Estimation of light use efficiency by using remote sensing data
- Vol. 25, Issue 6, Pages: 1227-1243(2021)
DOI: 10.11834/jrs.20219376
扫 描 看 全 文
扫 描 看 全 文
Anran ZHU, Rui SUN, Mengjia WANG. Estimation of light use efficiency by using remote sensing data. [J]. National Remote Sensing Bulletin 25(6):1227-1243(2021)
光能利用率表征植被通过光合作用将所截获/吸收的能量转化为有机碳的效率,是遥感估算植被生产力的关键参数。由于植被分布和气候环境的综合影响,光能利用率表现出显著的空间异质性和时间动态性,光能利用率的不确定性成为后续生产力模型估算精度不高的重要原因。本文以Fluxnet全球通量站点数据和MODIS LAI/fPAR产品为数据源,比较了5种遥感植被生产力模型中的光能利用率估算方法,并在此基础上考虑光照散射条件对光能利用率的影响,结合晴空指数,利用逐步线性回归方法和参数优化方法建立不同植被类型的光能利用率估算模型。验证结果表明,考虑晴空指数可提高光能利用率估算精度,两种方法估算得到的光能利用率值RMSE均低于0.5 gC·MJ,-1,,逐步线性回归法尽管机理欠缺,但由于选择因子较多,光能利用率估算精度较高(,R,2,=0.461,RMSE=0.403 gC·MJ,-1,);广泛应用的参数化方法由于考虑的因子较少、模型形式较固定,光能利用率估算精度稍低(,R,2,=0.306,RMSE=0.489 gC·MJ,-1,)。本文所建立的光能利用率估算模型可应用于区域或全球植被光能利用率及生产力的估算。
Light Use Efficiency (LUE) characterizes the efficiency with which vegetation converts intercepted or absorbed solar radiation into organic dry matter through photosynthesis. LUE is a key parameter to estimate vegetation productivity, especially in the widely used methods of global or regional Gross Primary Productivity (GPP) and Net Primary Productivity (NPP) estimation with remote sensing data, such as MODIS vegetation productivity algorithm (MOD17), the Carnegie-Ames-Stanford Approach (CASA), the Vegetation Photosynthesis Model (VPM) and the Eddy Covariance-Light Use Efficiency approach (EC-LUE). In these methods, LUE was estimated by multiplying temperature, water and other stress factors with maximum LUE at optimal environment conditions. Due to the combined effects of vegetation type and climate, LUE shows significant spatial heterogeneity and seasonal variation. The uncertainty of LUE estimation is an important fact for the low accuracy of subsequent productivity models. It is necessary and significant to improve the accuracy of LUE estimation.,Based on global Fluxnet site data and MODIS LAI (Leaf Area Index)/fPAR (Fraction of Photosynthetic Active Radiation) products, this paper compared five existing LUE estimating methods (MOD17, CASA, Dry Matter Productivity algorithm of Global Monitoring for Environment and Security (GME DMP), VPM, EC-LUE) first. And in order to reflect the difference of LUE between the sunlit and shaded leaves, we took the Clearness Index (CI, the fraction of solar incident radiation on the surface of the earth to the extraterrestrial radiation at the top of the atmosphere) into account and established two LUE estimation models by stepwise linear regression method and parameter optimization method respectively. In the parameter optimization method, we first determined the maximum LUE of the sunlit and shaded leaves for each type of vegetation by an optimization algorithm developed at the University of Arizona (SCE-UA), and then we estimated the actual LUE by adjusting the maximum LUE with CI, temperature and water stress factors.,The comparison of five existing LUE estimation methods shows that the ,R,2, between estimated LUE and fluxnet LUE is within 0.028—0.282, and the RMSE range is 0.545—0.681 gC·MJ,-1,. The MOD17 method has the lowest RMSE at 0.545 gC·MJ,-1, followed by EC-LUE with 0.579 gC·MJ,-1,. While ,R,2, is highest for EC-LUE (,R,2,=0.282), and followed by CASA (,R,2,=0.185), which is related to the factor of evaporation fraction (EF) adopted by both methods. The correlation coefficient between EF and LUE is higher than other factors. On the whole, EC-LUE performs best (,R,2,=0.282, RMSE=0.579 gC·MJ,-1,) among these five methods.,The validation results show that the inclusion of Clearness Index can improve the accuracy of LUE estimation, and the RMSE by the stepwise linear regression method and parameter optimization method are both less than 0.5 gC·MJ,-1,. Although the stepwise linear regression method lacks the mechanism, the estimation accuracy of LUE (,R,2,=0.461, RMSE=0.403 gC·MJ,-1,) is higher due to the more selected factors. The parameterization method has a slightly lower accuracy (,R,2,=0.306 , RMSE=0.489 gC·MJ,-1,) due to fewer factors and a relatively fixed model form. The LUE estimation models established in this paper can be used for the estimation of regional or global LUE and vegetation productivity.
