Research progress on parameter sensitivity analysis in ecological and hydrological models of remote sensing
- Vol. 26, Issue 2, Pages: 286-298(2022)
Published: 07 February 2022
DOI: 10.11834/jrs.20219089
扫 描 看 全 文
浏览全部资源
扫码关注微信
Published: 07 February 2022 ,
扫 描 看 全 文
马瀚青,张琨,马春锋,吴小丹,王琛,郑艺,朱高峰,袁文平,李新.2022.参数敏感性分析在遥感及生态水文模型中的研究进展.遥感学报,26(2): 286-298
Ma H Q,Zhang K,Ma C F,Wu X D,Wang C,Zheng Y,Zhu G F,Yuan W P and Li X. 2022. Research progress on parameter sensitivity analysis in ecological and hydrological models of remote sensing. National Remote Sensing Bulletin, 26(2):286-298
参数敏感性分析SA(Sensitivity Analysis)是遥感、生态和水文模型不确定性分析UA(Uncertainty Analysis)的重要方法之一。本文梳理了遥感散射/辐射模型,以及遥感驱动的生态、水文模型研究中常用的敏感性分析方法,并总结了各类方法的优缺点和适用条件。从识别关键参数、不确定性分析和参数优化3个方面,分析了这些领域中参数敏感性分析研究的进展和存在问题,并介绍了最常用的敏感性分析平台。参数敏感性分析作为模型参数优化的先验知识之一,促进了模型和参数的优化。在不确定性和敏感性矩阵USM(Uncertainty and Sensitivity Matrix)的框架下,结合全局敏感性分析方法开展多阶段遥感反演、参数敏感性的尺度效应、参数敏感性的时空异质性研究更加需要关注。此外,还需要提高敏感性分析的计算效率和模式,来适应未来更加复杂的模型和迅速增长的数据量。
Parameter Sensitivity Analysis (SA) is an important research method for Uncertainty Analysis(UA)
key parameters identification and parameters optimization in remote sensing
ecological and hydrological models. In this paper
the sensitivity analysis of ecological and hydrological research based on remote sensing is analyzed. The sensitivity analysis methods commonly used in remote sensing ecological hydrology are reviewed
and the advantages and applicable conditions of each SA method are summarized. Parameter sensitivity analysis methods are generally divided into Local Sensitivity Analysis (LSA) and Global Sensitivity Analysis (GSA)
also can be divided into variance based
statistics based and graphic based methods from mathematical mechanism. Sobol 'and EFAST are the most reliable and stable global sensitivity methods among the current sensitivity algorithms
which are most suitable for most remote sensing inversion and model. There are many methods for parameter sensitivity analysis
so it is very important to select the appropriate method. The initial setting of sensitivity analysis will also affect the results of the analysis. The sensitivity of parameters varies at different scales
The parameter of remote sensing fluorescence model is also one of the key scientific issues. Parametric sensitivity analysis methods have also promoted the development and use of microwave scattering/radiation models. Parameter sensitivity In the process of remote sensing inversion
the order of importance of parameters can be judged according to the sensitivity order
thus providing prior knowledge for multi-stage inversion. In conclusion
sensitivity analysis can effectively improve the simulation accuracy of hydrological
ecological and growth models driven by remote sensing data
and effectively analyze the uncertainties caused by parameters at different scales. Parameter sensitivity analysis can be judged according to the order of sensitivity so as to provide a priori knowledge for multi-stage inversion in the process of remote sensing inversion. The difference of parameter sensitivity analysis in different scales
different bands and different observation angles
as well as the parameter uncertainty
must be paid attention to and analyzed. The four platforms for sensitivity analysis and uncertainty analysis also are introduced in order to make it more convenient for remote sensing scientists to use parameter sensitivity analysis method. Parameter sensitivity analysis as the prior knowledge of the model promotes the development of uncertainty analysis and parameter optimization. In future studies
Under the framework of Uncertainty and Sensitivity Matrix (USM)
it is necessary to pay more attention to the research of multi-stage remote sensing inversion by combining global SA
scale effect of parameter sensitivity index and spatio-temporal heterogeneity of parameter Sensitivity. Meanwhile
the model construction and parameter setting are supported by prior knowledge of parameter sensitivity analysis. Parameter sensitivity analysis should be combined with parameter optimization
data assimilation
spatial analysis and multi-stage inversion to optimize remote sensing inversion and reduce uncertainty. The improvement of computational efficiency and stability of parameter sensitivity analysis is the trend of future research
which requires multi-threaded synchronization
grouping strategy and cloud computing platform.
