Comprehensive remote sensing experiment of water cycle and energy balance in the Shandian river basin
- Vol. 25, Issue 4, Pages: 871-887(2021)
Published: 07 April 2021
DOI: 10.11834/jrs.20219401
扫 描 看 全 文
浏览全部资源
扫码关注微信
Published: 07 April 2021 ,
扫 描 看 全 文
赵天杰,施建成,徐红新,孙彦龙,陈德清,崔倩,贾立,黄硕,牛升达,李秀伟,阎广建,陈良富,柳钦火,赵凯,郑兴明,赵利民,郑超磊,姬大彬,熊川,王天星,李睿,潘金梅,闻建光,穆西晗,余超,郑姚闽,蒋玲梅,柴琳娜,卢麾,姚盼盼,马建威,吕海深,武建军,赵伟,杨娜,郭鹏,李玉霞,胡路,耿德源,张子谦,胡建峰,杜爱萍.2021.闪电河流域水循环和能量平衡遥感综合试验.遥感学报,25(4): 871-887
Zhao T J,Shi J C,Xu H X,Sun Y L,Chen D Q,Cui Q,Jia L,Huang S,Niu S D,Li X W,Yan G J,Chen L F,Liu Q H,Zhao K,Zheng X M,Zhao L M,Zheng C L,Ji D B,Xiong C,Wang T X,Li R,Pan J M,Wen J G,Mu X H,Yu C,Zheng Y M,Jiang L M,Chai L N,Lu H,Yao P P,Ma J W,Lyu H S,Wu J J,Zhao W,Yang N,Guo P,Li Y X,Hu L,Geng D Y,Zhang Z Q,Hu J F and Du A P. 2021. Comprehensive remote sensing experiment of water cycle and energy balance in the Shandian river basin. National Remote Sensing Bulletin, 25(4):871-887
遥感试验是进行遥感原理的验证、遥感模型与反演方法的发展、遥感产品的真实性检验,推动卫星计划的论证实施及其观测在地球系统科学中应用的重要途径。闪电河流域水循环和能量平衡遥感综合试验以滦河上游闪电河流域为核心试验区,以地球表层系统的水循环过程和能量平衡为研究对象,旨在通过天—空—地一体化的观测手段,针对不同典型地表类型开展全波段主被动协同遥感观测,研究异质地表和山地条件下像元尺度遥感关键参量的观测方案,研究重要水热参量的遥感方法及其同陆面/水文过程模型的结合,支撑国家民用空间基础设施和空间科学先导专项相关卫星计划的论证实施。其中,航空飞行遥感试验搭载L波段主被动一体化微波载荷、双角度热红外相机、四波段多光谱相机和高光谱成像仪进行协同观测,实现了土壤水分、组分温度、植被含水量、叶面积指数等地表参数以及湖泊、水库、湿地等的遥感监测;地面同步观测试验利用车载微波辐射计、地基雷达和光谱仪进行了典型地物如裸土、植被、水体、人工目标等的遥感观测,并按照样区—样方—样点的多尺度嵌套方案进行了地表参数的同步采样,获取了该地区关键地表参数的短时期时空变化特征;同时配合卫星和机载观测,在闪电河流域完成了土壤温湿度、地表水热通量、地表辐射四分量、降水等气象要素的地面观测网络的建设,为验证地表辐射/散射遥感模型,发展、优化和验证水热参量遥感反演算法,研究地表水热参量尺度效应与尺度转化问题提供了重要平台,将促进陆表能量与水分交换过程的理解及其对全球变化的作用和反馈机制的研究。
Remote sensing experiment is an important tool for the verification of remote sensing principles
development of radiative transfer models and retrieval algorithms
and calibration/validation of satellite products. It can help the demonstration of new satellite missions and the promotion of its application in Earth system science. The comprehensive remote sensing experiment of water cycle and energy balance in the Shandian River (the upper stream of Luan River) integrates the space
airborne and ground based remote sensing technologies to conduct a full-band and active-passive observation of typical elements related to water cycle and energy balance processes of the Earth system. It is aimed to study the spatial-temporal variability and observation strategy of those hydro-thermal elements at various remote sensing scales
to study the remote sensing methodologies of those elements and their application in land surface and hydrology models
and to support the design and feasibility studies of new satellite missions (Terrestrial Water Resources Satellite
Energy Budget Observation Mission) in China.The paper describes the general design of this experiment