光能利用率逐步线性回归参数优化遥感晴空指数总初级生产力
light use efficiencystepwise linear regressionparameter optimizationremote sensingclearness indexgross primary production
Alton P B, North P R and Los S O. 2007. The impact of diffuse sunlight on canopy light‐use efficiency, gross photosynthetic product and net ecosystem exchange in three forest biomes. Global Change Biology, 13(4): 776-787 [DOI: 10.1111/j.1365-2486.2007.01316.xhttp://dx.doi.org/10.1111/j.1365-2486.2007.01316.x]
Chen J M, Deng F and Chen M Z. 2006. Locally adjusted cubic-spline capping for reconstructing seasonal trajectories of a satellite-derived surface parameter. IEEE Transactions on Geoscience and Remote Sensing, 44(8): 2230-2238 [DOI: 10.1109/tgrs.2006.872089http://dx.doi.org/10.1109/tgrs.2006.872089]
Chen J M, Liu J, Cihlar J and Goulden M L. 1999. Daily canopy photosynthesis model through temporal and spatial scaling for remote sensing applications. Ecological Modelling, 124(2/3): 99-119 [DOI: 10.1016/s0304-3800(99)00156-8http://dx.doi.org/10.1016/s0304-3800(99)00156-8]
Choudhury B J. 2000. A sensitivity analysis of the radiation use efficiency for gross photosynthesis and net carbon accumulation by wheat. Agricultural and Forest Meteorology, 101(2/3): 217-234 [DOI: 10.1016/s0168-1923(99)00156-2http://dx.doi.org/10.1016/s0168-1923(99)00156-2]
Choudhury B J. 2001a. Modeling radiation-and carbon-use efficiencies of maize, sorghum, and rice. Agricultural and Forest Meteorology, 106(4): 317-330 [DOI: 10.1016/s0168-1923(00)00217-3http://dx.doi.org/10.1016/s0168-1923(00)00217-3]
Choudhury B J. 2001b. Estimating gross photosynthesis using satellite and ancillary data: approach and preliminary results. Remote Sensing of Environment, 75(1): 1-21 [DOI: 10.1016/s0034-4257(00)00151-6http://dx.doi.org/10.1016/s0034-4257(00)00151-6]
Duan Q Y, Sorooshian S and Gupta V. 1992. Effective and efficient global optimization for conceptual rainfall‐runoff models. Water Resources Research, 28(4): 1015-1031 [DOI: 10.1029/91wr02985http://dx.doi.org/10.1029/91wr02985]
Field C B, Randerson J T and Malmström C M. 1995. Global net primary production: combining ecology and remote sensing. Remote Sensing of Environment, 51(1): 74-88 [DOI: 10.1016/0034-4257(94)00066-vhttp://dx.doi.org/10.1016/0034-4257(94)00066-v]
Field C B, Behrenfeld M J, Randerson J T and Falkowski P. 1998. Primary production of the biosphere: integrating terrestrial and oceanic components. Science, 281(5374): 237-240 [DOI: 10.1126/science.281.5374.237http://dx.doi.org/10.1126/science.281.5374.237]
Gu L H, Baldocchi D, Verma S B, Black T A, Vesala T, Falge E M and Dowty P R. 2002. Advantages of diffuse radiation for terrestrial ecosystem productivity. Journal of Geophysical Research: Atmospheres, 107(D6): ACL 2-1-ACL 2-23 [DOI: 10.1029/2001jd001242http://dx.doi.org/10.1029/2001jd001242]
Gu L H, Baldocchi D D, Wofsy S C, Munger J W, Michalsky J J, Urbanski S P and Boden T A. 2003. Response of a deciduous forest to the Mount Pinatubo eruption: enhanced photosynthesis. Science, 299(5615): 2035-2038 [DOI: 10.1126/science.1078366http://dx.doi.org/10.1126/science.1078366]