遥感参数敏感性分析参数优化不确定性分析生态水文
remote sensingparameter sensitivity analysisparameter optimizationuncertainty analysiseco-hydrological
Bai D N, Jiao Z D, Dong Y D, Zhang X N, Li Y and He D D. 2017. Analysis of the sensitivity of the anisotropic flat index to vegetation parameters based on the two-layer canopy reflectance model. Journal of Remote Sensing, 21(1): 1-11
白冬妮, 焦子锑, 董亚冬, 张小宁, 李阳, 何丹丹. 2017. 双冠层反射率模型分析各向异性平整指数(AFX)对植被参数的敏感性. 遥感学报, 21(1): 1-11 [DOI: 10.11834/jrs.20175335http://dx.doi.org/10.11834/jrs.20175335]
Bai X J, Zeng J Y, Chen K S, Li Z, Zeng Y J, Wen J, Wang X, Dong X H and Su Z B. 2019. Parameter optimization of a discrete scattering model by integration of global sensitivity analysis using SMAP active and passive observations. IEEE Transactions on Geoscience and Remote Sensing, 57(2): 1084-1099 [DOI: 10.1109/TGRS.2018.2864689http://dx.doi.org/10.1109/TGRS.2018.2864689]
Beven K and Binley A. 1992. The future of distributed models: model calibration and uncertainty prediction. Hydrological Processes, 6(3): 279-298 [DOI: 10.1002/hyp.3360060305http://dx.doi.org/10.1002/hyp.3360060305]
Castaings W, Dartus D, Le Dimet F X and Saulnier G M. 2009. Sensitivity analysis and parameter estimation for distributed hydrological modeling: potential of variational methods. Hydrology and Earth System Sciences, 13(4): 503-517 [DOI: 10.5194/hess-13-503-2009http://dx.doi.org/10.5194/hess-13-503-2009]
Chen Y L, Gu X H, Gong A D and Hu S W. 2018. Estimation of winter wheat assimilation based on remote sensing information and WOFOST crop model. Journal of Triticeae Crops, 38(9): 1127-1136
陈艳玲, 顾晓鹤, 宫阿都, 胡圣武. 2018. 基于遥感信息和WOFOST模型参数同化的冬小麦单产估算方法研究. 麦类作物学报, 38(9): 1127-1136 [DOI: 10.7606/j.issn.1009-1041.2018.09.16http://dx.doi.org/10.7606/j.issn.1009-1041.2018.09.16]
Chen K S, Wu T D, Tsang L, Li Q, Shi J C and Fung A K. 2003. Emission of rough surfaces calculated by the integral equation method with comparison to three-dimensional moment method simulations. IEEE Transactions on Geoscience and Remote Sensing, 41(1): 90-101 [DOI: 10.1109/TGRS.2002.807587http://dx.doi.org/10.1109/TGRS.2002.807587]
Chen K S, Wu T D, Tsay M K and Fung A K. 2000. Note on the multiple scattering in an IEM model. IEEE Transactions on Geoscience and Remote Sensing, 38(1): 249-256 [DOI: 10.1109/36.823917http://dx.doi.org/10.1109/36.823917]
Confalonieri R, Bellocchi G, Bregaglio S, Donatelli M and Acutis M. 2010a. Comparison of sensitivity analysis techniques: a case study with the rice model WARM. Ecological Modelling, 221(16): 1897-1906 [DOI: 10.1016/j.ecolmodel.2010.04.021http://dx.doi.org/10.1016/j.ecolmodel.2010.04.021]
Confalonieri R, Bellocchi G, Tarantola S, Acutis M, Donatelli M and Genovese G. 2010b. Sensitivity analysis of the rice model WARM in Europe: exploring the effects of different locations, climates and methods of analysis on model sensitivity to crop parameters. Environmental Modelling and Software, 25(4): 479-488 [DOI: 10.1016/j.envsoft.2009.10.005http://dx.doi.org/10.1016/j.envsoft.2009.10.005]
Dobson M C, Ulaby F T, Hallikainen M T and El-Rayes M A. 1985. Microwave dielectric behavior of wet soil-Part II: dielectric mixing models. IEEE Transactions on Geoscience and Remote Sensing, GE-23(1): 35-46 [DOI: 10.1109/TGRS.1985.289498http://dx.doi.org/10.1109/TGRS.1985.289498]
Dong T F, Wu B F, Meng J H, Du X and Shang J L. 2016. Sensitivity analysis of retrieving fraction of absorbed photosynthetically active radiation (FPAR) using remote sensing data. Acta Ecologica Sinica, 36(1): 1-7 [DOI: 10.1016/j.chnaes.2015.12.003http://dx.doi.org/10.1016/j.chnaes.2015.12.003]