its scientific objectives and main compositions including the airborne missions
ground sampling strategies
ground-based observation experiments and key variables measurement through wireless sensor networks. Airborne experiments were conducted to obtain multi-resolution
multi-angle observations of both active and passive microwave together with infrared
multispectral
and hyperspectral data. It enables us to explore the remote sensing of various parameters and the impacts of scaling issues
as well as the incidence angle effects associated with the synthetic aperture radiometer system. Ground-based synchronous observation experiments were carried out based on microwave radiometer
radar and spectroradiometer. Concurrent ground data included soil moisture
ground temperature
vegetation water content and surface roughness
etc. are sampled based on large-medium-small quadrats to cover a wide range of land surface conditions. Moreover
ground observation networks were established to monitor meteorological parameters
soil temperature and moisture
surface radiation
evapotranspiration
and precipitation
etc.This experiment provides a unique platform to explore the synergy of active
passive microwave and optical data for water cycle and energy balance remote sensing at improved accuracy and resolution. The experiment overview and preliminary analysis of remote sensing and ground data have confirmed that the data set will help to address a variety of science questions of land-atmosphere energy and water exchanges under global change.
遥感试验水循环能量平衡闪电河流域航空遥感观测网络
remote sensing experimentwater cycleenergy balanceShandian river basinairborne observationwatershed observation network
Bindlish R, Jackson T J, Gasiewski A J, Klein M and Njoku E G. 2006. Soil moisture mapping and AMSR-E validation using the PSR in SMEX02. Remote Sensing of Environment, 103(2): 127-139 [DOI: 10.1016/j.rse.2005.02.003http://dx.doi.org/10.1016/j.rse.2005.02.003]
Chen S P. 1998. Earth System Science. Beijing: Science and Technology of China Press: 271 (陈述彭. 1998. 地球系统科学: 中国进展·世纪展望. 北京: 中国科学技术出版社: 271)
Colliander A, Jackson T J, Bindlish R, Chan S, Das N, Kim S B, Cosh M H, Dunbar R S, Dang L, Pashaian L, Asanuma J, Aida K, Berg A, Rowlandson T, Bosch D, Caldwell T, Caylor K, Goodrich D, al Jassar H, Lopez-Baeza E, Martínez-Fernández J, González-Zamora A, Livingston S, McNairn H, Pacheco A, Moghaddam M, Montzka C, Notarnicola C, Niedrist G, Pellarin T, Prueger J, Pulliainen J, Rautiainen K, Ramos J, Seyfried M, Starks P, Su Z, Zeng Y, van der Velde R, Thibeault M, Dorigo W, Vreugdenhil M, Walker J P, Wu X, Monerris A, O’Neill P E, Entekhabi D, Njoku E G and Yueh S. 2017. Validation of SMAP surface soil moisture products with core validation sites. Remote Sensing of Environment, 191: 215-231 [DOI: 10.1016/j.rse.2017.01.021http://dx.doi.org/10.1016/j.rse.2017.01.021]
