SMAP passive microwave soil moisture spatial downscaling based on optical remote sensing data: A case study in Shandian river basin
- Vol. 25, Issue 4, Pages: 962-973(2021)
Published: 07 April 2021
DOI: 10.11834/jrs.20219393
扫 描 看 全 文
浏览全部资源
扫码关注微信
Published: 07 April 2021 ,
扫 描 看 全 文
文凤平,赵伟,胡路,徐红新,崔倩.2021.耦合MODIS数据的SMAP被动微波土壤水分空间降尺度研究——以闪电河流域为例.遥感学报,25(4): 962-973
Wen F P,Zhao W,Hu L,Xu H X and Cui Q. 2021. SMAP passive microwave soil moisture spatial downscaling based on optical remote sensing data: A case study in Shandian river basin. National Remote Sensing Bulletin, 25(4):962-973
土壤水分不仅是陆面过程中重要的变量,同时也是全球水循环中的关键参数。为了获得高分辨率的土壤水分数据,本文将基于自适应窗口的土壤水分降尺度方法应用在闪电河流域,以1 km MODIS产品(地表温度和归一化植被指数)作为辅助数据,对9 km的SMAP被动微波土壤水分(SMAP土壤水分)数据进行降尺度,得到研究区1 km的降尺度土壤水分数据。利用地面站点实测土壤水分和机载被动微波土壤水分(机载土壤水分)对降尺度土壤水分和SMAP土壤水分进行了验证,并对辅助数据和降尺度方法本身展开分析以探讨降尺度过程中的不确定性来源。结果表明:(1)本文使用的基于自适应窗口的土壤水分降尺度方法能够有效地提高SMAP土壤水分的空间分辨率,在进一步丰富土壤水分分布细节变化信息的同时,还能够保留SMAP土壤水分的空间变化特征并与其保持值域一致。(2)3种基于像元尺度的土壤水分数据(机载土壤水分、SMAP土壤水分和降尺度土壤水分)与站点实测土壤水分之间的相关性并不高,这主要与点、面数据之间的空间匹配不一致、空间代表性不同以及有效验证的数据量有限有关。而与站点数据验证相比,降尺度土壤水分和SMAP土壤水分均和机载土壤水分数据相关性较好。(3)SMAP土壤水分与辅助数据之间的相关性比机载土壤水分与辅助数据之间的较高,而这两种土壤水分数据之间存在的这种偏差主要受到空间尺度、观测配置、参数反演算法和选用的辅助数据等因素的影响。(4)针对验证结果的不确定性,通过增加辅助数据或改变土壤水分估算模型结构进而修改降尺度模型的方式在本研究中并不能显著提高降尺度结果的精度,如何进一步提高降尺度精度仍是未来需要研究的重点。
Soil Moisture (SM) is not only an important variable in land surface processes
but also a key parameter in global water cycle. In this paper
the objectives are: (1) downscaling SMAP (Soil Moisture Active Passive) SM (SMAP SM) from spatial resolution of 9 km to 1 km
with the using of the auxiliary data from MODIS (Moderate-Resolution Imaging Spectroradiometer) products (land surface temperature and normalized difference vegetation index) by a downscaling method based on self-adaptive window in Shandian river basin; (2) validating the downscaled SM with the in-situ SM and the airborne passive microwave SM (airborne SM); and (3) analyzing the uncertainty caused by auxiliary data and SM estimated model in the downscaling process. The downscaling method used in this paper involves two steps. The SM model was established by using geographically weighted regression model between SMAP SM and the auxiliary data to calculate the 1-km estimated model SM (SM
R
). Then the 9-km residual (
R
C
) generated by the SM estimated model is downscaled to 1-km spatial resolution (
R
F
) by area-to-point kriging. Finally
the downscaled SM (SM
F
) is the sum of SM
R
and R
F
. It’s worth noting that to derive the robust downscaled SM
self-adaptive windows are adopted in these two steps. Visual assessment shows that the downscaling method can not only improve the spatial resolution of SMAP SM
but also retain the consistency between the spatial distributions of the downscaled SM and of the original SMAP SM. The validation results of the airborne SM
the SMAP SM and the downscaled SM against the in-situ SM are not satisfactory. On Sep 24