Francos A, Elorza F J, Bouraoui F, Bidoglio G and Galbiati L. 2003. Sensitivity analysis of distributed environmental simulation models: understanding the model behaviour in hydrological studies at the catchment scale. Reliability Engineering and System Safety, 79(2): 205-218 [DOI: 10.1016/S0951-8320(02)00231-4http://dx.doi.org/10.1016/S0951-8320(02)00231-4]
Frey H C and Patil S R. 2002. Identification and review of sensitivity analysis methods. Risk Analysis, 22(3): 553-578
Gan Y J, Duan Q Y, Gong W, Tong C, Sun Y W, Chu W, Ye A Z, Miao C Y and Di Z H. 2014. A comprehensive evaluation of various sensitivity analysis methods: a case study with a hydrological model. Environmental Modelling and Software, 51: 269-285 [DOI: 10.1016/j.envsoft.2013.09.031http://dx.doi.org/10.1016/j.envsoft.2013.09.031]
Gu C J, Ma J Z, Zhu G F, Yang H, Zhang K, Wang Y Q and Gu C L. 2018. Partitioning evapotranspiration using an optimized satellite-based ET model across biomes. Agricultural and Forest Meteorology, 259: 355-363 [DOI: 10.1016/j.agrformet.2018.05.023http://dx.doi.org/10.1016/j.agrformet.2018.05.023]
Guérif M and Duke C L. 2000. Adjustment procedures of a crop model to the site specific characteristics of soil and crop using remote sensing data assimilation. Agriculture, Ecosystems and Environment, 81(1): 57-69 [DOI: 10.1016/S0167-8809(00)00168-7http://dx.doi.org/10.1016/S0167-8809(00)00168-7]
Haxeltine A and Prentice I C. 1996. A general model for the light-use efficiency of primary production. Functional Ecology, 10(5): 551-561 [DOI: 10.2307/2390165http://dx.doi.org/10.2307/2390165]
He L H, Wang H Y and Lei X D. 2016. Parameter sensitivity of simulating net primary productivity of Larix olgensis forest based on BIOME-BGC model. Chinese Journal of Applied Ecology, 27(2): 412-420
何丽鸿, 王海燕, 雷相东. 2016. 基于BIOME-BGC模型的长白落叶松林净初级生产力模拟参数敏感性. 应用生态学报, 27(2): 412-420 [DOI: 10.13287/j.1001-9332.201602.023http://dx.doi.org/10.13287/j.1001-9332.201602.023]
Helton J C, Davis F J and Johnson J D. 2005. A comparison of uncertainty and sensitivity analysis results obtained with random and Latin hypercube sampling. Reliability Engineering and System Safety, 89(3): 305-330 [DOI: 10.1016/j.ress.2004.09.006http://dx.doi.org/10.1016/j.ress.2004.09.006]
Hsiao T C, Heng L E, Steduto P, Rojas-Lara B, Raes D and Fereres E. 2009. AquaCrop-The FAO crop model to simulate yield response to water: III. Parameterization and testing for maize. Agronomy Journal, 101(3): 448-459 [DOI: 10.2134/agronj2008.0218shttp://dx.doi.org/10.2134/agronj2008.0218s]
Huang H G, Xin X Z, Liu Q H, Chen L F and Li X W. 2007. Using CUPID to simulate wheat canopy component temperatures distribution: sensitivity analysis and evaluation. Journal of Remote Sensing, 11(1): 94-102
黄华国, 辛晓洲, 柳钦火, 陈良富, 李小文. 2007. 用CUPID模型模拟小麦组分温度分布: 敏感性分析与验证. 遥感学报, 11(1): 94-102
Huang J F, Chen L and Wang X Z. 2012. Sensitivity of rice growth model parameters and their uncertainties in yield estimation using remote sensing date. Transactions of the Chinese Society of Agricultural Engineering, 28(19): 119-129
黄敬峰, 陈拉, 王秀珍. 2012. 水稻生长模型参数的敏感性及其对产量遥感估测的不确定性. 农业工程学报, 28(19): 119-129 [DOI: 10.3969/j.issn.1002-6819.2012.19.016http://dx.doi.org/10.3969/j.issn.1002-6819.2012.19.016]
Huisman J A, Rings J, Vrugt J A, Sorg J and Vereecken H. 2010. Hydraulic properties of a model dike from coupled Bayesian and multi-criteria hydrogeophysical inversion. Journal of Hydrology, 380(1/2): 62-73 [DOI: 10.1016/j.jhydrol.2009.10.023http://dx.doi.org/10.1016/j.jhydrol.2009.10.023]
Kong F Z, Song X M, Zhan C S and Ye A Z. 2011. An efficient quantitative sensitivity analysis approach for hydrological model parameters using RSMSobol method. Acta Geographica Sinica, 66(9): 1270-1280
孔凡哲, 宋晓猛, 占车生, 叶爱中. 2011. 水文模型参数敏感性快速定量评估的RSMSobol方法. 地理学报, 66(9): 1270-1280 [DOI: 10.11821/xb201109012http://dx.doi.org/10.11821/xb201109012]
