Global water cycle studies from the perspective of space earth science
- Vol. 25, Issue 4, Pages: 847-855(2021)
Published: 07 April 2021
DOI: 10.11834/jrs.20219467
扫 描 看 全 文
浏览全部资源
扫码关注微信
Published: 07 April 2021 ,
扫 描 看 全 文
施建成,赵天杰,杨晓峰.2021.空间地球科学视角下的全球水循环研究.遥感学报,25(4): 847-855
Shi J C,Zhao T J and Yang X F. 2021. Global water cycle studies from the perspective of space earth science. National Remote Sensing Bulletin, 25(4):847-855
空间地球科学是利用空间观测的手段,研究地球系统、各子系统之间以及各要素和过程之间的相互作用、变化机制及其发展演化的一门综合性、交叉性学科,为科学家开展地球系统科学研究提供新手段、新思路和全新视角。空间地球科学的发展推动航天技术、遥感和测绘科学、地球系统科学包括气象、海洋、水文、生态等一系列学科的发展,是全球变化背景下促进全球治理和“人类命运共同体”构建的重要基石。本文主要回顾空间地球科学的产生和发展历程,以全球水循环为例阐述空间观测在地球系统关键循环过程研究中的作用,并对中国未来空间地球观测进行展望,以期盼中国空间地球科学事业迈向新篇章。
The space Earth science is a comprehensive and interdisciplinary discipline that studies the interactions
mechanisms and evolutions of the Earth system and Earth’s subsystems through the means of space observation (satellite remote sensing). It brings new means
new ideas and new perspectives to scientists for Earth science studies. The development of space Earth science will promote the development of a series of disciplines including aerospace technology
remote sensing science
Earth system science
meteorology
hydrology
ecology etc. It is an important cornerstone for the cooperation to jointly build a community of common destiny for all mankind. This article mainly reviews the development of space Earth science
and discusses the role of space observation in the study of key subsystems (e.g.
water cycle) of the Earth system. It also looks forward to the future development of space Earth science in China.
Space Earth science has emerged as a powerful tool to investigate the Earth as a system
expanding the research of Earth science from local to the global dimensions
from static to dynamic queues
and will continue to expand our knowledge about how the Earth has changed. The current space Earth sciences are showing some new development trends
such as (1) paying more attention to the key cyclic processes in the Earth system
and (2) Combining of satellite remote sensing and Earth system model. Taking the observation of Earth’s water cycle from space as an example
the key elements and process variables related to the global water cycle include precipitation
evapotranspiration
runoff
soil moisture
sea temperature and salinity
surface-water bodies
glaciers
snow
frozen soil
sea ice
polar ice caps and ice sheets
atmospheric water vapor
and groundwater etc. Satellite remote sensing has the unique advantage to provide information on the water status
migration
exchange
and phase change processes
which are essential information involved in the global climate change. At present
meteorological
oceanic and Earth observation satellites that have been launched internationally and have been able to measure many water cycle elements in the atmosphere
ocean
and land. These space observation data have greatly enhanced scientists’ knowledge and understanding of the global water cycle process.
The outlook for future space Earth observation in the field of water cycle is as follows.
(1) Develop satellites for detecting surface state variables of water cycle
including the synthetic aperture microwave radiometer technology
active and passive integrated detection technology
to enable multi-element
high-accuracy
high-resolution simultaneous observation of key state variables such as soil moisture
soil freeze/thaw
snow properties and sea surface salinity
etc.
(2) Develop satellites for estimating land-atmosphere water fluxes of water cycle (precipitation and evapotranspiration) by enhancing the atmospheric detection abilities to distinguish between rainfall and snowfall
and combining the thermal infrared and microwave measurements to improve the quantities and qualities of variables related to evapotranspiration.
(3) Develop thematic satellites of the cryosphere (water in solid form)
including the development of long-wavelength (such as P-band) and wide-band microwave radiometer for the measurement of ice density and temperature profile of ice sheets
the measurement of glacier thickness
and the observation of the thickness of permafrost active layer
etc.
and the development of synthetic aperture radar interferometry and lidar for high-precision surveying of ice sheet surface elevation and ice volume.
