A review of collaborative remote sensing observation of atmospheric gaseous and particulate pollution with atmospheric environment satellites
- Vol. 26, Issue 5, Pages: 873-896(2022)
Published: 07 May 2022
DOI: 10.11834/jrs.20211392
扫 描 看 全 文
浏览全部资源
扫码关注微信
Published: 07 May 2022 ,
扫 描 看 全 文
张莹,李正强,赵少华,张兴赢,林金泰,秦凯,刘诚,张元勋.2022.大气环境卫星污染气体和大气颗粒物协同观测综述.遥感学报,26(5): 873-896
Zhang Y, Li Z Q, Zhao S H, Zhang X Y, Lin J T, Qin K, Liu C and Zhang Y X. 2022. A review of collaborative remote sensing observation of atmospheric gaseous and particulate pollution with atmospheric environment satellites. National Remote Sensing Bulletin, 26(5):873-896
空气污染作为一种重要的环境问题,直接影响人们的日常生活和身体健康。随着污染气体和颗粒物观测技术的逐步成熟,基于卫星平台的近地层大气污染物监测得到了快速的发展。本文概括性描述了大气环境关注的污染气体和大气颗粒物的主流遥感方法,对各方法的适用场景及优缺点进行了评述。尽管差分吸收光谱方法对污染气体的监测十分有效,但最优估计算法可进一步从多光谱信息中提取部分污染气体(例如:臭氧O
3
、一氧化碳CO等)的分层信息,有助于更细致地刻画污染气体在整层大气中的垂直分布。对于大气颗粒物遥感方法,采用不同的技术手段进行地气解耦是算法的核心问题,增加光谱、角度、偏振以及时间序列信息都可有效增加算法的地气解耦能力。基于对污染气体和大气颗粒物反演算法的总结,从污染气体和颗粒物协同观测的角度对卫星平台及传感器的发展历程进行了梳理,论述了紫外、红外以及可见光波段的传感器协同观测的优势,展望了未来静止卫星星座的高时空分辨率大气污染监测能力以及中国卫星的贡献。还探讨了以近地面大气污染物监测卫星探测技术及遥感算法亟待解决的问题以及未来的可能发展方向。
Air pollution
as important environmental problem
directly affects daily life and physical health of public. The gradual maturity of polluted gas and particulate matter observation technology has rapidly developed the monitoring of air pollutants near the surface based on satellite platforms. This study aims to clarify the collaborative observation’s history for aerosols and gases and then provide a reference for future satellite platform design.
In this study
the popular remote sensing methods for trace gases and atmospheric particulates that are concerned on atmospheric environment are first described
and the applicable scenarios
advantages
and disadvantages of each method are discussed. Next
satellite platforms for collaborative observations of trace gases and aerosols are reviewed. According to the characteristics of remote sensing principle for the trace gases
the satellite platform is divided into ultraviolet and infrared bands
and the development course of sensors and satellite platforms are discussed and analyzed. Finally
we discuss the issues to be solved urgently by satellite platforms and remote sensing algorithms aiming to monitor air pollutants near the ground
as well as possible future development directions.
For various trace gases
the good universal remote sensing methods are differential absorption spectrometry method and optimal estimation algorithm
which can fully utilize the absorption spectrum lines to achieve inversion of gases. The differential absorption spectroscopy method is effective for the monitoring of trace gases. However
the optimized estimation algorithm can further extract the layered information of trace gases from the hyperspectral information
which is helpful for obtaining a more detailed vertical distribution of trace gases in the atmospheric column. The band residual method and linear fitting method have strong pertinence to specific pollutant gases (such as sulfur dioxide). These simplified algorithms also have great advantages and application value. The core issue of the aerosol inversion algorithm is the signal decoupling of ground and atmosphere. Adding the information from spectrum
angle
polarization
and time series can effectively increase the decoupling capabilities. The algorithms derived from these principles include dark target algorithm
deep blue algorithm
empirical orthogonal function algorithm
polarization algorithm
and time series algorithm. Since the launch of NOAA-9 carrying SBUV/2 and AVHRR/2 in 1984
the collaborative detection of polluted gases and particulate matter has begun. Subsequently
Europe
the United States
South Korea
and China have launched satellites carrying advanced sensors
from the polar orbit to geostationary orbit. In the future
FY-4A of China
Geo-kompsat-2b of South Korea
Sentinel-4 of Europe
and TEMPO of the United States can be forming a global geostationary satellite constellation with high spatial resolution and hourly monitoring capability to achieve collaborative monitoring of polluted gases and particulate matter.
On the basis of the summary of trace gas and atmospheric aerosol inversion algorithms
the development history of satellite platforms and sensors is combined from the perspective of cooperative observation of gas and particulate matter. The advantages of cooperative observation of sensors in the ultraviolet
visible
and infrared bands are discussed. The high temporal and spatial resolution air pollution monitoring capabilities of the geostationary satellite constellation in the future and the contribution of Chinese satellites are prospected.