Gu X F, Yu T, Tian G L, Zhou S Y, Wei C J, Li J, Yu Q, Liu D H, Wei Z, Meng Q Y, Xu H, Guo H, Zhou X, Wang C M, Zang W Q, Huang X Z, Gao H L, Zheng F J, Liu M, Wang D, Zhao Y M, Wei X Q, Sun Y, Li B, Liao J and Ren X Y. 2016. Up to the higher altitude-the new "three campaigns" for the development of China spaceborne remote sensing application. Journal of Remote Sensing, 20(5): 781-793
顾行发, 余涛, 田国良, 周上益, 魏成阶, 李娟, 余琦, 刘东晖, 卫征, 孟庆岩, 徐辉, 郭红, 周翔, 王春梅, 臧文乾, 黄祥志, 高海亮, 郑逢杰, 刘苗, 王栋, 赵亚萌, 魏香琴, 孙源, 李斌, 廖戬, 任芯雨. 2016. 40年的跨越-中国航天遥感蓬勃发展中的“三大战役”. 遥感学报, 20(5): 781-793[DOI: 10.11834/jrs.20166244http://dx.doi.org/10.11834/jrs.20166244]
Jackson T J, Bindlish R, Gasiewski A J, Stankov B, Klein M, Njoku E G, Bosch D, Coleman T L, Laymon C A and Starks P. 2005. Polarimetric scanning radiometer C- and X-band microwave observations during SMEX03. IEEE Transactions on Geoscience and Remote Sensing, 43(11): 2418-2430 [DOI: 10.1109/TGRS.2005.857625http://dx.doi.org/10.1109/TGRS.2005.857625]
Jackson T J, Engman E T, Le Vine D, Schmugge T J, Lang R, Wood E and Teng W. 1994. Multitemporal passive microwave mapping in MACHYDRO'90. IEEE Transactions on Geoscience and Remote Sensing, 32(1): 201-206. [DOI: 10.1109/36.285203http://dx.doi.org/10.1109/36.285203]
Jackson T J, Le Vine D M, Hsu A Y, Oldak A, Starks P J, Swift C T, Isham J D and Haken M. 1999. Soil moisture mapping at regional scales using microwave radiometry: the Southern Great Plains Hydrology Experiment. IEEE Transactions on Geoscience and Remote Sensing, 37(5): 2136-2151 [DOI: 10.1109/36.789610http://dx.doi.org/10.1109/36.789610]
Jackson T J, Le Vine D M, Swift C T, Schmugge T J and Schiebe F R. 1995. Large Area mapping of soil moisture using the ESTAR passive microwave radiometer in Washita’92. Remote Sensing of Environment, 54(1): 27-37 [DOI: 10.1016/0034-4257(95)00084-Ehttp://dx.doi.org/10.1016/0034-4257(95)00084-E]
Kustas W P and Goodrich D C. 1994. Preface [to special section on Monsoon'90 multidisciplinary experiment]. Water Resources Research, 30(5): 1211-1225 [DOI: 10.1029/93WR03068http://dx.doi.org/10.1029/93WR03068]
Li X, Cheng G D, Liu S M, Xiao Q, Ma M G, Jin R, Che T, Liu Q H, Wang W Z, Qi Y, Wen J G, Li H Y, Zhu G F, Guo J W, Ran Y H, Wang S G, Zhu Z L, Zhou J, Hu X L and Xu Z W. 2013. Heihe Watershed Allied Telemetry Experimental Research (HiWATER): scientific objectives and experimental design. Bulletin of the American Meteorological Society, 94(8): 1145-1160 [DOI: 10.1175/BAMS-D-12-00154.1http://dx.doi.org/10.1175/BAMS-D-12-00154.1]