the correlation coefficient (
R
) between the three SM data and the in-situ SM are less than 0.5
and on Sep 26
the root mean squared errors (RMSE) are greater than 0.08 m
3
/m
3
. By analyzing these data
we found that the limited amount of valid data used in validation was one of the reasons for the poor validation. In addition
the different spatial representativeness and the inconsistent spatial matching of point-scale data and pixel-scale data are also the factors caused the uncertainty in the validation results. Compared with the in-situ SM
the SMAP SM and the downscaled SM have better correlations with the airborne SM. The RMSEs between the downscaled SM and the airborne SM are about 0.04 m
3
/m
3
while the RMSEs between the SMAP SM and the airborne SM are less than 0.04 m
3
/m
3
. The correlation between the SMAP SM and auxiliary data (the absolute values of
Rs
are greater than 0.6) is higher than that between the airborne SM and the auxiliary data (the absolute values of
Rs
are less than 0.53). It can be seen that there are some differences between the SMAP SM and the airborne SM
which is mainly affected by different spatial scales
observation configurations
SM derived algorithms and auxiliary data using in algorithms of these two SM data. However
more studies are needed on the mechanism of the relationship between auxiliary data and SM in the downscaling process. By adding auxiliary data (land surface albedo) or changing the SM estimation model
the validated results of the downscaled SM against the airborne SM did not improve obviously. This is mainly because more auxiliary data and higher polynomials caused overfitting in the downscaling process
which will be still the focus of future research.
土壤水分空间降尺度机载被动微波土壤水分不确定性分析SMAPMODIS
soil moisturespatial downscalingairborne passive microwave soil moistureuncertainty analysisSMAPMODIS
Cao Y N, Yuan Y, Zheng X Y and Zhou S X. 2019. MODIS data-based cloud properties in Huaibei region. Journal of Remote Sensing, 23(2): 349-358
曹亚楠, 袁野, 郑小艺, 周述学. 2019. 基于MODIS数据的淮北地区云特性研究. 遥感学报, 23(2): 349-358 [DOI: 10.11834/jrs.20197326http://dx.doi.org/10.11834/jrs.20197326]
Cao Y P, Jin R, Han X J and Li X. 2011. A downscaling method for AMSR-E soil moisture using MODIS derived dryness index. Remote Sensing Technology and Application, 26(5): 590-597
曹永攀, 晋锐, 韩旭军, 李新. 2011. 基于MODIS和AMSR-E遥感数据的土壤水分降尺度研究. 遥感技术与应用, 26(5): 590-597 [DOI: 10.11873/j.issn.1004-0323.2011.5.590http://dx.doi.org/10.11873/j.issn.1004-0323.2011.5.590]
Cheng Y, Chen L F, Liu Q H, Zhang H and Gu X F. 2006. The soil moisture detection for different vegetation coverage based on the MODIS data. Journal of Remote Sensing, 10(5): 783-788
程宇, 陈良富, 柳钦火, 张颢, 顾行发. 2006. 基于MODIS数据对不同植被覆盖下土壤水分监测的可行性研究. 遥感学报, 10(5): 783-788 [DOI: 10.11834/jrs.200605116http://dx.doi.org/10.11834/jrs.200605116]