卫星污染气体颗粒物大气环境遥感协同观测
satellitetrace gasparticleatmospheric environmentremote sensingcollaborative observation
Abad G G, Souri A H, Bak J, Chance K, Flynn L E, Krotkov N A, Lamsal L, Li C, Liu X, Miller C C, Nowlan C R, Suleiman R and Wang H Q. 2019. Five decades observing Earth's atmospheric trace gases using ultraviolet and visible backscatter solar radiation from space. Journal of Quantitative Spectroscopy and Radiative Transfer, 238: 106478 [DOI: 10.1016/j.jqsrt.2019.04.030http://dx.doi.org/10.1016/j.jqsrt.2019.04.030]
Bates D R and Nicolet M. 1950. The photochemistry of atmospheric water vapor. Journal of Geophysical Research, 55(3): 301-327 [DOI: 10.1029/JZ055i003p00301http://dx.doi.org/10.1029/JZ055i003p00301]
Beirle S, Lampel J, Wang Y, Mies K, Dörner S, Grossi M, Loyola D, Dehn A, Danielczok A, Schröder M and Wagner T. 2018. The ESA GOME-evolution “Climate” water vapor product: a homogenized time series of H2O columns from GOME, SCIAMACHY, and GOME-2. Earth System Science Data, 10(1): 449-468 [DOI: 10.5194/essd-10-449-2018http://dx.doi.org/10.5194/essd-10-449-2018]
Bhartia P K and Wellemeyer C W. 2002. TOMS-V8 total O3 algorithm//Bhartia P K, ed. OMI Algorithm Theoretical Basis Document, Volume II: OMI Ozone Products. Greenbelt, MD: NASA Goddard Space Flight Center: 15-32
Boersma K F, Jacob D J, Eskes H J, Pinder R W, Wang J and Van der A R J. 2008. Intercomparison of SCIAMACHY and OMI tropospheric NO2 columns: observing the diurnal evolution of chemistry and emissions from space. Journal of Geophysical Research: Atmospheres, 113(D16): D16S26 [DOI: 10.1029/2007JD008816http://dx.doi.org/10.1029/2007JD008816]
Bovensmann H, Burrows J P, Buchwitz M, Frerick J, Noël S, Rozanov V V, Chance K V and Goede A P H. 1999. SCIAMACHY: mission objectives and measurement modes. Journal of the Atmospheric Sciences, 56(2): 127-150 [DOI: 10.1175/1520-0469(1999)056<0127:SMOAMM>2.0.CO;2http://dx.doi.org/10.1175/1520-0469(1999)056<0127:SMOAMM>2.0.CO;2]
Cairns B, Travis L, Mishchenko M I and Chowdhary J. 2001. 3.7 Aerosol retrievals over land surfaces (The advantages of polarization). At 81st American Meteorological Society Annual Meeting, Albuquerque, NM.
Charlson R J and Rodhe H. 1982. Factors controlling the acidity of natural rainwater. Nature, 295(5851): 683-685 [DOI: 10.1038/295683a0http://dx.doi.org/10.1038/295683a0]
Clerbaux C, Hadji-Lazaro J, Turquety S, George M, Coheur P F, Hurtmans D, Wespes C, Herbin H, Blumstein D, Tourniers B and Phulpin T. 2007. The IASI/MetOp1 mission: first observations and highlights of its potential contribution to GMES2. Space Research Today, 168: 19-24 [DOI: 10.1016/S0045-8732(07)80046-5http://dx.doi.org/10.1016/S0045-8732(07)80046-5]
Clerbaux C, Hadji-Lazaro J, Turquety S, Mégie G and Coheur P F. 2003. Trace gas measurements from infrared satellite for chemistry and climate applications. Atmospheric Chemistry and Physics, 3(5): 1495-1508 [DOI: 10.5194/acp-3-1495-2003http://dx.doi.org/10.5194/acp-3-1495-2003]
Cornu A M. 1879. II. Sur la limite ultraviolette du spectre solaire. Proceedings of the Royal Society of London, 29(196/199): 47-55 [DOI: 10.1098/rspl.1879.0011http://dx.doi.org/10.1098/rspl.1879.0011]
Diner D J, Martonchik J V, Kahn R A, Pinty B, Gobron N, Nelson D L and Holben B N. 2005. Using angular and spectral shape similarity constraints to improve MISR aerosol and surface retrievals over land. Remote Sensing of Environment, 94(2): 155-171 [DOI: 10.1016/j.rse.2004.09.009http://dx.doi.org/10.1016/j.rse.2004.09.009]
Diner D J, Xu F, Martonchik J V, Rheingans B E, Geier S, Jovanovic V M, Davis A, Chipman R A and McClain S C. 2012. Exploration of a polarized surface bidirectional reflectance model using the ground-based multiangle SpectroPolarimetric imager. Atmosphere, 3(4): 591-619 [DOI: 10.3390/atmos3040591http://dx.doi.org/10.3390/atmos3040591]
Dittman M G, Ramberg E, Chrisp M, Rodriguez J V, Sparks A L, Zaun N H, Hendershot P, Dixon T, Philbrick R H and Wasinger D. 2002. Nadir ultraviolet imaging spectrometer for the NPOESS Ozone Mapping and Profiler Suite (OMPS)//Proceedings Volume 4814, Earth Observing Systems VII. Seattle, WA, United States: SPIE [DOI: 10.1117/12.453748http://dx.doi.org/10.1117/12.453748]