空间地球科学地球系统科学遥感科学全球变化全球水循环
space earth scienceearth system scienceremote sensingglobal changewater cycle
Bentamy A, Piollé J F, Grouazel A, Danielson R, Gulev S, Paul F, Azelmat H, Mathieu P P, von Schuckmann K, Sathyendranath S, Evers-King H, Esau I, Johannessen J A, Clayson C A, Pinker R T, Grodsky S A, Bourassa M, Smith S R, Haines K, Valdivieso M, Merchant C J, Chapron B, Anderson A, Hollmann R and Josey S A. 2017. Review and assessment of latent and sensible heat flux accuracy over the global oceans. Remote Sensing of Environment, 201: 196-218. [DOI: 10.1016/j.rse.2017.08.016http://dx.doi.org/10.1016/j.rse.2017.08.016]
Biancamaria S, Lettenmaier D P and Pavelsky T M. 2016. The SWOT Mission and Its Capabilities for Land Hydrology. Surveys in Geophysics, 37: 307-337. [DOI: 10.1007/s10712-015-9346-yhttp://dx.doi.org/10.1007/s10712-015-9346-y]
Bretherton F P. 1985. Earth System Science and Remote Sensing. Proceedings of the IEEE, 73(6): 1118-1127. [DOI: 10.1109/PROC.1985.13242http://dx.doi.org/10.1109/PROC.1985.13242]
Dong C, Yang J, Zhang W, Yang Z, Lu N, Shi J, Zhang P, Liu Y and Cai B. 2009. An overview of a new Chinese weather satellite FY-3A. Bulletin of the American Meteorological Society, 90(10): 1531-1544. [DOI: 10.1175/2009BAMS2798.1http://dx.doi.org/10.1175/2009BAMS2798.1]
Dorigo W, Wagner W, Albergel C, Albrecht F, Balsamo G, Brocca L, Chung D, Ertl M, Forkel M, Gruber A, Haas E, Hamer P D, Hirschi M, Ikonen J, de Jeu R, Kidd R, Lahoz W, Liu Y Y, Miralles D, Mistelbauer T, Nicolai-Shaw N, Parinussa R, Pratola C, Reimer C, van der Schalie R, Seneviratne S I, Smolander T and Lecomte P. 2017. ESA CCI Soil Moisture for improved Earth system understanding: State-of-the art and future directions. Remote Sensing of Environment, 203: 185-215. [DOI: 10.1016/j.rse.2017.07.001http://dx.doi.org/10.1016/j.rse.2017.07.001]
Eltahir E A B and Bras R L. 1996. Precipitation recycling. Reviews of geophysics, 34(3): 367-378. [DOI: 10.1029/96RG01927http://dx.doi.org/10.1029/96RG01927]
Entekhabi D, Njoku E G, O’Neill P E, Kellogg K H, Crow W T, Edelstein W N, Entin J K, Goodman S D, Jackson T J, Johnson J, Kimball J, Piepmeier J R, Koster R D, Martin N, McDonald K C, Moghaddam M, Moran S, Reichle R, Shi J C, Spencer M W, Thurman S W, Tsang L and Van Zyl J. 2010. The Soil Moisture Active Passive (SMAP) Mission. Proceedings of the IEEE, 98(5): 704-716. [DOI: 10.1109/JPROC.2010.2043918http://dx.doi.org/10.1109/JPROC.2010.2043918]
Hollmann R, Merchant C J, Saunders R, Downy C, Buchwitz M, Cazenave A, Chuvieco E, Defourny P, De Leeuw G, Forsberg R, Holzer-Popp T, Paul F, Sandven S, Sathyendranath S, Van Roozendael M and Wagner W. 2013. The ESA climate change initiative: Satellite data records for essential climate variables. Bulletin of the American Meteorological Society, 94: 1541-1552. [DOI: 10.1175/BAMS-D-11-00254.1http://dx.doi.org/10.1175/BAMS-D-11-00254.1]
Jezek K C, Kwok R, Kaleschke L, Belgiovane D J, Chen C C, Bringer A, Johnson J T, Demir O, Andrews M J, Macelloni G, Brogioni M, Leduc-Leballeur M, Tan S and Tsang L. 2019. Remote Sensing of Sea Ice Thickness and Salinity with 0.5-2 GHz Microwave Radiometry. IEEE Transactions on Geoscience and Remote Sensing, 57: 8672-8684. [DOI: 10.1109/TGRS.2019.2922163http://dx.doi.org/10.1109/TGRS.2019.2922163]