Gu L H, Fuentes J D, Shugart H H, Staebler R M and Black T A. 1999. Responses of net ecosystem exchanges of carbon dioxide to changes in cloudiness: results from two North American deciduous forests. Journal of Geophysical Research: Atmospheres, 104(D24): 31421-31434 [DOI: 10.1029/1999jd901068http://dx.doi.org/10.1029/1999jd901068]
He M Z, Ju W M, Zhou Y L, Chen J M, He H L, Wang S Q, Wang H M, Guan D X, Yan J H, Li Y N, Hao Y B and Zhao F H. 2013. Development of a two-leaf light use efficiency model for improving the calculation of terrestrial gross primary productivity. Agricultural and Forest Meteorology, 173: 28-39 [DOI: 10.1016/j.agrformet.2013.01.003http://dx.doi.org/10.1016/j.agrformet.2013.01.003]
King D A, Turner D P and Ritts W D. 2011. Parameterization of a diagnostic carbon cycle model for continental scale application. Remote Sensing of Environment, 115(7): 1653-1664 [DOI: 10.1016/j.rse.2011.02.024http://dx.doi.org/10.1016/j.rse.2011.02.024]
Landsberg J J. 1986. Physiological Ecology of Forest Production. London: Academic Press: 165-178
Landsberg J J and Waring R H. 1997. A generalised model of forest productivity using simplified concepts of radiation-use efficiency, carbon balance and partitioning. Forest Ecology and Management, 95(3): 209-228 [DOI: 10.1016/s0378-1127(97)00026-1http://dx.doi.org/10.1016/s0378-1127(97)00026-1]
McCree K J. 1972. Test of current definitions of photosynthetically active radiation against leaf photosynthesis data. Agricultural Meteorology, 10: 443-453 [DOI: 10.1016/0002-1571(72)90045-3http://dx.doi.org/10.1016/0002-1571(72)90045-3]
Mercado L M, Bellouin N, Sitch S, Boucher O, Huntingford C, Wild M and Cox P M. 2009. Impact of changes in diffuse radiation on the global land carbon sink. Nature, 458(7241): 1014-1017 [DOI: 10.1038/nature07949http://dx.doi.org/10.1038/nature07949]
Monteith J L. 1972. Solar radiation and productivity in tropical ecosystems. Journal of Applied Ecology, 9(3): 747-766 [DOI: 10.2307/2401901http://dx.doi.org/10.2307/2401901]
Niyogi D, Chang H I, Saxena V K, Holt T, Saxena K, Saxena F, Chen F, Davis K J, Holben B, Matsui T, Meyers T, Oechel W C, Pielke Sr R A, Wells R, Wilson K and Xue Y K. 2004. Direct observations of the effects of aerosol loading on net ecosystem CO2 exchanges over different landscapes. Geophysical Research Letters, 31(20): L20506 [DOI: 10.1029/2004gl020915http://dx.doi.org/10.1029/2004gl020915]
Norman J M and Arkebauer T J. 1991. Predicting canopy light-use efficiency from leaf characteristics//Hanks J and Ritchie J T, eds. Modeling Plant and Soil Systems. American Society of Agronomy: 125-143 [DOI: 10.2134/agronmonogr31.c7http://dx.doi.org/10.2134/agronmonogr31.c7]
Oliphant A J, Dragoni D, Deng B, Grimmond C S B, Schmid H P and Scott S L. 2011. The role of sky conditions on gross primary production in a mixed deciduous forest. Agricultural and Forest Meteorology, 151(7): 781-791 [DOI: 10.1016/j.agrformet.2011.01.005http://dx.doi.org/10.1016/j.agrformet.2011.01.005]