Dobson G M B. 1931. A photoelectric spectrophotometer for measuring the amount of atmospheric ozone. Proceedings of the Physical Society, 43(3): 324-339 [DOI: 10.1088/0959-5309/43/3/308http://dx.doi.org/10.1088/0959-5309/43/3/308]
Dong C H, Yang J, Zhang W J, Yang Z D, Lu N M, Shi J M, Zhang P, Liu Y J and Cai B. 2009. An overview of a new Chinese weather satellite FY-3A. Bulletin of the American Meteorological Society, 90(10): 1531-1544 [DOI: 10.1175/2009BAMS2798.1http://dx.doi.org/10.1175/2009BAMS2798.1]
Dubovik O, Herman M, Holdak A, Lapyonok T, Tauré D, Deuzé J L, Ducos F, Sinyuk A and Lopatin A. 2011. Statistically optimized inversion algorithm for enhanced retrieval of aerosol properties from spectral multi-angle polarimetric satellite observations. Atmospheric Measurement Techniques, 4(5): 975-1018 [DOI: 10.5194/amt-4-975-2011http://dx.doi.org/10.5194/amt-4-975-2011]
Elias T G, Cairns B and Chowdhary J. 2004. Surface optical properties measured by the airborne research scanning polarimeter during the CLAMS experiment//Proceedings Volume 5235, Remote Sensing of Clouds and the Atmosphere VIII. Barcelona, Spain: SPIE [DOI: 10.1117/12.514245http://dx.doi.org/10.1117/12.514245]
Fabry C and Buisson H. 1913. L'absorption de l'ultra-violet par l'ozone et la limite du spectre solaire. Journal de Physique Théorique et Appliquée, 3(1): 196-206 [DOI: 10.1051/jphystap:019130030019601http://dx.doi.org/10.1051/jphystap:019130030019601]
Farman J C, Gardiner B G and Shanklin J D. 1985. Large losses of total ozone in Antarctica reveal seasonal ClOx/NOx interaction. Nature, 315(6016): 207-210 [DOI: 10.1038/315207a0http://dx.doi.org/10.1038/315207a0]
Finlayson-Pitts B J and Pitts J N. 2000. Chemistry of the Upper and Lower Atmosphere. San Diego: Academic Press.
Fioletov V E, Mclinden C A, Krotkov N, Yang K, Loyola D G, Valks P, Theys N, Van Roozendael M, Nowlan C R, Chance K, Liu X, Lee C and Martin R V. 2013. Application of OMI, SCIAMACHY, and GOME-2 satellite SO2 retrievals for detection of large emission sources. Journal of Geophysical Research: Atmospheres, 118(19): 11399-11418 [DOI: 10.1002/jgrd.50826http://dx.doi.org/10.1002/jgrd.50826]
Flynn L, Long C, Wu X, Evans R, Beck C T, Petropavlovskikh I, Mcconville G, Yu W, Zhang Z, Niu J, Beach E, Hao Y, Pan C, Sen B, Novicki M, Zhou S and Seftor C. 2014. Performance of the Ozone Mapping and Profiler Suite (OMPS) products. Journal of Geophysical Research Atmospheres, 119(10): 6181-6195 [DOI: 10.1002/2013JD020467http://dx.doi.org/10.1002/2013JD020467]
Ge B Y, Mei X D, Li Z Q, Hou W Z, Xie Y S, Zhang Y, Xu H, Li K T and Wei Y Y. 2020. An improved algorithm for retrieving high resolution fine-mode aerosol based on polarized satellite data: application and validation for POLDER-3. Remote Sensing of Environment, 247: 111894 [DOI: 10.1016/j.rse.2020.111894http://dx.doi.org/10.1016/j.rse.2020.111894]
Gille J C, Drummond J R, Wang J X, Edwards D P, Deeter M N, Khattatov B, Lamarque J F, Warner J and Ziskin D C. 1999. EOS MOPITT experiment: extracting the information from the measurements//Proceedings Volume 3756, Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research III. Denver, CO, United States: SPIE [DOI: 10.1117/12.366396http://dx.doi.org/10.1117/12.366396]
Grainger J F and Ring J. 1962. Anomalous fraunhofer line profiles. Nature, 193(4817): 762 [DOI: 10.1038/193762a0http://dx.doi.org/10.1038/193762a0]
Guyenne T D and Readings C. 1993. GOME: Global Ozone Monitoring Experiment. Interim Science Report. Paris: European Space Agency
Haagen-Smit A J. 1952. Chemistry and physiology of los angeles smog. Industrial and Engineering Chemistry, 44(6): 1342-1346 [DOI: 10.1021/ie50510a045http://dx.doi.org/10.1021/ie50510a045]
Haagen-Smit A J and Fox M M. 1954. Photochemical ozone formation with hydrocarbons and automobile exhaust. Air Repair, 4(3): 105-136 [DOI: 10.1080/00966665.1954.10467649http://dx.doi.org/10.1080/00966665.1954.10467649]
Hagolle O, Dedieu G, Mougenot B, Debaecker V, Duchemin B and Meygret A. 2008. Correction of aerosol effects on multi-temporal images acquired with constant viewing angles: application to Formosat-2 images. Remote Sensing of Environment, 112(4): 1689-1701 [DOI: 10.1016/j.rse.2007.08.016http://dx.doi.org/10.1016/j.rse.2007.08.016]
Hartley W N. 1880. On the probable absorption of solar radiation by atmospheric ozone. Chemistry News, 39(1): 111-128.