Jiang X, Lin M, Liu J, Zhang Y, Xie X, Peng H and Zhou W. 2012. The HY-2 satellite and its preliminary assessment. International Journal of Digital Earth, 5: 266-281. [DOI: 10.1080/17538947.2012.658685http://dx.doi.org/10.1080/17538947.2012.658685]
Kern M, Cullen R, Berruti B, Bouffard J, Casal T, Drinkwater M R, Gabriele A, Lecuyot A, Ludwig M, Midthassel R, Navas Traver I, Parrinello T, Ressler G, Andersson E, Martin-Puig C, Andersen O, Bartsch A, Farrell S, Fleury S, Gascoin S, Guillot A, Humbert A, Rinne E, Shepherd A, Van Den Broeke M R and Yackel J. 2020. The Copernicus Polar Ice and Snow Topography Altimeter (CRISTAL) high-priority candidate mission. Cryosphere, 14: 2235-2251. [DOI: 10.5194/tc-14-2235-2020http://dx.doi.org/10.5194/tc-14-2235-2020]
Kerr Y H, Waldteufel P, Wigneron J-P, Delwart S, Cabot F, Boutin J, Escorihuela M-J, Font J, Reul N, Gruhier C, Juglea S E, Drinkwater M R, Hahne A, Martín-Neira M and Mecklenburg S. 2010. The SMOS Mission: New Tool for Monitoring Key Elements of the Global Water Cycle. Proceedings of the IEEE, 98(5): 666-687. [DOI: 10.1109/JPROC.2010.2043032http://dx.doi.org/10.1109/JPROC.2010.2043032]
Kilic L, Prigent C, Aires F, Boutin J, Heygster G, Tonboe R T, Roquet H, Jimenez C and Donlon C. 2018. Expected Performances of the Copernicus Imaging Microwave Radiometer (CIMR) for an All-Weather and High Spatial Resolution Estimation of Ocean and Sea Ice Parameters. Journal of Geophysical Research: Oceans. 123: 7564-7580. [DOI: 10.1029/2018JC014408http://dx.doi.org/10.1029/2018JC014408]
Lagerloef G S E, Swift C T and Le Vine D M. 1995. Sea surface salinity: The next remote sensing challenge. Oceanography, 8(2): 44-50.
Lagerloef G S E, Colomb F R, Le Vine D M, Wentz F, Yueh S, Ruf C, Lilly J, Gunn J, Chao Y, Decharon A, Feldman G and Swift C. 2008. The Aquarius/SAC-D mission: Designed to meet the salinity remote-sensing challenge. Oceanography, 21(SPL.ISS. 1): 68-81. [DOI: 10.5670/oceanog.2008.68http://dx.doi.org/10.5670/oceanog.2008.68]
Le Vine D M, Lagerloef G S E and Torrusio S E. 2010. Aquarius and Remote Sensing of Sea Surface Salinity from Space. Proceedings of the IEEE, 98(5): 688-703. [DOI: 10.1109/JPROC.2010.2040550http://dx.doi.org/10.1109/JPROC.2010.2040550]
Schlesinger W H and Jasechko S. 2014. Transpiration in the global water cycle. Agricultural and Forest Meteorology, 189-190: 115-117. [DOI: 10.1016/j.agrformet.2014.01.011http://dx.doi.org/10.1016/j.agrformet.2014.01.011]
Schutz B E, Zwally H J, Shuman C A, Hancock D and DiMarzio J P. 2005. Overview of the ICESat mission. Geophysical Research Letters, 32: 1-4. [DOI: 10.1029/2005GL024009http://dx.doi.org/10.1029/2005GL024009]
Skofronick-jackson G, Science N S, Collins F, Tech- C and Agency A E. 2017. The Global Precipitation Measurement (GPM) Mission for Science and Society. Bulletin of the American meteorological society, 98(8): 1679-1696. [DOI: 10.1175/BAMS-D-15-00306.1http://dx.doi.org/10.1175/BAMS-D-15-00306.1]
Shi J C, Xiong C and Jiang L M. 2016. Review of snow water equivalent microwave remote sensing. Science China Earth Sciences. 59: 731-745. [DOI: 10.1007/s11430-015-5225-0http://dx.doi.org/10.1007/s11430-015-5225-0]
Shi J C, Dong X L, Zhao T J, Du J Y, Jiang L M, Du Y, Xiong C. 2014. WCOM: The science scenario and objectives of a global water cycle observation mission. In 2014 IEEE Geoscience and Remote Sensing Symposium, 3646-3649.