Ollinger S V, Richardson A D, Martin M E, Hollinger D Y, Frolking S E, Reich P B, Plourde L C, Katul G G, Munger J W, Oren R, Smith M L, Paw U K T, Bolstad P V, Cook B D, Day M C, Martin T A, Monson R K and Schmid H P. 2008. Canopy nitrogen, carbon assimilation, and albedo in temperate and boreal forests: functional relations and potential climate feedbacks. Proceedings of the National Academy of Sciences of the United States of America, 105(49): 19336-19341 [DOI: 10.1073/pnas.0810021105http://dx.doi.org/10.1073/pnas.0810021105]
Peng S L, Guo Z H and Wand B S. 2000. Use of GIS and RS to estimate the light utilization efficiency of the vegetation in Guangdong, China. Acta Ecologica Sinica, 20(6): 903-909
彭少麟, 郭志华, 王伯荪. 2000. 利用GIS和RS估算广东植被光利用率. 生态学报, 20(6): 903-909 [DOI: 10.3321/j.issn:1000-0933.2000.06.001http://dx.doi.org/10.3321/j.issn:1000-0933.2000.06.001]
Piao S L, Fang J Y and Guo Q H. 2001. Application of CASA model to the estimation of Chinese terrestrial net primary productivity. Acta Phytoecologica Sinica, 25(5): 603-608
朴世龙, 方精云, 郭庆华. 2001. 利用CASA模型估算我国植被净第一性生产力. 植物生态学报, 25(5): 603-608
Potter C S, Randerson J T, Field C B, Matson P A, Vitousek P M, Mooney H A and Klooster S A. 1993. Terrestrial ecosystem production: a process model based on global satellite and surface data. Global Biogeochemical Cycles, 7(4): 811-841 [DOI: 10.1029/93GB02725http://dx.doi.org/10.1029/93GB02725]
Raczka B M, Davis K J, Huntzinger D, Neilson R P, Poulter B, Richardson A D, Xiao J F, Baker I, Ciais P, Keenan T F, Law B, Post W M, Ricciuto D, Schaefer K, Tian H Q, Tomelleri E, Verbeeck H and Viovy N. 2013. Evaluation of continental carbon cycle simulations with North American flux tower observations. Ecological Monographs, 83(4): 531-556 [DOI: 10.1890/12-0893.1http://dx.doi.org/10.1890/12-0893.1]
Roderick M L, Farquhar G D, Berry S L and Noble I R. 2001. On the direct effect of clouds and atmospheric particles on the productivity and structure of vegetation. Oecologia, 129(1): 21-30 [DOI: 10.1007/s004420100760http://dx.doi.org/10.1007/s004420100760]
Ruimy A, Dedieu G and Saugier B. 1996. TURC: a diagnostic model of continental gross primary productivity and net primary productivity. Global Biogeochemical Cycles, 10(2): 269-285 [DOI: 10.1029/96gb00349http://dx.doi.org/10.1029/96gb00349]
Sasai T, Okamoto K, Hiyama T and Yamaguchi Y. 2007. Comparing terrestrial carbon fluxes from the scale of a flux tower to the global scale. Ecological Modelling, 208(2/4): 135-144 [DOI: 10.1016/j.ecolmodel.2007.05.014http://dx.doi.org/10.1016/j.ecolmodel.2007.05.014]
Shan L and Zhou Y L. 2019. Consistency analysis of global GPP products and GPP simulated by two-leaf light use efficiency model. Journal of Shaanxi Normal University (Natural Science Edition), 47(3): 103-114
单良, 周艳莲. 2019. 两叶光能利用率模拟结果与全球GPP产品的时空一致性. 陕西师范大学学报(自然科学版), 47(3): 103-114