He J L. 2020. Study on the influence of cloud adjacency effects on the aerosol optical depth retrieval and its reducing method. Acta Geodaetica et Cartographica Sinica, 49(1): 132
贺军亮. 2020. 云邻近效应对气溶胶光学厚度遥感反演的影响及其消减方法研究. 测绘学报, 49(1): 132 [DOI: CNKI:SUN:CHXB.0.2020-01-012http://dx.doi.org/CNKI:SUN:CHXB.0.2020-01-012].
Heath D F, Krueger A J, Roeder H A and Henderson B D. 1975. The solar backscatter ultraviolet and total ozone mapping spectrometer (SBUV/TOMS) for NIMBUS G. Optical Engineering, 14(4): 323-331 [DOI: 10.1117/12.7971839http://dx.doi.org/10.1117/12.7971839]
Herman J, Huang L, McPeters R, Ziemke J, Cede A and Blank K. 2018. Synoptic ozone, cloud reflectivity, and erythemal irradiance from sunrise to sunset for the whole earth as viewed by the DSCOVR spacecraft from the earth–sun Lagrange 1 orbit. Atmospheric Measurement Techniques, 11(1): 177-194 [DOI: 10.5194/amt-11-177-2018http://dx.doi.org/10.5194/amt-11-177-2018]
Herman J R and Celarier E A. 1997. Earth surface reflectivity climatology at 340-380 nm from TOMS data. Journal of Geophysical Research: Atmospheres, 102(D23): 28003-28011 [DOI: 10.1029/97JD02074http://dx.doi.org/10.1029/97JD02074]
Hsu N C, Jeong M J, Bettenhausen C, Sayer A M, Hansell R, Seftor C S, Huang J and Tsay S C. 2013. Enhanced Deep Blue aerosol retrieval algorithm: the second generation. Journal of Geophysical Research: Atmospheres, 118(16): 9296-9315 [DOI: 10.1002/jgrd.50712http://dx.doi.org/10.1002/jgrd.50712]
Hsu N C, Tsay S C, King M D and Herman J R. 2004. Aerosol properties over bright-reflecting source regions. IEEE Transactions on Geoscience and Remote Sensing, 42(3): 557-569 [DOI: 10.1109/TGRS.2004.824067http://dx.doi.org/10.1109/TGRS.2004.824067]
Hsu N C, Tsay S C, King M D and Herman J R. 2006. Deep blue retrievals of asian aerosol properties during ACE-Asia. IEEE Transactions on Geoscience and Remote Sensing, 44(11): 3180-3195 [DOI: 10.1109/TGRS.2006.879540http://dx.doi.org/10.1109/TGRS.2006.879540]
Joiner J and Bhartia P K. 1997. Accurate determination of total ozone using SBUV continuous spectral scan measurements. Journal of Geophysical Research: Atmospheres, 102(D11): 12957-12969 [DOI: 10.1029/97JD00902http://dx.doi.org/10.1029/97JD00902]
Kaufman Y J and Sendra C. 1988. Algorithm for automatic atmospheric corrections to visible and near-IR satellite imagery. International Journal of Remote Sensing, 9(8): 1357-1381 [DOI: 10.1080/01431168808954942http://dx.doi.org/10.1080/01431168808954942]
Kim J, Jeong U, Ahn M H, Kim J H, Park R J, Lee H, Song C H, Choi Y S, Lee K H, Yoo J M, Jeong M J, Park S K, Lee K M, Song C K, Kim S W, Kim Y J, Kim S W, Kim M, Go S, Liu X, Chance K, Miller C C, Al-Saadi J, Veihelmann B, Bhartia P K, Torres O, Abad G G, Haffner D P, Ko D H, Lee S H, Woo J H, Chong H E S N, Park S S, Nicks D, Choi W J, Moon K J, Cho A, Yoon J, Kim S K, Hong H, Lee K, Lee H, Lee S, Choi M, Veefkind P, Levelt P F, Edwards D P, Kang M N, Eo M, Bak J, Baek K, Kwon H A, Yang J W N, Park J, Han K M, Kim B R, Shin H W, Choi H, Lee E, Chong J, Cha Y, Koo J H, Irie H, Hayashida S, Kasai Y, Kanaya Y, Liu C, Lin J T, Crawford J H, Carmichael G R, Newchurch M J, Lefer B L, Herman J R, Swap R J, Lau A K H, Kurosu T P, Jaross G, Ahlers B, Dobber M, McElroy C T and Choi Y. 2020. New era of air quality monitoring from space: geostationary environment monitoring spectrometer (GEMS). Bulletin of the American Meteorological Society, 101(1): E1-E22 [DOI: 10.1175/BAMS-D-18-0013.1http://dx.doi.org/10.1175/BAMS-D-18-0013.1]
Klaes K D. 2018. The EUMETSAT polar system. Comprehensive Remote Sensing, 1: 192-219 [DOI: 10.1016/B978-0-12-409548-9.10318-5http://dx.doi.org/10.1016/B978-0-12-409548-9.10318-5]
Koelemeijer R B A, de Haan J F and Stammes P. 2003. A database of spectral surface reflectivity in the range 335—772 nm derived from 5.5 years of GOME observations. Journal of Geophysical Research: Atmospheres, 108(D2): 4070 [DOI: 10.1029/2002JD002429http://dx.doi.org/10.1029/2002JD002429]