Colliander A, Jackson T J, Bindlish R, Chan S, Das N, Kim S B, Cosh M H, Dunbar R S, Dang L, Pashaian L, Asanuma J, Aida K, Berg A, Rowlandson T, Bosch D, Caldwell T, Caylor K, Goodrich D, al Jassar H, Lopez-Baeza E, Martínez-Fernández J, González-Zamora A, Livingston S, McNairn H, Pacheco A, Moghaddam M, Montzka C, Notarnicola C, Niedrist G, Pellarin T, Prueger J, Pulliainen J, Rautiainen K, Ramos J, Seyfried M, Starks P, Su Z, Zeng Y, van der Velde R, Thibeault M, Dorigo W, Vreugdenhil M, Walker J P, Wu X, Monerris A, O'Neill P E, Entekhabi D, Njoku E G and Yueh S. 2017. Validation of SMAP surface soil moisture products with core validation sites. Remote Sensing of Environment, 191: 215-231 [DOI: 10.1016/j.rse.2017.01.021http://dx.doi.org/10.1016/j.rse.2017.01.021]
Collow T W, Robock A, Basara J B and Illston B G. 2012. Evaluation of SMOS retrievals of soil moisture over the central United States with currently available in situ observations. Journal of Geophysical Research: Atmospheres, 117: D09113 [DOI: 10.1029/2011 JD017095http://dx.doi.org/10.1029/2011JD017095]
Das K, Paul P K and Dobesova Z. 2015. Present status of soil moisture estimation by microwave remote sensing. Cogent Geoscience, 1(1): 1084669 [DOI: 10.1080/23312041.2015.1084669http://dx.doi.org/10.1080/23312041.2015.1084669]
Entekhabi D, Njoku E G, O'Neill P E, Kellogg K H, Crow W T, Edelstein W N, Entin J K, Goodman S D, Jackson T J, Johnson J, Kimball J, Piepmeier J R, Koster R D, Martin N, McDonald K C, Moghaddam M, Moran S, Reichle R, Shi J C, Spencer M W, Thurman S W, Tsang L and Van Zyl J. 2010. The soil moisture active passive (SMAP) mission. Proceedings of the IEEE, 98(5): 704-716 [DOI: 10.1109/jproc.2010.2043918http://dx.doi.org/10.1109/jproc.2010.2043918]
Han H Z, Bai J J, Zhang B and Ma G. 2018. Spatial-temporal characteristics of vegetation phenology in Shaanxi province based on MODIS time series. Remote Sensing for Land and Resources, 30(4): 125-131
韩红珠, 白建军, 张波, 马高. 2018. 基于MODIS时序的陕西省植被物候时空变化特征分析. 国土资源遥感, 30(4): 125-131 [DOI: 10.6046/gtzyyg.2018.04.19http://dx.doi.org/10.6046/gtzyyg.2018.04.19]
Hu L, Zhao T J, Shi J C, Li S N, Fan D, Wang P K, Geng D Y, Xiao Q, Cui Q and Chen D Q. 2020. Evaluation of soil moisture retrieval algorithms based on ground-based microwave radiation observation. Remote Sensing Technology and Application, 35(1): 74-84
胡路, 赵天杰, 施建成, 李尚楠, 樊东, 王平凯, 耿德源, 肖青, 崔倩, 陈德清. 2020. 基于地基微波辐射观测的土壤水分反演算法评估. 遥感技术与应用, 35(1): 74-84 [DOI: 10.11873/j.issn.1004-0323.2020.1.0074http://dx.doi.org/10.11873/j.issn.1004-0323.2020.1.0074]
Im J, Park S, Rhee J, Baik J and Choi M. 2016. Downscaling of AMSR-E soil moisture with MODIS products using machine learning approaches. Environmental Earth Sciences, 75(15): 1120 [DOI: 10.1007/s12665-016-5917-6http://dx.doi.org/10.1007/s12665-016-5917-6]
Jin Y, Ge Y, Wang J H, Chen Y H, Heuvelink G B M and Atkinson P M. 2018. Downscaling AMSR-2 soil moisture data with geographically weighted Area-to-Area regression kriging. IEEE Transactions on Geoscience and Remote Sensing, 56(4): 2362-2376 [DOI: 10.1109/TGRS.2017.2778420http://dx.doi.org/10.1109/TGRS.2017.2778420]