Li D Z, Jin R, Zhou J and Kang J. 2015. Analysis and reduction of the uncertainties in soil moisture estimation with the L-MEB model using EFAST and ensemble retrieval. IEEE Geoscience and Remote Sensing Letters, 12(6): 1337-1341 [DOI: 10.1109/LGRS.2015.2399776http://dx.doi.org/10.1109/LGRS.2015.2399776]
Li F, He H L, Ren X L, Zhang L, Lu Q Q and Yu G R. 2014. Research on spatial sensitivity analysis using parallel algorithm based on MapReduce. Journal of Geo-Information Science, 16(6): 874-881
李帆, 何洪林, 任小丽, 张黎, 路倩倩, 于贵瑞. 2014. 基于MapReduce的空间敏感性分析并行算法设计. 地球信息科学学报, 16(6): 874-881 [DOI: 10.3724/SP.J.1047.2014.00874http://dx.doi.org/10.3724/SP.J.1047.2014.00874]
Li X. 2014. Characterization, controlling, and reduction of uncertainties in the modeling and observation of land-surface systems. Science China Earth Sciences, 57(1): 80-87
李新. 2013. 陆地表层系统模拟和观测的不确定性及其控制. 中国科学: 地球科学, 43(11): 1735-1742
Li X, Koike T and Pathmathevan M. 2004. A very fast simulated re-annealing (VFSA) approach for land data assimilation. Computers and Geosciences, 30(3): 239-248 [DOI: 10.1016/j.cageo.2003.11.002http://dx.doi.org/10.1016/j.cageo.2003.11.002]
Li X W, Gao F, Wang J D and Zhu Q J. 1997. Uncertainty and sensitivity matrix of parameters in inversion of physical BRDF model. Journal of Remote Sensing, 1(1): 5-14
李小文, 高峰, 王锦地, 朱启疆. 1997. 遥感反演中参数的不确定性与敏感性矩阵. 遥感学报, 1(1): 5-14
Li Y Z. 2017. Spatio-temporal Heterogeneity of Sensitive Parameters in Ecological Process Model . Yangling: Northwest A&F University
李一哲. 2017. 生态过程模型敏感参数的时空异质性研究. 杨凌:西北农林科技大学
Liu Y and Chen K S. 2018. An information entropy-based sensitivity analysis of radar sensing of rough surface. Remote Sensing, 10(2): 286 [DOI: 10.3390/rs10020286http://dx.doi.org/10.3390/rs10020286]
Liu Y, Chen K S, Xu P and Li Z L. 2016. Modeling and characteristics of microwave backscattering from rice canopy over growth stages. IEEE Transactions on Geoscience and Remote Sensing, 54(11): 6757-6770 [DOI: 10.1109/TGRS.2016.2590439http://dx.doi.org/10.1109/TGRS.2016.2590439]
Liu Y, Jiang L M, Shi J C, Zhang L X, Zhang S L, Pan J M and Wang P. 2011. Validation and sensitivity analysis of the snow thermal model (SNTHERM) at Binggou basin, Gansu. Journal of Remote Sensing, 15(04): 792-810
刘誉, 蒋玲梅, 施建成, 张立新, 张生雷, 潘金梅, 王培. 2011. 雪热力模型(SNTHERM)在冰沟流域的模拟和敏感性试验. 遥感学报, 15(04):792-810
Ma C F, Li X, Notarnicola C, Wang S G and Wang W Z. 2017a. Uncertainty quantification of soil moisture estimations based on a Bayesian probabilistic inversion. IEEE Transactions on Geoscience and Remote Sensing, 55(6): 3194-3207 [DOI: 10.1109/TGRS.2017.2664078http://dx.doi.org/10.1109/TGRS.2017.2664078]
Ma C F, Li X, Wang J, Wang C, Duan Q Y and Wang W Z. 2017b. A comprehensive evaluation of microwave emissivity and brightness temperature sensitivities to soil parameters using qualitative and quantitative sensitivity analyses. IEEE Transactions on Geoscience and Remote Sensing, 55(2): 1025-1038 [DOI: 10.1109/TGRS.2016.2618903http://dx.doi.org/10.1109/TGRS.2016.2618903]
Ma C F, Li X and Wang S G. 2015. A global sensitivity analysis of soil parameters associated with backscattering using the advanced integral equation model. IEEE Transactions on Geoscience and Remote Sensing, 53(10): 5613-5623 [DOI: 10.1109/TGRS.2015.2426194http://dx.doi.org/10.1109/TGRS.2015.2426194]
Makowski D, Naud C, Jeuffroy M H, Barbottin A and Monod H. 2006. Global sensitivity analysis for calculating the contribution of genetic parameters to the variance of crop model prediction. Reliability Engineering and System Safety, 91(10/11): 1142-1147 [DOI: 10.1016/j.ress.2005.11.015http://dx.doi.org/10.1016/j.ress.2005.11.015]