Krotkov N A, Carn S A, Krueger A J, Bhartia P K and Yang K. 2006. Band residual difference algorithm for retrieval of SO2 from the aura ozone monitoring instrument (OMI). IEEE Transactions on Geoscience and Remote Sensing, 44(5): 1259-1266 [DOI: 10.1109/TGRS.2005.861932http://dx.doi.org/10.1109/TGRS.2005.861932]
Levelt P F, Joiner J, Tamminen J, Veefkind J P, Bhartia P K, Stein Zweers D C, Duncan B N, Streets D G, Eskes H, Van Der A R, McLinden C, Fioletov V, Carn S, De Laat J, Deland M, Marchenko S, McPeters R, Ziemke J, Fu D J, Liu X, Pickering K, Apituley A, González Abad G, Arola A, Boersma F, Chan Miller C, Chance K, De Graaf M, Hakkarainen J, Hassinen S, Ialongo I, Kleipool Q, Krotkov N, Li C, Lamsal L, Newman P, Nowlan C, Suleiman R, Tilstra L G, Torres O, Wang H Q and Wargan K. 2018. The Ozone Monitoring Instrument: overview of 14 years in space. Atmospheric Chemistry and Physics, 18(8): 5699-5745 [DOI: 10.5194/acp-18-5699-2018http://dx.doi.org/10.5194/acp-18-5699-2018]
Levy R C, Remer L A, Kleidman R G, Mattoo S, Ichoku C, Kahn R and Eck T F. 2010. Global evaluation of the Collection 5 MODIS dark-target aerosol products over land. Atmospheric Chemistry and Physics, 10(21): 10399-10420 [DOI: 10.5194/acp-10-10399-2010http://dx.doi.org/10.5194/acp-10-10399-2010]
Li C, Krotkov N A, Carn S, Zhang Y, Spurr R J D and Joiner J. 2017. New-generation NASA aura ozone monitoring instrument (OMI) volcanic SO2 dataset: algorithm description, initial results, and continuation with the suomi-NPP ozone mapping and profiler suite (OMPS). Atmospheric Measurement Techniques, 10(2): 445-458 [DOI: 10.5194/amt-10-445-2017http://dx.doi.org/10.5194/amt-10-445-2017]
Li Z Q, Hou W Z, Hong J, Zheng F X, Luo D G, Wang J, Gu X F and Qiao Y L. 2018. Directional Polarimetric Camera (DPC): monitoring aerosol spectral optical properties over land from satellite observation. Journal of Quantitative Spectroscopy and Radiative Transfer, 218: 21-37 [DOI: 10.1016/j.jqsrt.2018.07.003http://dx.doi.org/10.1016/j.jqsrt.2018.07.003]
Lin J T, McElroy M B and Boersma K F. 2010. Constraint of anthropogenic NOx emissions in China from different sectors: a new methodology using multiple satellite retrievals. Atmospheric Chemistry and Physics, 10(1): 63-78 [DOI: 10.5194/acp-10-63-2010http://dx.doi.org/10.5194/acp-10-63-2010]
Lin J T, Liu M Y, Xin J Y, Boersma K F, Spurr R, Martin R and Zhang Q. 2015. Influence of aerosols and surface reflectance on satellite NO2 retrieval: seasonal and spatial characteristics and implications for NOx emission constraints. Atmospheric Chemistry and Physics, 15(19): 11217-11241 [DOI: 10.5194/acp-15-11217-2015http://dx.doi.org/10.5194/acp-15-11217-2015]
Lin J T, Martin R V, Boersma K F, Sneep M, Stammes P, Spurr R, Wang P, Van Roozendael M, Clémer K and Irie H. 2014. Retrieving tropospheric nitrogen dioxide from the Ozone Monitoring Instrument: effects of aerosols, surface reflectance anisotropy, and vertical profile of nitrogen dioxide. Atmospheric Chemistry and Physics, 14(3): 1441-1461 [DOI: 10.5194/acp-14-1441-2014http://dx.doi.org/10.5194/acp-14-1441-2014]
Liu M Y, Lin J T, Kong H, Boersma K F, Eskes H, Kanaya Y, He Q, Tian X, Qin K, Xie P H, Spurr R, Ni R J, Yan Y Y, Weng H J and Wang J X. 2020. A new TROPOMI product for tropospheric NO2 columns over East Asia with explicit aerosol corrections. Atmospheric Measurement Techniques, 13(8): 4247-4259 [DOI: 10.5194/amt-13-4247-2020http://dx.doi.org/10.5194/amt-13-4247-2020]
Liu Y N, Sun D X, Cao K Q, Liu S F, Chai M Y, Liang J and Yuan J. 2020. Evaluation of GF-5 AHSI on-orbit instrument radiometric performance. Journal of Remote Sensing, 24(4): 352-359
刘银年, 孙德新, 曹开钦, 刘书锋, 柴孟阳, 梁建, 原娟. 2020. 高分五号可见短波红外高光谱相机在轨辐射性能评估. 遥感学报, 24(4): 352-359 [DOI: 10.11834/jrs.20209258http://dx.doi.org/10.11834/jrs.20209258]