Kerr Y H, Waldteufel P, Richaume P, Wigneron J P, Ferrazzoli P, Mahmoodi A, Al Bitar A, Cabot F, Gruhier C, Juglea S E, Leroux D, Mialon A and Delwart S. 2012. The SMOS soil moisture retrieval algorithm. IEEE Transactions on Geoscience and Remote Sensing, 50(5): 1384-1403 [DOI: 10.1109/TGRS.2012.2184548http://dx.doi.org/10.1109/TGRS.2012.2184548]
Li M Y and Huang F. 2016. Down-scaling AMSR-E derived soil moisture using SPOT-VGT visible/shortwave infrared data. Remote Sensing Technology and Application, 31(2): 342-348
李梦云, 黄方. 2016. 基于SPOT-VGT可见光/短波红外波段数据对AMSR-E土壤湿度的降尺度研究. 遥感技术与应用, 31(2): 342-348 [DOI: 10.11873/j.issn.1004-0323.2016.2.0342http://dx.doi.org/10.11873/j.issn.1004-0323.2016.2.0342]
Lu Y, Steele-Dunne S C and De Lannoy G J M. 2020. Improving soil moisture and surface turbulent heat flux estimates by assimilation of SMAP brightness temperatures or soil moisture retrievals and GOES land surface temperature retrievals. Journal of Hydrometeorology, 21(2): 183-203 [DOI: 10.1175/JHM-D-19-0130.1http://dx.doi.org/10.1175/JHM-D-19-0130.1]
Ma H Z, Zhang L J, Sun L and Liu Q H. 2014. Farmland soil moisture inversion by synergizing optical and microwave remote sensing data. Journal of Remote Sensing, 18(3): 673-685
马红章, 张临晶, 孙林, 柳钦火. 2014. 光学与微波数据协同反演农田区土壤水分. 遥感学报, 18(3): 673-685 [DOI: 10.11834/jrs.20143077http://dx.doi.org/10.11834/jrs.20143077]
Nasta P, Penna D, Brocca L, Zuecco G and Romano N. 2018. Downscaling near-surface soil moisture from field to plot scale: a comparative analysis under different environmental conditions. Journal of Hydrology, 557: 97-108 [DOI: 10.1016/j.jhydrol.2017.12.017http://dx.doi.org/10.1016/j.jhydrol.2017.12.017]
Peng J, Loew A, Merlin O and Verhoest N E C. 2017. A review of spatial downscaling of satellite remotely sensed soil moisture. Reviews of Geophysics, 55(2): 341-366 [DOI: 10.1002/2016rg000543http://dx.doi.org/10.1002/2016rg000543]
Piles M, Camps A, Vall-Llossera M, Corbella I, Panciera R, Rüdiger C, Kerr Y H and Walker J P. 2011. Downscaling SMOS-derived soil moisture using MODIS visible/infrared data. IEEE Transactions on Geoscience and Remote Sensing, 49(9): 3156-3166 [DOI: 10.1109/TGRS.2011.2120615http://dx.doi.org/10.1109/TGRS.2011.2120615]
Piles M, Petropoulos G P, Sánchez N, González-Zamora Á and Ireland G. 2016. Towards improved spatio-temporal resolution soil moisture retrievals from the synergy of SMOS and MSG SEVIRI spaceborne observations. Remote Sensing of Environment, 180: 403-417 [DOI: 10.1016/j.rse.2016.02.048http://dx.doi.org/10.1016/j.rse.2016.02.048]
Portal G, Vall-Llossera M, Piles M, Camps A, Chaparro D, Pablos M and Rossato L. 2018. A spatially consistent downscaling approach for SMOS using an adaptive moving window. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11(6): 1883-1894 [DOI: 10.1109/jstars.2018.2832447http://dx.doi.org/10.1109/jstars.2018.2832447]