Morcillo-Pallarés P, Rivera-Caicedo J P, Belda S, De Grave C, Burriel H, Moreno J and Verrelst J. 2019. Quantifying the robustness of vegetation indices through global sensitivity analysis of homogeneous and forest leaf-canopy radiative transfer models. Remote Sensing, 11(20): 2418 [DOI: 10.3390/rs11202418http://dx.doi.org/10.3390/rs11202418]
Morris M D. 1991. Factorial sampling plans for preliminary computational experiments. Technometrics, 33(2): 161-174 [DOI: 10.1080/00401706.1991.10484804http://dx.doi.org/10.1080/00401706.1991.10484804]
Mousivand A, Menenti M, Gorte B and Verhoef W. 2014. Global sensitivity analysis of the spectral radiance of a soil–vegetation system. Remote Sensing of Environment, 145: 131-144 [DOI: 10.1016/j.rse.2014.01.023http://dx.doi.org/10.1016/j.rse.2014.01.023]
Niu X Z, Easterling W, Hays C J, Jacobs A and Mearns L. 2009. Reliability and input-data induced uncertainty of the EPIC model to estimate climate change impact on sorghum yields in the U.S. Great Plains. Agriculture, Ecosystems and Environment, 129(1/3): 268-276 [DOI: 10.1016/j.agee.2008.09.012http://dx.doi.org/10.1016/j.agee.2008.09.012]
Nossent J, Elsen P and Bauwens W. 2011. Sobol’ sensitivity analysis of a complex environmental model. Environmental Modelling and Software, 26(12): 1515-1525 [DOI: 10.1016/j.envsoft.2011.08.010http://dx.doi.org/10.1016/j.envsoft.2011.08.010]
Peplinski N R, Ulaby F T and Dobson M C. 1995. Corrections to “Dielectric properties of soils in the 0.3-1.3-GHz range”. IEEE Transactions on Geoscience and Remote Sensing, 33(6): 1340 [DOI: 10.1109/TGRS.1995.477193http://dx.doi.org/10.1109/TGRS.1995.477193]
Pi H and Peterson C. 1994. Finding the embedding dimension and variable dependencies in time series. Neural Computation, 6(3): 509-520 [DOI: 10.1162/neco.1994.6.3.509http://dx.doi.org/10.1162/neco.1994.6.3.509]
Prikaziuk E and van der Tol C. 2019. Global sensitivity analysis of the SCOPE Model in Sentinel-3 bands: thermal domain focus. Remote Sensing, 11(20): 2424 [DOI: 10.3390/rs11202424http://dx.doi.org/10.3390/rs11202424]
Qi L, Zhao C J, Huang W J and Liu H H. 2009. Sensitivity analysis of canopy spectra to canopy structural parameters based on multi-temporal data. Geography and Geo-Information Science, 25(6): 17-21, 25
齐腊, 赵春江, 黄文江, 刘含海. 2009. 基于多时相冠层结构参数对冠层光谱的敏感性分析. 地理与地理信息科学, 25(6): 17-21, 25
Qian X S. 1991. Research methods of geographical science. Acta Geographica Sinica, 46(3): 257-265
钱学森. 1991. 谈地理科学的内容及研究方法. 地理学报, 46(3): 257-265
Qin J, Yan G J, Liu S M, Liang S L, Zhang H, Wang J D and Li X W. 2006. Application of ensemble Kalman filter to geophysical parameters retrieval in remote sensing: a case study of kernel-driven BRDF model inversion. Science in China Series D, 49(6): 632-640
秦军, 阎广建, 刘绍民, 梁顺林, 张颢, 王锦地, 李小文. 2005. 集合卡曼滤波在遥感反演地表参数中的应用——以核驱动模型反演BRDF为例. 中国科学D辑: 地球科学, 35(8): 790-798 [DOI: 10.1007/s11430-006-0632-xhttp://dx.doi.org/10.1007/s11430-006-0632-x]
Quan X W. 2017. Research on Weak Sensitive Parameters Retrieval Using Vegetation Canopy Reflectance Model. Chengdu: University of Electronic Science and Technology of China
全兴文 2017. 植被冠层反射率模型弱敏感参数遥感反演方法. 成都: 电子科技大学
Ratto M, Castelletti A and Pagano A. 2012. Emulation techniques for the reduction and sensitivity analysis of complex environmental models. Environmental Modelling and Software, 34: 1-4 [DOI: 10.1016/j.envsoft.2011.11.003http://dx.doi.org/10.1016/j.envsoft.2011.11.003]
Ratto M, Tarantola S and Saltelli A. 2001. Sensitivity analysis in model calibration: GSA-GLUE approach. Computer Physics Communications, 136(3): 212-224 [DOI: 10.1016/S0010-4655(01)00159-Xhttp://dx.doi.org/10.1016/S0010-4655(01)00159-X]
Saltelli A, Annoni P, Azzini I, Campolongo F, Ratto M and Tarantola S. 2010. Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index. Computer Physics Communications, 181(2): 259-270 [DOI: 10.1016/j.cpc.2009.09.018http://dx.doi.org/10.1016/j.cpc.2009.09.018]