Lorente A, Boersma K F, Yu H, Dörner S, Hilboll A, Richter A, Liu M Y, Lamsal L N, Barkley M, De Smedt I, Van Roozendael M, Wang Y, Wagner T, Beirle S, Lin J T, Krotkov N, Stammes P, Wang P, Eskes H J and Krol M. 2016. Structural uncertainty in air mass factor calculation for NO2 and HCHO satellite retrievals. Atmospheric Measurement Techniques, 10(3): 759-782 [DOI: 10.5194/amt-10-759-2017http://dx.doi.org/10.5194/amt-10-759-2017]
Luo S, Di D and Cui L L. 2019. Study on FY-4A/GIIRS infrared spectrum detection capability based on information content. Journal of Infrared and Millimeter Waves, 38(6): 765-776
罗双, 狄迪, 崔林丽. 2019. 基于信息容量的FY-4A/GIIRS红外光谱探测能力研究. 红外与毫米波学报, 38(6): 765-776 [DOI: 10.11972/j.issn.1001-9014.2019.06.014http://dx.doi.org/10.11972/j.issn.1001-9014.2019.06.014]
Lyapustin A, Wang Y J, Korkin S and Huang D. 2018. MODIS Collection 6 MAIAC algorithm. Atmospheric Measurement Techniques, 11(10): 5741-5765 [DOI: 10.5194/amt-11-5741-2018http://dx.doi.org/10.5194/amt-11-5741-2018]
Maignan F, Bréon F M, Fédèle E and Bouvier M. 2009. Polarized reflectances of natural surfaces: spaceborne measurements and analytical modeling. Remote Sensing of Environment, 113(12): 2642-2650 [DOI: 10.1016/j.rse.2009.07.022http://dx.doi.org/10.1016/j.rse.2009.07.022]
Martonchik J V, Diner D J, Kahn R A, Ackerman T P, Verstraete M M, Pinty B and Gordon H R. 1998. Techniques for the retrieval of aerosol properties over land and ocean using multiangle imaging. IEEE Transactions on Geoscience and Remote Sensing, 36(4): 1212-1227 [DOI: 10.1109/36.701027http://dx.doi.org/10.1109/36.701027]
Migeotte M V. 1948. Lines of methane at 7.7μ in the solar spectrum. Physical Review, 74(1): 112-113 [DOI: 10.1103/PhysRev.74.112http://dx.doi.org/10.1103/PhysRev.74.112]
Migeotte M V. 1949. The fundamental band of carbon monoxide at 4.7μ in the solar spectrum. Physical Review, 75(7): 1108-1109 [DOI: 10.1103/PhysRev.75.1108http://dx.doi.org/10.1103/PhysRev.75.1108]
Munro R, Lang R, Klaes D, Poli G, Retscher C, Lindstrot R, Huckle R, Lacan A, Grzegorski M, Holdak A, Kokhanovsky A, Livschitz J and Eisinger M. 2016. The GOME-2 instrument on the Metop series of satellites: instrument design, calibration, and level 1 data processing - An overview. Atmospheric Measurement Techniques, 9(3): 1279-1301 [DOI: 10.5194/amt-9-1279-2016http://dx.doi.org/10.5194/amt-9-1279-2016]
Nowlan C R, Liu X, Chance K, Cai Z, Kurosu T P, Lee C and Martin R V. 2011. Retrievals of sulfur dioxide from the global ozone monitoring experiment 2 (GOME-2) using an optimal estimation approach: algorithm and initial validation. Journal of Geophysical Research, 116(D18): D18301 [DOI: 10.1029/2011JD015808http://dx.doi.org/10.1029/2011JD015808]
Perner D, Ehhalt D H, Pätz H W, Platt U, Röth E P and Volz A. 1976. OH-Radicals in the lower troposphere. Geophysical Research Letters, 3(8): 466-468 [DOI: 10.1029/GL003i008p00466http://dx.doi.org/10.1029/GL003i008p00466]
Platt U and Stutz J. 2008. Differential Optical Absorption Spectroscopy. Berlin Heidelberg: Springer [DOI: 10.1007/978-3-540-75776-4http://dx.doi.org/10.1007/978-3-540-75776-4]
Qiu J H. 1997. Principle and inversion method of atmospheric aerosol optical thickness and vegetation from space remote sensing//Lv D R, ed. Earth Environment and Climate Change Detection and Process Research. Beijing: China Meteorological Press: 71-77
邱金桓. 1997. 从空间遥感大气气溶胶光学厚度和植被的原理和反演方法研究//吕达仁. 地球环境和气候变化探测与过程研究. 北京: 气象出版社: 71-77
Rodgers C D. 2000. Inverse Methods for Atmospheric Sounding: Theory and Practice. Singapore: World Scientific
Schönbein C F. 1840. Beobachtungen über den bei der Elektrolysation des Wassers und dem Ausströmen der gewöhnliehen Elektricität aus Spitzen sich entwikkelnden Geruch. Annalen der Physik, 126(8): 616-635 [DOI: 10.1002/andp.18401260804http://dx.doi.org/10.1002/andp.18401260804]
Shin M, Kang Y, Park S, Im J, Yoo C and Quackenbush L J. 2020. Estimating ground-level particulate matter concentrations using satellite-based data: a review. GIScience and Remote Sensing, 57(5): 174-189 [DOI: 10.1080/15481603.2019.1703288http://dx.doi.org/10.1080/15481603.2019.1703288]