Raffelli G, Previati M, Canone D, Gisolo D, Bevilacqua I, Capello G, Biddoccu M, Cavallo E, Deiana R, Cassiani G and Ferraris S. 2017. Local- and plot-scale measurements of soil moisture: time and spatially resolved field techniques in plain, hill and mountain sites. Water, 9(9): 706 [DOI: 10.3390/w9090706http://dx.doi.org/10.3390/w9090706]
Shi J C, Du Y, Du J Y, Jiang L M, Chai L N, Mao K B, Xu P, Ni W J, Xiong C, Liu Q, Liu C Z, Guo P, Cui Q, Li Y Q, Chen J, Wang A Q, Luo H J and Wang Y H. 2012. Progresses on microwave remote sensing of land surface parameters. Science China Earth Sciences, 55(7): 1052-1078
施建成, 杜阳, 杜今阳, 蒋玲梅, 柴琳娜, 毛克彪, 徐鹏, 倪文俭, 熊川, 刘强, 刘晨洲, 郭鹏, 崔倩, 李云青, 陈晶, 王安琪, 罗禾佳, 王殷辉. 2012. 微波遥感地表参数反演进展. 中国科学: 地球科学, 42(6): 814-842 [DOI: 10.1007/s11430-012-4444-xhttp://dx.doi.org/10.1007/s11430-012-4444-x]
Shibata A, Imaoka K and Koike T. 2003. AMSR/AMSR-E level 2 and 3 algorithm developments and data validation plans of NASDA. IEEE Transactions on Geoscience and Remote Sensing, 41(2): 195-203 [DOI: 10.1109/TGRS.2002.808320http://dx.doi.org/10.1109/TGRS.2002.808320]
Wang A Q and Liu P. 2018. Extended application of a downscaling algorithm for large-scale soil moisture acquired by passive microwave radiometer. Journal of Arid Land Resources and Environment, 32(5): 104-109
王安琪, 柳鹏 2018. 一种被动微波土壤水分降尺度新算法. 干旱区资源与环境, 32(5): 104-109 [DOI: 10.13448/j.cnki.jalre.2018.148http://dx.doi.org/10.13448/j.cnki.jalre.2018.148]
Wang L, Hu Y M, Zhao Y S and Liu Z H. 2012. Remote sensing scale transformation of soil moisture based on block kriging. Journal of Geo-Information Science, 14(4): 465-473
王璐, 胡月明, 赵英时, 刘振华. 2012. 克里格法的土壤水分遥感尺度转换. 地球信息科学学报, 14(4): 465-473 [DOI: 10.3724/SP.J.1047.2012.00465http://dx.doi.org/10.3724/SP.J.1047.2012.00465]
Wei Z S, Meng Y Z, Zhang W, Peng J and Meng L K. 2019. Downscaling SMAP soil moisture estimation with gradient boosting decision tree regression over the Tibetan Plateau. Remote Sensing of Environment, 225: 30-44 [DOI: 10.1016/j.rse.2019.02.022http://dx.doi.org/10.1016/j.rse.2019.02.022]
Wen F P, Zhao W, Wang Q M and Sánchez N. 2020. A Value-consistent method for downscaling SMAP passive soil moisture with MODIS products using self-adaptive window. IEEE Transactions on Geoscience and Remote Sensing, 58(2): 913-924 [DOI: 10.1109/TGRS.2019.2941696http://dx.doi.org/10.1109/TGRS.2019.2941696]
Yan G J, Zhao T J, Mu X H, Wen J G, Pang Y, Jia L, Zhang Y G, Chen D Q, Yao C B, Cao Z Y, Lei Y H, Ji D B, Chen L F, Liu Q H, Lyu L Q, Chen J M and Shi J C. 2021. Comprehensive Remote Sensing Experiment of Carbon Cycle, Water Cycle and Energy Balance in Luan River Basin. National Remote Sensing Bulletin, 25(4): 856-870
阎广建, 赵天杰, 穆西晗, 闻建光, 庞勇, 贾立, 张永光, 陈德清, 姚崇斌, 曹志宇, 雷永荟, 姬大彬, 陈良富, 柳钦火, 吕利清, 陈镜明, 施建成. 2021. 滦河流域碳、水循环和能量平衡遥感综合试验总体设计. 遥感学报, 25(4): 856-870) [DOI: 10.11834/jrs.20210341http://dx.doi.org/10.11834/jrs.20210341]