Saltelli A, Tarantola S and Chan K P S. 1999. A quantitative model-independent method for global sensitivity analysis of model output. Technometrics, 41(1): 39-56 [DOI: 10.1080/00401706.1999.10485594http://dx.doi.org/10.1080/00401706.1999.10485594]
Sarrazin F, Pianosi F and Wagener T. 2016. Global sensitivity analysis of environmental models: convergence and validation. Environmental Modelling and Software, 79: 135-152 [DOI: 10.1016/j.envsoft.2016.02.005http://dx.doi.org/10.1016/j.envsoft.2016.02.005]
Sathyanarayanamurthy H and Chinnam R B. 2009. Metamodels for variable importance decomposition with applications to probabilistic engineering design. Computers and Industrial Engineering, 57(3): 996-1007 [DOI: 10.1016/j.cie.2009.04.003http://dx.doi.org/10.1016/j.cie.2009.04.003]
Seo D, Lakhankar T and Khanbilvardi R. 2010. Sensitivity analysis of b-factor in microwave emission model for soil moisture retrieval: a case study for SMAP mission. Remote Sensing, 2(5): 1273-1286 [DOI: 10.3390/rs2051273http://dx.doi.org/10.3390/rs2051273]
Sheikholeslami R, Razavi S, Gupta H V, Becker W and Haghnegahdar A. 2019. Global sensitivity analysis for high-dimensional problems: how to objectively group factors and measure robustness and convergence while reducing computational cost. Environmental Modelling and Software, 111: 282-299 [DOI: 10.1016/j.envsoft.2018.09.002http://dx.doi.org/10.1016/j.envsoft.2018.09.002]
Sobol’ I M. 1993. Sensitivity estimates for nonlinear mathematical models. Mathematical Modelling and Computational Experiments, 1(4): 407-414
Sobol’ I M. 2001. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Mathematics and Computers in Simulation, 55(1/3): 271-280 [DOI: 10.1016/S0378-4754(00)00270-6http://dx.doi.org/10.1016/S0378-4754(00)00270-6]
Sobol’ I M and Kucherenko S. 2009. Derivative based global sensitivity measures and their link with global sensitivity indices. Mathematics and Computers in Simulation, 79(10): 3009-3017 [DOI: 10.1016/j.matcom.2009.01.023http://dx.doi.org/10.1016/j.matcom.2009.01.023]
Song X M, Zhan C S, Xia J and Kong F Z. 2012. An efficient global sensitivity analysis approach for distributed hydrological model. Journal of Geographical Sciences, 22(2): 209-222 [DOI: 10.1007/s11442-012-0922-5http://dx.doi.org/10.1007/s11442-012-0922-5]
Sun X Y, Newham L T H, Croke B F W and Norton J P. 2012. Three complementary methods for sensitivity analysis of a water quality model. Environmental Modelling and Software, 37: 19-29 [DOI: 10.1016/j.envsoft.2012.04.010http://dx.doi.org/10.1016/j.envsoft.2012.04.010]
Tan J W, Cui Y L and Luo Y F. 2017. Assessment of uncertainty and sensitivity analyses for ORYZA model under different ranges of parameter variation. European Journal of Agronomy, 91: 54-62 [DOI: 10.1016/j.eja.2017.09.001http://dx.doi.org/10.1016/j.eja.2017.09.001]
Tang Y, Reed P, Wagener T and van Werkhoven K. 2007. Comparing sensitivity analysis methods to advance lumped watershed model identification and evaluation. Hydrology and Earth System Sciences, 11: 793-817 [DOI: 10.5194/hess-11-793-2007http://dx.doi.org/10.5194/hess-11-793-2007]
van Griensven A, Meixner T, Grunwald S, Bishop T, Diluzio M and Srinivasan R. 2006. A global sensitivity analysis tool for the parameters of multi-variable catchment models. Journal of Hydrology, 324(1/4): 10-23 [DOI: 10.1016/j.jhydrol.2005.09.008http://dx.doi.org/10.1016/j.jhydrol.2005.09.008]
Vanrolleghem P A, Mannina G, Cosenza A and Neumann M B. 2015. Global sensitivity analysis for urban water quality modelling: terminology, convergence and comparison of different methods. Journal of Hydrology, 522: 339-352 [DOI: 10.1016/j.jhydrol.2014.12.056http://dx.doi.org/10.1016/j.jhydrol.2014.12.056]