Sjöström M, Zhao M, Archibald S, Arneth A, Cappelaere B, Falk U, De Grandcourt A, Hanan N, Kergoat L, Kutsch W, Merbold L, Mougin E, Nickless A, Nouvellon Y, Scholes R J, Veenendaal E M and Ardö J. 2013. Evaluation of MODIS gross primary productivity for Africa using eddy covariance data. Remote Sensing of Environment, 131: 275-286 [DOI: 10.1016/j.rse.2012.12.023http://dx.doi.org/10.1016/j.rse.2012.12.023]
Swinnen E, Van Hools R, Eerens H, et al. 2015. Algorithm Theoretical Basis Document: dry Matter Productivity (DMP). Gio Global Land Component—Lot, I. Operation of the Global Land Component, 1-37
Turner D P, Gower S T, Cohen W B, Gregory M and Maiersperger T M. 2002. Effects of spatial variability in light use efficiency on satellite-based NPP monitoring. Remote Sensing of Environment, 80(3): 397-405 [DOI: 10.1016/s0034-4257(01)00319-4http://dx.doi.org/10.1016/s0034-4257(01)00319-4]
Wang L W and Wei Y X. 2015. A review on inversion of vegetation light use efficiency by hyper spectral remote sensing. Geomatics and Spatial Information Technology, 38(6): 15-22, 38 (王莉雯, 卫亚星. 植被光能利用率高光谱遥感反演研究进展. 测绘与空间地理信息, 2015, 38(6): 15-22, 38) [DOI: 10.3969/j.issn.1672-5867.2015.06.006http://dx.doi.org/10.3969/j.issn.1672-5867.2015.06.006]
Wang S Q, Huang K, Yan H, Yan H M, Zhou L, Wang H M, Zhang J H, Yan J H, Zhao L, Wang Y F, Shi P L, Zhao F H and Sun L. 2015. Improving the light use efficiency model for simulating terrestrial vegetation gross primary production by the inclusion of diffuse radiation across ecosystems in China. Ecological Complexity, 23: 1-13 [DOI: 10.1016/j.ecocom.2015.04.004http://dx.doi.org/10.1016/j.ecocom.2015.04.004]
Williams I N, Riley W J, Kueppers L M, Biraud S C and Torn M S. 2016. Separating the effects of phenology and diffuse radiation on gross primary productivity in winter wheat. Journal of Geophysical Research: Biogeosciences, 121(7): 1903-1915 [DOI: 10.1002/2015JG003317http://dx.doi.org/10.1002/2015JG003317]
Xiao X M, Hollinger D, Aber J, Goltz M, Davidson E A, Zhang Q Y and Moore III B. 2004. Satellite-based modeling of gross primary production in an evergreen needleleaf forest. Remote Sensing of Environment, 89(4): 519-534 [DOI: 10.1016/j.rse.2003.11.008http://dx.doi.org/10.1016/j.rse.2003.11.008]
Xiao X M, Zhang Q Y, Braswell B, Urbanski S, Boles S, Wofsy S, Moore III B and Ojima D. 2004. Modeling gross primary production of temperate deciduous broadleaf forest using satellite images and climate data. Remote Sensing of Environment, 91(2): 256-270 [DOI: 10.1016/j.rse.2004.03.010http://dx.doi.org/10.1016/j.rse.2004.03.010]
Yan H, Wang S Q, Yu K L, Wang B, Yu Q, Bohrer G, Billesbach D, Bracho R and Rahman F and Shugart H H. 2017. A novel diffuse fraction-based two-leaf light use efficiency model: an application quantifying photosynthetic seasonality across 20 AmeriFlux flux tower sites. Journal of Advances in Modeling Earth Systems, 9(6): 2317-2332 [DOI: 10.1002/2016ms000886http://dx.doi.org/10.1002/2016ms000886]