Li X, Jin R, Liu S M, Ge Y, Xiao Q, Liu Q H, Ma M G and Ran Y H. 2016. Upscaling research in HiWATER: progress and prospects. Journal of Remote Sensing, 20(5): 921-932
李新, 晋锐, 刘绍民, 葛咏, 肖青, 柳钦火, 马明国, 冉有华. 2016. 黑河遥感试验中尺度上推研究的进展与前瞻. 遥感学报, 20(5): 921-932 [DOI: 10.11834/jrs.20166241http://dx.doi.org/10.11834/jrs.20166241]
Li X, Li X W, Li Z Y, Ma M G, Wang J, Xiao Q, Liu Q, Che T, Chen E X, Yan G J, Hu Z Y, Zhang L X, Chu R Z, Su P X, Liu Q H, Liu S M, Wang J D, Niu Z, Chen Y, Jin R, Wang W Z, Ran Y H, Xin X Z and Ren H Z. 2009. Watershed allied telemetry experimental research. Journal of Geophysical Research Atmospheres, 114(D22): D22103 [DOI: 10.1029/2008JD011590http://dx.doi.org/10.1029/2008JD011590]
Li X, Li X W, Li Z Y, Wang J, Ma M G, Liu Q, Xiao Q, Hu Z Y, Che T, Wang J M, Liu Q H, Chen E X, Yan G J, Liu S M, Wang W Z, Zhang L X, Wang J D, Niu Z, Jin R, Ran Y H and Wang L X. 2012a. Progresses on the watershed allied telemetry experimental research (WATER). Remote Sensing Technology and Application, 27(5): 637-649
李新, 李小文, 李增元, 王建, 马明国, 刘强, 肖青, 胡泽勇, 车涛, 王介民, 柳钦火, 陈尔学, 阎广建, 刘绍民, 王维真, 张立新, 王锦地, 牛铮, 晋锐, 冉有华, 王亮绪. 2012a. 黑河综合遥感联合试验研究进展: 概述. 遥感技术与应用, 27(5): 637-649 [DOI: 10.11873/j.issn.1004-0323.2012.5.637http://dx.doi.org/10.11873/j.issn.1004-0323.2012.5.637]
Li X, Liu S M, Ma M G, Xiao Q, Liu Q H, Jin R, Che T, Wang W Z, Qi Y, Li H Y, Zhu G F, Guo J W, Ran Y H, Wen J G and Wang S G. 2012b. HiWATER: an integrated remote sensing experiment on hydrological and ecological processes in the Heihe River Basin. Advances in Earth Science, 27(5): 481-498
李新, 刘绍民, 马明国, 肖青, 柳钦火, 晋锐, 车涛, 王维真, 祁元, 李弘毅, 朱高峰, 郭建文, 冉有华, 闻建光, 王树果. 2012b. 黑河流域生态—水文过程综合遥感观测联合试验总体设计. 地球科学进展, 27(5): 481-498 [DOI: 10.11867/j.issn.1001-8166.2012.05.0481http://dx.doi.org/10.11867/j.issn.1001-8166.2012.05.0481]
Mackenzie F T. 1998. Our Changing Planet: An Introduction to Earth System Science and Global Environmental Change. 2nd ed. New Jersey: Prentice Hall
Magagi R, Berg A A, Goita K, Belair S, Jackson T J, Toth B, Walker A, McNairn H, O’Neill P E, Moghaddam M, Gherboudj I, Colliander A, Cosh M H, Burgin M, Fisher J B, Kim S B, Mladenova I, Djamai N, Rousseau L P B, Belanger J, Shang J L and Merzouki A. 2013. Canadian experiment for soil moisture in 2010 (CanEx-SM10): overview and preliminary results. IEEE Transactions on Geoscience and Remote Sensing, 51(1): 347-363 [DOI: 10.1109/TGRS.2012.2198920http://dx.doi.org/10.1109/TGRS.2012.2198920]
McNairn H, Jackson T J, Wiseman G, Bélair S, Berg A, Bullock P, Colliander A, Cosh M H, Kim S B, Magagi R, Moghaddam M, Njoku E G, Adams J R, Homayouni S, Ojo E R, Rowlandson T L, Shang J L, Goïta K and Hosseini M. 2015. The soil moisture active passive validation experiment 2012 (SMAPVEX12): prelaunch calibration and validation of the SMAP soil moisture algorithms. IEEE Transactions on Geoscience and Remote Sensing, 53(5): 2784-2801 [DOI: 10.1109/TGRS.2014.2364913http://dx.doi.org/10.1109/TGRS.2014.2364913]