Verrelst J, Rivera J P, van der Tol C, Magnani F, Mohammed G and Moreno J. 2015. Global sensitivity analysis of the SCOPE model: what drives simulated canopy-leaving sun-induced fluorescence?. Remote Sensing of Environment, 166: 8-21 [DOI: 10.1016/j.rse.2015.06.002http://dx.doi.org/10.1016/j.rse.2015.06.002]
Verrelst J, Sabater N, Rivera J P, Muñoz-Marí J, Vicent J, Camps-Valls G and Moreno J. 2016. Emulation of leaf, canopy and atmosphere radiative transfer models for fast global sensitivity analysis. Remote Sensing, 8(8): 673 [DOI: 10.3390/rs8080673http://dx.doi.org/10.3390/rs8080673]
Verrelst J, Vicent J, Rivera-Caicedo J P, Lumbierres M, Morcillo-Pallarés P and Moreno J. 2019. Global sensitivity analysis of leaf-canopy-atmosphere RTMs: implications for biophysical variables retrieval from top-of-atmosphere radiance data. Remote Sensing, 11(16): 1923 [DOI: 10.3390/rs11161923http://dx.doi.org/10.3390/rs11161923]
Wang C, Duan Q Y, Tong C H, Di Z H and Gong W. 2016a. A GUI platform for uncertainty quantification of complex dynamical models. Environmental Modelling and Software, 76: 1-12 [DOI: 10.1016/j.envsoft.2015.11.004http://dx.doi.org/10.1016/j.envsoft.2015.11.004]
Wang J, Li X, Lu L and Fang F. 2013. Parameter sensitivity analysis of crop growth models based on the extended Fourier Amplitude Sensitivity Test method. Environmental Modelling and Software, 48: 171-182 [DOI: 10.1016/j.envsoft.2013.06.007http://dx.doi.org/10.1016/j.envsoft.2013.06.007]
Wang L J and Niu Z. 2014. Sensitivity analysis of vegetation parameters based on PROSAIL model. Remote Sensing Technology and Application, 29(2): 219-223
王李娟, 牛铮. 2014. PROSAIL模型的参数敏感性研究. 遥感技术与应用, 29(2): 219-223 [DOI: 10.11873/j.issn.1004-0323.2014.2.0219http://dx.doi.org/10.11873/j.issn.1004-0323.2014.2.0219]
Wang S H, Yang D, Li Z, Liu L Y, Huang C P and Zhang L F. 2019. A global sensitivity analysis of commonly used satellite-derived vegetation indices for homogeneous canopies based on model simulation and random forest learning. Remote Sensing, 11(21): 2547 [DOI: 10.3390/rs11212547http://dx.doi.org/10.3390/rs11212547]
Wang Z Y, Che T and Liou Y A. 2016b. Global sensitivity analysis of the L-MEB model for retrieving soil moisture. IEEE Transactions on Geoscience and Remote Sensing, 54(5): 2949-2962 [DOI: 10.1109/TGRS.2015.2509176http://dx.doi.org/10.1109/TGRS.2015.2509176]
Wu T D, Chen K S, Shi J C and Fung A K. 2001. A transition model for the reflection coefficient in surface scattering. IEEE Transactions on Geoscience and Remote Sensing, 39(9): 2040-2050 [DOI: 10.1109/36.951094http://dx.doi.org/10.1109/36.951094]
Xiao J F, Davis K J, Urban N M and Keller K. 2014. Uncertainty in model parameters and regional carbon fluxes: a model-data fusion approach. Agricultural and Forest Meteorology, 189-190: 175-186 [DOI: 10.1016/j.agrformet.2014.01.022http://dx.doi.org/10.1016/j.agrformet.2014.01.022]
Xiao Y F, Zhou D M and Zhao W J. 2013. Review of inversing biophysical and biochemical vegetation parameters in various spatial scales using radiative transfer models. Acta Ecologica Sinica, 33(11):3291-3297
肖艳芳,周德民,赵文吉. 2013. 辐射传输模型多尺度反演植被理化参数研究进展.生态学报, 33(11):3291-3297
Xiao Y F, Zhou D M, Gong H L and Zhao W J. 2015. Sensitivity of canopy reflectance to biochemical and biophysical variables. Journal of Remote Sensing, 19(3): 368-374
肖艳芳, 周德民, 宫辉力, 赵文吉. 2015. 冠层反射光谱对植被理化参数的全局敏感性分析. 遥感学报, 19(3): 368-374 [DOI: 10.11834/jrs.20153330http://dx.doi.org/10.11834/jrs.20153330]
Xu C G, Hu Y M, Chang Y, Jiang Y, Li X Z, Bu R C and He H S. 2004. Sensitivity analysis in ecological modeling. Chinese Journal of Applied Ecology, 15(6): 1056-1062
徐崇刚, 胡远满, 常禹, 姜艳, 李秀珍, 布仁仓, 贺红士. 2004. 生态模型的灵敏度分析. 应用生态学报, 15(6): 1056-1062