Strow L L, Hannon S E, De Souza-Machado S, Motteler H E and Tobin D. 2003. An overview of the AIRS radiative transfer model. IEEE Transactions on Geoscience and Remote Sensing, 41(2): 303-313 [DOI: 10.1109/TGRS.2002.808244http://dx.doi.org/10.1109/TGRS.2002.808244]
Tanré D, Bréon F M, Deuzé J L, Dubovik O, Ducos F, François P, Goloub P, Herman M, Lifermann A and Waquet F. 2011. Remote sensing of aerosols by using polarized, directional and spectral measurements within the A-Train: the PARASOL mission. Atmospheric Measurement Techniques, 4(7): 1383-1395 [DOI: 10.5194/amt-4-1383-2011http://dx.doi.org/10.5194/amt-4-1383-2011]
Veefkind J P, Aben I, McMullan K, Förster H, De Vries J, Otter G, Claas J, Eskes H J, De Haan J F, Kleipool Q, Van Weele M, Hasekamp O, Hoogeveen R, Landgraf J, Snel R, Tol P, Ingmann P, Voors R, Kruizinga B, Vink R, Visser H and Levelt P F. 2012. TROPOMI on the ESA Sentinel-5 precursor: a GMES mission for global observations of the atmospheric composition for climate, air quality and ozone layer applications. Remote Sensing of Environment, 120: 70-83 [DOI: 10.1016/j.rse.2011.09.027http://dx.doi.org/10.1016/j.rse.2011.09.027]
Wang W H, Flynn L, Zhang X Y, Wang Y M, Wang Y J, Jiang F, Zhang Y, Huang F X, Li X J, Liu R X, Zheng Z J, Yu W and Liu G Y. 2012. Cross-calibration of the total ozone unit (TOU) with the ozone monitoring instrument (OMI) and SBUV/2 for environmental applications. IEEE Transactions on Geoscience and Remote Sensing, 50(12): 4943-4955 [DOI: 10.1109/TGRS.2012.2210902http://dx.doi.org/10.1109/TGRS.2012.2210902]
Wang Z T, Ma P F, Zhang L J, Chen H, Zhao S H, Zhou W, Chen C H, Zhang Y H, Zhou C Y, Mao H Q, Wang Y, Wang Y L, Zhang L H, Zhao A M, Weng G Q and Hu K W. 2021. Systematics of atmospheric environment monitoring in China via satellite remote sensing. Air Quality, Atmosphere and Health, 14(2): 157-169 [DOI: 10.1007/s11869-020-00922-7http://dx.doi.org/10.1007/s11869-020-00922-7]
Waquet F, Goloub P, Deuzé J L, Léon J F, Auriol F, Verwaerde C, Balois J Y and François P. 2007. Aerosol retrieval over land using a multiband polarimeter and comparison with path radiance method. Journal of Geophysical Research: Atmospheres, 112(D11): D11214 [DOI: 10.1029/2006JD008029http://dx.doi.org/10.1029/2006JD008029]
Waquet F, Léon J F, Cairns B, Goloub P, Deuzé J L and Auriol F. 2009. Analysis of the spectral and angular response of the vegetated surface polarization for the purpose of aerosol remote sensing over land. Applied Optics, 48(6): 1228 [DOI: 10.1364/AO.48.001228http://dx.doi.org/10.1364/AO.48.001228]
Xie Y S, Li Z Q, Hou W Z, Zhang Y, Qie L L, Li L, Li K T and Xu H. 2019. Retrieval of fine-mode aerosol optical depth based on remote sensing measurements of directional polarimetric camera onboard GF-5 satellite. Aerospace Shanghai, 36(S2): 219-226
谢一凇, 李正强, 侯伟真, 张洋, 伽丽丽, 李莉, 李凯涛, 许华. 2019. 高分五号卫星多角度偏振成像仪细粒子气溶胶光学厚度遥感反演, 36(S2): 219-226 [DOI: 10.19328/j.cnki.1006-1630.2019.S.033http://dx.doi.org/10.19328/j.cnki.1006-1630.2019.S.033]
Yan H, Chen L, Tao J, Su L, Huang J, Han D and Yu C. 2012. Corrections for OMI SO2 BRD retrievals influenced by row anomalies. Atmospheric Measurement Techniques, 5(11): 2635-2646 [DOI: 10.5194/amt-5-2635-2012http://dx.doi.org/10.5194/amt-5-2635-2012]
Yan H H, Li X J, Wang W H, Zhang X Y, Chen L F, Han D, Yu C and Gao L. 2017. Comparison of SO2 column retrievals from BRD and DOAS algorithms. Science China Earth Sciences, 60(9): 1694-1706
闫欢欢, 李晓静, 王维和, 张兴赢, 陈良富, 韩冬, 余超, 高玲. 2017. BRD和DOAS SO2总量遥感反演算法的比对. 中国科学: 地球科学, 47(9): 1071-1083 [DOI: 10.1007/s11430-016-9057-6http://dx.doi.org/10.1007/s11430-016-9057-6]
Yang K, Bhartia P K, Wellemeyer C G, Qin W, Spurr R J D, Veefkind J P and de Haan J F. 2004. Application of spectral fitting method to GOME and comparison with OMI-DOAS and TOMS-V8 total ozone//Proceedings Quadrennial Ozone Symposium. Kos, Greece: [s.n.]