Merlin O, Walker J P, Chehbouni A and Kerr Y. 2008. Towards deterministic downscaling of SMOS soil moisture using MODIS derived soil evaporative efficiency. Remote Sensing of Environment, 112(10): 3935-3946 [DOI: 10.1016/j.rse.2008.06.012http://dx.doi.org/10.1016/j.rse.2008.06.012]
Narayan U, Lakshmi V and Njoku E G. 2004. Retrieval of soil moisture from passive and active L/S band sensor (PALS) observations during the Soil Moisture Experiment in 2002 (SMEX02). Remote Sensing of Environment, 92(4): 483-496 [DOI: 10.1016/j.rse.2004.05.018http://dx.doi.org/10.1016/j.rse.2004.05.018]
Nichols W E, Cuenca R H, Schmugge T J and Wang J R. 1993. Pushbroom microwave radiometer results from HAPEX-MOBILHY. Remote Sensing of Environment, 46(2): 119-128 [DOI: 10.1016/0034-4257(93)90089-Ghttp://dx.doi.org/10.1016/0034-4257(93)90089-G]
Panciera R, Walker J P, Jackson T J, Gray D A, Tanase M A, Ryu D, Monerris A, Yardley H, Rüdiger C, Wu X L, Gao Y and Hacker J M. 2014. The soil moisture active passive experiments (SMAPEx): toward soil moisture retrieval from the SMAP mission. IEEE Transactions on Geoscience and Remote Sensing, 52(1): 490-507 [DOI: 10.1109/TGRS.2013.2241774http://dx.doi.org/10.1109/TGRS.2013.2241774]
Panciera R, Walker J P, Kalma J D, Kim E J, Hacker J M, Merlin O, Berger M and Skou N. 2008. The NAFE’05/CoSMOS data set: toward SMOS soil moisture retrieval, downscaling, and assimilation. IEEE Transactions on Geoscience and Remote Sensing, 46(3): 736-745 [DOI: 10.1109/TGRS.2007.915403http://dx.doi.org/10.1109/TGRS.2007.915403]
Peischl S, Walker J P, Rüdiger C, Ye N, Kerr Y H, Kim E, Bandara R and Allahmoradi M. 2012. The AACES field experiments: SMOS calibration and validation across the Murrumbidgee River catchment. Hydrology and Earth System Sciences, 16(6): 1697-1708 [DOI: 10.5194/hess-16-1697-2012http://dx.doi.org/10.5194/hess-16-1697-2012]
Saleh K, Wigneron J P, Calvet J C, Lopez-Baeza E, Ferrazzoli P, Berger M, Wursteisen P, Simmonds L and Miller J. 2004. The EuroSTARRS airborne campaign in support of the SMOS mission: first results over land surfaces. International Journal of Remote Sensing, 25(1): 177-194 [DOI: 10.1080/0143116031000116444http://dx.doi.org/10.1080/0143116031000116444]
Schmugge T, Jackson T J, Kustas W P and Wang J R. 1992. Passive microwave remote sensing of soil moisture: results from HAPEX, FIFE and MONSOON 90. ISPRS Journal of Photogrammetry and Remote Sensing, 47(2/3): 127-143 [DOI: 10.1016/0924-2716(92)90029-9http://dx.doi.org/10.1016/0924-2716(92)90029-9]
