal infrared brightness temperature and its application. Journal of Infrared and Millimeter Waves, 30(4): 361-365, 371
彭菁菁, 刘强, 柳钦火, 李加洪, 马红章, 方莉. 2011. 多角度热红外亮温值的模型拟合与应用. 红外与毫米波学报, 30(4): 361-365, 371 [DOI: 10.3724/SP.J.1010.2011.00361http://dx.doi.org/10.3724/SP.J.1010.2011.00361]
Pinheiro A C T, Privette J L and Guillevic P. 2006. Modeling the observed angular anisotropy of land surface temperature in a Savanna. IEEE Transactions on Geoscience and Remote Sensing, 44(4): 1036-1047 [DOI: 10.1109/TGRS.2005.863827http://dx.doi.org/10.1109/TGRS.2005.863827]
Ran X T, Cao B, Qin B X, Bian Z J, Du Y M, Li H, Xiao Q and Liu Q H. 2021. Assessment of five thermal infrared kernel-driven models using limited multiangle observations. IEEE Geoscience and Remote Sensing Letters, 1-5 [DOI: 10.1109/LGRS.2021.3078647http://dx.doi.org/10.1109/LGRS.2021.3078647]
Ren H Z, Liu R Y, Yan G J, Mu X H, Li Z L, Nerry F and Liu Q. 2014. Angular normalization of land surface temperature and emissivity using multiangular middle and thermal infrared data. IEEE Transactions on Geoscience and Remote Sensing, 52(8): 4913-4931 [DOI: 10.1109/TGRS.2013.2285924http://dx.doi.org/10.1109/TGRS.2013.2285924]
Ren H Z, Yan G J, Liu R Y, Nerry F, Li Z L and Hu R H. 2013. Impact of sensor footprint on measurement of directional brightness temperature of row crop canopies. Remote Sensing of Environment, 134: 135-151 [DOI: 10.1016/j.rse.2013.02.025http://dx.doi.org/10.1016/j.rse.2013.02.025]
Roujean J L. 2000. A parametric hot spot model for optical remote sensing applications. Remote Sensing of Environment, 71(2): 197-206 [DOI: 10.1016/S0034-4257(99)00080-2http://dx.doi.org/10.1016/S0034-4257(99)00080-2]
Roujean J L, Leroy M and Deschamps P Y. 1992. A bidirectional reflectance model of the Earth’s surface for the correction of remote sensing data. Journal of Geophysical Research: Atmospheres, 97(D18): 20455-20468 [DOI: 10.1029/92JD01411http://dx.doi.org/10.1029/92JD01411]
Schaaf C B, Gao F, Strahler A H, Lucht W, Li X W, Tsang T, Strugnell N C, Zhang X Y, Jin Y F, Muller J P, Lewis P, Barnsley M, Hobson P, Disney M, Roberts G, Dunderdale M, Doll C, d’Entremont R P, Hu B X, Liang S L, Privette J L and Roy D. 2002. First operational BRDF, albedo nadir reflectance products from MODIS. Remote Sensing of Environment, 83(1/2): 135-148 [DOI: 10.1016/S0034-4257(02)00091-3http://dx.doi.org/10.1016/S0034-4257(02)00091-3]
Su L H, Li X W, Friedl M, Strahler A and Gu X F. 2002. A kernel-driven model of effective directional emissivity for non-isothermal surfaces. Progress in Natural Science, 12(8): 603-607
Verhoef W, Jia L, Xiao Q and Su Z. 2007. Unified optical-thermal four-stream radiative transfer theory for homogeneous vegetation canopies. IEEE Transactions on Geoscience and Remote Sensing, 45(6): 1808-1822 [DOI: 10.1109/TGRS.2007.895844http://dx.doi.org/10.1109/TGRS.2007.895844]
Vinnikov K Y, Yu Y Y, Goldberg M D, Tarpley D, Romanov P, Laszlo I and Chen M. 2012. Angular anisotropy of satellite observations of land surface temperature. Geophysical Research Letters, 39: L23802 [DOI: 10.1029/2012GL054059http://dx.doi.org/10.1029/2012GL054059]
Wang D D and Chen Y H. 2019. A geometric model to simulate urban thermal anisotropy in simplified dense neighborhoods (GUTA-Dense). IEEE Transactions on Geoscience and Remote Sensing, 57(8): 6226-6239 [DOI: 10.1109/TGRS.2019.2904871http://dx.doi.org/10.1109/TGRS.2019.2904871]
Wang D D, Chen Y H, Voogt J A, Krayenhoff E S, Wang J F and Wang L B. 2020. An advanced geometric model to simulate thermal anisotropy time-series for simplified urban neighborhoods (GUTA-T). Remote Sensing of Environment, 237: 111547 [DOI: 10.1016/j.rse.2019.111547http://dx.doi.org/10.1016/j.rse.2019.111547]
Wang D D, Chen Y H and Zhan W F. 2018. A geometric model to simulate thermal anisotropy over a sparse urban surface (GUTA-sparse). Remote Sensing of Environment, 209: 263-274 [DOI: 10.1016/j.rse.2018.02.051http://dx.doi.org/10.1016/j.rse.2018.02.051]
Wanner W, Li X and Strahler A H. 1995. On the derivation of kernels for kernel-driven models of bidirectional reflectance. Journal of Geophysical Research: Atmospheres, 100(D10): 21077-21089 [DOI: 10.1029/95JD02371http://dx.doi.org/10.1029/95JD02371]
Yang Y K, Li H, Sun L, Du Y M, Cao B, Liu Q H and Zhu J S. 2019. Land surface temperature and emissivity separation from GF-5 visual and infrared multispectral imager data. Journal of Remote Sensing, 23(6): 1132-1146
杨以坤, 历华, 孙林, 杜永明, 曹彪, 柳钦火, 朱金山. 2019. 高分五号全谱段光谱成像仪地表温度与发射率反演. 遥感学报, 23(6): 1132-1146 [DOI: 10.11834/jrs.20198053http://dx.doi.org/10.11834/jrs.20198053]
Yu T, Gu X F, Tian G L, LeGrand M, Baret F, Hanocq J F, Bosseno R and Zhang Y. 2004. Modeling directional brightness temperature over a maize canopy in row structure. IEEE Transactions on Geoscience and Remote Sensing, 42(10): 2290-2304 [DOI: 10.1109/tgrs.2004.834196http://dx.doi.org/10.1109/tgrs.2004.834196]
相关文章
相关作者
相关机构