Zhao T J, Shi J C, Lv L Q, Xu H X, Chen D Q, Cui Q, Jackson T J, Yan G J, Jia L, Chen L F, Zhao K, Zheng X M, Zhao L M, Zheng C L, Ji D B, Xiong C, Wang T X, Li R, Pan J M, Wen j G, Yu C, Zheng Y M, Jiang L M, Chai L N, Lu H, Yao P P, Ma J W, Lv H S, Wu J J, Zhao W, Yang N, Guo P, Li Y X, Hu L, Geng D Y and Zhang Z Q. 2020. Soil moisture experiment in the Luan River supporting new satellite mission opportunities. Remote Sensing of Environment, 240: 111680 [DOI: 10.1016/j.rse.2020.111680http://dx.doi.org/10.1016/j.rse.2020.111680]
Zhao T J, Shi J C, Xu H X, Sun Y L, Chen D Q, Cui Q, Jia L, Huang S, Niu S D, Li X W, Yan G J, Chen L F, Liu Q H, Zhao K, Zheng X M, Zhao L M, Zheng C L, Ji D B, Xiong C, Wang T X, Li R, Pan J M, Wen J G, Mu X H, Yu C, Zheng Y M, Jiang L M, Chai L N, Lu H, Yao P P, Ma J W, Lv H S, Wu J J, Zhao W, Yang N, Guo P, Li Y X, Hu L, Geng D Y, Zhang Z Q, Hu J F and Du A P. 2021. Comprehensive remote sensing experiment of water cycle and energy balance in the Shandian river basin. National Remote Sensing Bulletin, 25(4): 871-887
赵天杰, 施建成, 徐红新, 孙彦龙, 陈德清, 崔倩, 贾立, 黄硕, 牛升达, 李秀伟, 阎广建, 陈良富, 柳钦火, 赵凯, 郑兴明, 赵利民, 郑超磊, 姬大彬, 熊川, 王天星, 李睿, 潘金梅, 闻建光, 穆西晗, 余超, 郑姚闽, 蒋玲梅, 柴琳娜, 卢麾, 姚盼盼, 马建威, 吕海深, 武建军, 赵伟, 杨娜, 郭鹏, 李玉霞, 胡路, 耿德源, 张子谦, 胡建峰, 杜爱萍. 2021. 闪电河流域水循环和能量平衡遥感综合试验. 遥感学报, 25(4): 871-887 [DOI:10.11834/jrs.20219401http://dx.doi.org/10.11834/jrs.20219401]
Zhao W, He J L, Wu Y H, Xiong D H, Wen F P and Li A N. 2019. An analysis of land surface temperature trends in the central Himalayan region based on MODIS products. Remote Sensing, 11(8): 900 [DOI: 10.3390/rs11080900http://dx.doi.org/10.3390/rs11080900]
Zhao W, Li A N, Jin H A, Zhang Z J, Bian J H and Yin G F. 2017. Performance evaluation of the triangle-based empirical soil moisture relationship models based on Landsat-5 TM data and in situ measurements. IEEE Transactions on Geoscience and Remote Sensing, 55(5): 2632-2645 [DOI: 10.1109/TGRS.2017.2649522http://dx.doi.org/10.1109/TGRS.2017.2649522]
Zhao W, Sánchez N, Lu H and Li A N. 2018. A spatial downscaling approach for the SMAP passive surface soil moisture product using random forest regression. Journal of Hydrology, 563: 1009-1024 [DOI: 10.1016/j.jhydrol.2018.06.081http://dx.doi.org/10.1016/j.jhydrol.2018.06.081]
Zhou P, Ding J L, Wang F, Ubul G and Zhang Z G. 2010. Retrieval methods of soil water content in vegetation covering areas based on multi-source remote sensing data. Journal of Remote Sensing, 14(5): 959-973
周鹏, 丁建丽, 王飞, 古丽加玛丽·吾不力, 张治广. 2010. 植被覆盖地表土壤水分遥感反演. 遥感学报, 14(5): 959-973 [DOI: 10.11834/jrs.20100510http://dx.doi.org/10.11834/jrs.20100510]
Zhou Z, Zhao S J and Jiang L M. 2016. Downscaling methods of passive microwave remote sensing of soil moisture. Journal of Beijing Normal University (Natural Science), 52(4): 479-485
周壮, 赵少杰, 蒋玲梅. 2016. 被动微波遥感土壤水分产品降尺度方法研究综述. 北京师范大学学报(自然科学版), 52(4): 479-485 [DOI: 10.16360/j.cnki.jbnuns.2016.04.013http://dx.doi.org/10.16360/j.cnki.jbnuns.2016.04.013]
相关文章
相关作者
相关机构