Shi J C and Lei Y H. 2016. Remote sensing and Earth system science. Journal of Remote Sensing, 20(5): 827-831
施建成, 雷永荟. 2016. 遥感与地球系统科学. 遥感学报, 20(5): 827-831 [DOI: 10.11834/jrs.20166183http://dx.doi.org/10.11834/jrs.20166183]
Sun Y L, Li E C, Luan Y H, Zhao T J, Xu H X, Zhao F, Yao C B, Lv L Q, Hu L and Geng D Y. 2020. Radiometric calibration of a new airborne microwave sensor for soil moisture mapping at L-band. National Remote Sensing Bulletin, 25(4): 918-928
孙彦龙, 李恩晨, 栾英宏, 赵天杰, 徐红新, 赵峰, 姚崇斌, 吕利清, 胡路, 耿德元. 2020. 机载土壤水分微波探测仪定标技术研究. 遥感学报, 25(4): 918-928 [DOI: 10.11834/jps.20210358http://dx.doi.org/10.11834/jps.20210358]
Wang J R, Shiue J C, Schmugge T J and Engman E T. 1990. The L-band PBMR measurements of surface soil moisture in FIFE. IEEE Transactions on Geoscience and Remote Sensing, 28(5): 906-914 [DOI: 10.1109/36.58980http://dx.doi.org/10.1109/36.58980]
Wang P X. 2003. Earth system science in China Quo Vadis. Advance in Earth Sciences, 18(6): 837-851
汪品先. 2003. 我国的地球系统科学研究向何处去. 地球科学进展, 18(6): 837-851 [DOI: 10.3321/j.issn:1001-8166.2003.06.003http://dx.doi.org/10.3321/j.issn:1001-8166.2003.06.003]
Yan G J, Zhao T J, Mu X H, Wen J G, Pang Y, Jia L, Zhang Y G, Chen D Q, Yao C B, Cao Z Y, Lei Y H, Ji D B, Chen L F, Liu Q H, Lyu L Q, Chen J M and Shi J C. 2021. Comprehensive Remote Sensing Experiment of Carbon Cycle, Water Cycle and Energy Balance in Luan River Basin. National Remote Sensing Bulletin, 25(4): 856-870
阎广建, 赵天杰, 穆西晗, 闻建光, 庞勇, 贾立, 张永光, 陈德清, 姚崇斌, 曹志宇, 雷永荟, 姬大彬, 陈良富, 柳钦火, 吕利清, 陈镜明, 施建成. 2021. 滦河流域碳、水循环和能量平衡遥感综合试验总体设计. 遥感学报, 25(4): 856-870 [DOI:10.11834/jrs.20210341http://dx.doi.org/10.11834/jrs.20210341]
Zhao T J, Zhang L X, Jiang L M, Chen Q, Zhang Z Y and Zhang Y P. 2009. Joint inversion of soil moisture using active and passive microwave data. Advances in Earth Science, 24(7): 769-775
赵天杰, 张立新, 蒋玲梅, 陈权, 张志玉, 张勇攀. 2009. 利用主被动微波数据联合反演土壤水分. 地球科学进展, 24(7): 769-775[DOI: 10.3321/j.issn:1001-8166.2009.07.010http://dx.doi.org/10.3321/j.issn:1001-8166.2009.07.010]
Zheng C L, Hu G C, Chen Q T and Jia L. 2020. Impact of remote sensing soil moisture on the evapotranspiration estimation. National Remote Sensing Bulletin, 25(4): 991-1000
郑超磊, 胡光成, 陈琪婷, 贾立. 2020. 遥感土壤水分对蒸散发估算的影响研究. 遥感学报, 25(4): 991-1000 [DOI: 10.11834/jrs.20210038http://dx.doi.org/10.11834/jrs.20210038]
Zribi M, Pardé M, Boutin J, Fanise P, Hauser D, Dechambre M, Kerr Y, Leduc-Leballeur M, Reverdin G, Skou N, Søbjærg S, Albergel C, Calvet J C, Wigneron J P, Lopez-Baeza E, Rius A and Tenerelli J. 2011. CAROLS: a new airborne L-band radiometer for ocean surface and land observations. Sensors, 11(1): 719-742 [DOI: 10.3390/s110100719http://dx.doi.org/10.3390/s110100719]
相关作者
相关机构