Yang F H, Ichii K, White M A, Hashimoto H, Michaelis A R, Votava P, Zhu A X, Huete A, Running S W and Nemani R R. 2007. Developing a continental-scale measure of gross primary production by combining MODIS and AmeriFlux data through Support Vector Machine approach. Remote Sensing of Environment, 110(1): 109-122 [DOI: 10.1016/j.rse.2007.02.016http://dx.doi.org/10.1016/j.rse.2007.02.016]
Yuan W P, Cai W W, Xia J Z, Chen J Q, Liu S G, Dong W J, Merbold L, Law B, Arain A, Beringer J, Bernhofer C, Black A, Blanken P D, Cescatti A, Chen Y, Francois L, Gianelle D, Janssens I A, Jung M, Kato T, Kiely G, Liu D, Marcolla B, Montagnani L, Raschi A, Roupsard O, Varlagin A and Wohlfahrt G. 2014. Global comparison of light use efficiency models for simulating terrestrial vegetation gross primary production based on the LaThuile database. Agricultural and Forest Meteorology, 192-193: 108-120 [DOI: 10.1016/j.agrformet.2014.03.007http://dx.doi.org/10.1016/j.agrformet.2014.03.007]
Yuan W P, Liu S G, Zhou G S, Zhou G Y, Tieszen L L, Baldocchi D, Bernhofer C, Gholz H, Goldstein A H, Goulden M L, Hollinger D Y, Hu Y M, Law B E, Stoy P C, Vesala T and Wofsy S C. 2007. Deriving a light use efficiency model from eddy covariance flux data for predicting daily gross primary production across biomes. Agricultural and Forest Meteorology, 143(3/4): 189-207 [DOI: 10.1016/j.agrformet.2006.12.001http://dx.doi.org/10.1016/j.agrformet.2006.12.001]
Zhang M, Yu G R, Zhuang J, Gentry R, Fu Y L, Sun X M, Zhang L M, Wen X F, Wang Q F, Han S J, Yan J H, Zhang Y P, Wang Y F and Li Y N . 2011. Effects of cloudiness change on net ecosystem exchange, light use efficiency, and water use efficiency in typical ecosystems of China. Agricultural and Forest Meteorology, 151(7): 803-816 [DOI: 10.1016/j.agrformet.2011.01.011http://dx.doi.org/10.1016/j.agrformet.2011.01.011]
Zhang Y, Xiao X M, Wu X C, Zhou S, Zhang G L, Qin Y W and Dong J W. 2017. A global moderate resolution dataset of gross primary production of vegetation for 2000-2016. Scientific Data, 4: 170165 [DOI: 10.1038/sdata.2017.165http://dx.doi.org/10.1038/sdata.2017.165]
Zhao M and Running S W. 2015. User’s Guide-Daily GPP and Annual NPP (MOD17A2/A3) Products-NASA Earth Observing System MODIS Land Algorithm. NASA EOSDIS Land Processes DAAC
Zhou Y L, Wu X C, Ju W M, Chen J M, Wang S Q, Wang H M, Yuan W P, Andrew B T, Jassal R, Ibrom A, Han S J, Yan J H, Margolis H, Roupsard O, Li Y N, Zhao F H, Kiely G, Starr G, Pavelka M, Montagnani L, Wohlfahrt G, D'Odorico P, Cook D, Arain M A, Bonal D, Beringer J, Blanken P D, Loubet B, Leclerc M Y, Matteucci G, Nagy Z, Olejnik J, Paw U K T and Varlagin A. 2016. Global parameterization and validation of a two‐leaf light use efficiency model for predicting gross primary production across FLUXNET sites. Journal of Geophysical Research: Biogeosciences, 121(4): 1045-1072 [DOI: 10.1002/2014JG002876http://dx.doi.org/10.1002/2014JG002876]
相关文章
相关作者
相关机构