Xu T, White L, Hui D F and Luo Y Q. 2006. Probabilistic inversion of a terrestrial ecosystem model: analysis of uncertainty in parameter estimation and model prediction. Global Biogeochemical Cycles, 20(2): (GB2007 [DOI: 10.1029/2005gb002468http://dx.doi.org/10.1029/2005gb002468])
Yan M, Tian X, Li Z Y, Chen E X, Wang X F, Han Z T and Sun H. 2016. Simulation of forest carbon fluxes using model incorporation and data assimilation. Remote Sensing, 8(7): 567 [DOI: 10.3390/rs8070567http://dx.doi.org/10.3390/rs8070567]
Yang J. 2011. Convergence and uncertainty analyses in Monte-Carlo based sensitivity analysis. Environmental Modelling and Software, 26(4): 444-457 [DOI: 10.1016/j.envsoft.2010.10.007http://dx.doi.org/10.1016/j.envsoft.2010.10.007]
Yang X H and Guo X L. 2014. Quantifying responses of spectral vegetation indices to dead materials in mixed grasslands. Remote Sensing, 6(5): 4289-4304 [DOI: 10.3390/rs6054289http://dx.doi.org/10.3390/rs6054289]
Yao Y J, Liu Q, Liu Q H and Li X W. 2008. Research on the Mutual Effect of the Parameters on Inversion of Canopy Reflectance Model. Journal of Remote Sensing, 12(1):1-8
姚延娟,刘强,柳钦火,李小文. 2008. 遥感模型多参数反演相互影响机理的研究. 遥感学报, 12(01):1-8
Zeng J Y and Chen K S. 2018. Theoretical study of global sensitivity analysis of L-band radar bistatic scattering for soil moisture retrieval. IEEE Geoscience and Remote Sensing Letters, 15(11): 1710-1714 [DOI: 10.1109/LGRS.2018.2858269http://dx.doi.org/10.1109/LGRS.2018.2858269]
Zeng J Y, Chen K S, Bi H Y, Chen Q and Yang X F. 2016. Radar response of off-specular bistatic scattering to soil moisture and surface roughness at L-band. IEEE Geoscience and Remote Sensing Letters, 13(12): 1945-1949 [DOI: 10.1109/LGRS.2016.2618884http://dx.doi.org/10.1109/LGRS.2016.2618884]
Zhang K, Ma J Z, Zhu G F, Ma T, Han T and Feng L L. 2017a. Parameter sensitivity analysis and optimization for a satellite-based evapotranspiration model across multiple sites using Moderate Resolution Imaging Spectroradiometer and flux data. Journal of Geophysical Research: Atmospheres, 122(1): 230-245 [DOI: 10.1002/2016JD025768http://dx.doi.org/10.1002/2016JD025768]
Zhang X M, Guo H, Wang R, Lin D G, Gao Y, Lian F and Wang J. 2017b. Identification of the most sensitive parameters of winter wheat on a global scale for use in the EPIC model. Agronomy Journal, 109(1): 58-70 [DOI: 10.2134/agronj2016.06.0347http://dx.doi.org/10.2134/agronj2016.06.0347]
Zhou G H, Ma Z Q, Sathyendranath S, Platt T, Jiang C and Sun K. 2018. Canopy reflectance modeling of aquatic vegetation for algorithm development: global sensitivity analysis. Remote Sensing, 10(6): 837 [DOI: 10.3390/rs10060837http://dx.doi.org/10.3390/rs10060837]
Zhou H K.2013. Estimation of Summer Maize Leaf Area Index by Remote Sensing in Typical Region of Huang-Huai-Hai Plain. Nanjing: Nanjing University
周洪奎. 2013.黄淮海平原典型区夏玉米叶面积指数遥感估算研究. 南京:南京大学
Zhu G F, Li X, Su Y H, Lu L, Huang C L and Niinemets Ü. 2011. Seasonal fluctuations and temperature dependence in photosynthetic parameters and stomatal conductance at the leaf scale of Populus euphratica Oliv. Tree Physiology, 31(2): 178-195 [DOI: 10.1093/treephys/tpr005http://dx.doi.org/10.1093/treephys/tpr005]
Zhu Q and Zhuang Q L. 2014. Parameterization and sensitivity analysis of a process-based terrestrial ecosystem model using adjoint method. Journal of Advances in Modeling Earth Systems, 6(2): 315-331 [DOI: 10.1002/2013MS000241http://dx.doi.org/10.1002/2013MS000241]
Zobitz J M, Desai A R, Moore D J P and Chadwick M A. 2011. A primer for data assimilation with ecological models using Markov Chain Monte Carlo (MCMC). Oecologia, 167(3): 599-611 [DOI: 10.1007/s00442-011-2107-9http://dx.doi.org/10.1007/s00442-011-2107-9]
相关文章
相关作者
相关机构