Shi J C and Lei Y H. 2016. Remote sensing and Earth system science. Journal of Remote Sensing, 18(6): 837-851
施建成, 雷永荟. 2016. 遥感与地球系统科学. 遥感学报, 20(5): 827-831
Sun S. 2005. Global change and Earth system science research in China. Advance in Earth Science, 20(1): 6-10.
孙枢. 2005. 对我国全球变化与地球系统科学研究的若干思考. 地球科学进展, 20(1): 6-10
Tang W, Fore A, Yueh S, Lee T, Hayashi A, Sanchez-Franks A, Martinez J, King B and Baranowski D. 2017. Validating SMAP SSS with in situ measurements. Remote Sensing of Environment 200: 326-340 [DOI: 10.1016/j.rse.2017.08.021http://dx.doi.org/10.1016/j.rse.2017.08.021]
Tapley B D, Bettadpur S, Watkins M and Reigber C. 2004. The gravity recovery and climate experiment: Mission overview and early results. Geophysical Research Letters. 31: 1-4. [DOI: 10.1029/2004GL019920http://dx.doi.org/10.1029/2004GL019920]
Wang P X. 2003. Earth system Science in China Quo Vadis. Advance in Earth Science, 18(6): 837-851
汪品先. 2003. 我国的地球系统科学研究向何处去. 地球科学进展, 18(6): 837-851
Zhao T, Shi J, Hu T, Zhao L, Zou D, Wang T, Ji D, Li R and Wang P. 2017. Estimation of high-resolution near-surface freeze/thaw state by the integration of microwave and thermal infrared remote sensing data on the Tibetan Plateau. Earth and Space Science, 4: 472-484. [DOI: 10.1002/2017EA000277http://dx.doi.org/10.1002/2017EA000277]
Zhao T, Shi J, Lv L, Xu H, Chen D, Cui Q, Jackson T J, Yan G, Jia L, Chen L, Zhao K, Zheng X, Zhao L, Zheng C, Ji D, Xiong C, Wang T, Li R, Pan J, Wen J, Yu C, Zheng Y, Jiang L, Chai L, Lu H, Yao P, Ma J, Lv H, Wu J, Zhao W, Yang N, Guo P, Li Y, Hu L, Geng D and Zhang Z. 2020. Soil moisture experiment in the Luan River supporting new satellite mission opportunities. Remote Sensing of Environment. 240: 111680 [DOI: 10.1016/j.rse.2020.111680http://dx.doi.org/10.1016/j.rse.2020.111680]
Zhao T. 2018. Recent advances of L-band application in the passive microwave remote sensing of soil moisture and its prospects. Progress in Geography, 37(02): 198-213
赵天杰. 2018. 被动微波反演土壤水分的L波段新发展及未来展望.地理科学进展, 37(02): 198-213 [DOI: 10.18306/dlkxjx.2018.02.003http://dx.doi.org/10.18306/dlkxjx.2018.02.003]
相关文章
相关作者
相关机构