Yang K, Krotkov N A, Krueger A J, Carn S A, Bhartia P K and Levelt P F. 2007. Retrieval of large volcanic SO2 columns from the Aura Ozone Monitoring Instrument: comparison and limitations. Journal of Geophysical Research: Atmosphere, 112: D24S43 [DOI: 10.1029/2007JD008825http://dx.doi.org/10.1029/2007JD008825]
Zhang C X, Liu C, Chan K L, Hu Q H, Liu H R, Li B, Xing C Z, Tan W, Zhou H J, Si F Q and Liu J G. 2020. First observation of tropospheric nitrogen dioxide from the Environmental Trace Gases Monitoring Instrument onboard the GaoFen-5 satellite. Light: Science and Applications, 9(1): 66 [DOI: 10.1038/s41377-020-0306-zhttp://dx.doi.org/10.1038/s41377-020-0306-z]
Zhang X Y, Wang F, Wang W H, Huang F X, Chen B L, Gao L, Wang S P, Yan H H, Ye H H, Si F Q, Hong J, Li X Y, Cao Q, Che H Z and Li Z Q. 2020. The development and application of satellite remote sensing for atmospheric compositions in China. Atmospheric Research, 245: 105056 [DOI: 10.1016/j.atmosres.2020.105056http://dx.doi.org/10.1016/j.atmosres.2020.105056]
Zhang X Y, Zhang P, Fang Z Y, Qiu H, Li X J and Zhang Y. 2007. The progress in trace gas remote sensing study based on the satellite monitoring. Meteorological Monthly, 33(7): 3-14
张兴赢, 张鹏, 方宗义, 邱红, 李晓静, 张艳. 2007. 应用卫星遥感技术监测大气痕量气体的研究进展. 气象, 33(7): 3-14 [DOI: 10.3969/j.issn.1000-0526.2007.07.001http://dx.doi.org/10.3969/j.issn.1000-0526.2007.07.001]
Zhang Y, Li Z Q, Bai K X, Wei Y Y, Xie Y S, Zhang Y X, Ou Y, Cohen J, Zhang Y H, Peng Z R, Zhang X Y, Chen C, Hong J, Xu H, Guang J, Lv Y, Li K T and Li D H. 2021. Satellite remote sensing of atmospheric particulate matter mass concentration: advances, challenges, and perspectives. Fundamental Research, 1(3): 240-258 [DOI: 10.1016/j.fmre.2021.04.007http://dx.doi.org/10.1016/j.fmre.2021.04.007]
Zhang Y, Li Z Q, Liu Z H, Zhang J, Qie L L, Xie Y S, Hou W A, Wang Y Q and Ye Z X. 2018. Retrieval of the fine-mode aerosol optical depth over east china using a grouped residual error sorting (GRES) method from multi-angle and polarized satellite data. Remote Sensing, 10(11): 1838 [DOI: 10.3390/rs10111838http://dx.doi.org/10.3390/rs10111838]
Zhang Y H, Li Z Q, Zhang Y, Hou W Z, Xu H, Chen C and Ma Y. 2014. High temporal resolution aerosol retrieval using Geostationary Ocean Color Imager: application and initial validation. Journal of Applied Remote Sensing, 8(1): 083612 [DOI: 10.1117/1.JRS.8.083612http://dx.doi.org/10.1117/1.JRS.8.083612]
Zhu L, Jacob D J, Kim P S, Fisher J A, Yu K R, Travis K R, Mickley L J, Yantosca R M, Sulprizio M P, De Smedt I, Abad G G, Chance K, Li C, Ferrare R, Fried A, Hair J W, Hanisco T F, Richter D, Jo Scarino A, Walega J, Weibring P and Wolfe G M. 2016. Observing atmospheric formaldehyde (HCHO) from space: validation and intercomparison of six retrievals from four satellites (OMI, GOME2A, GOME2B, OMPS) with SEAC4RS aircraft observations over the southeast US. Atmospheric Chemistry and Physics, 16(21): 13477-13490 [DOI: 10.5194/acp-16-13477-2016http://dx.doi.org/10.5194/acp-16-13477-2016]
相关文章
相关作者
相关机构