Terahertz radiation and scattering characteristics of ice cloud and sounding parameter design
- Vol. 26, Issue 11, Pages: 2204-2218(2022)
Published: 07 November 2022
DOI: 10.11834/jrs.20220211
扫 描 看 全 文
浏览全部资源
扫码关注微信
Published: 07 November 2022 ,
扫 描 看 全 文
陈柯,董杉彬,李迎雪,徐红新,谢振超,姜丽菲,李恩晨,吴琼,商建.2022.太赫兹冰云辐射散射特性研究和探测参数设计.遥感学报,26(11): 2204-2218
Chen K,Dong S B,Li Y X,Xu H X,Xie Z C,Jiang L F,Li E C,Wu Q and Shang J. 2022. Terahertz radiation and scattering characteristics of ice cloud and sounding parameter design. National Remote Sensing Bulletin, 26(11):2204-2218
星载被动太赫兹遥感是目前最具潜力的冰云探测手段,而理解冰云参数如何影响太赫兹辐射传输过程,掌握太赫兹频段冰云辐射散射特性是实现高精度太赫兹冰云定量探测的前提,对冰云探测仪器的设计和冰云参数反演也非常重要。基于离散纵标切线性辐射传输模式DOTLRT模拟计算太赫兹频段冰云辐射亮温及其雅可比矩阵,以气象再分析资料FNL为初值驱动中尺度气象研究与预报模式WRF预报得到冰云参数作为DOTLRT模式的输入。通过与星载微波探测仪ATMS的183 GHz频段观测亮温对比验证了模拟太赫兹冰云亮温具有较好的精度,并且表明太赫兹亮温同时受到冰云中的冰粒子和霰粒子的影响,且具有不同的特性。定量分析了冰云中冰、霰两种粒子的特性参数(等效粒径
D
me
、路径总量
IWP
、
GWP
)和观测几何对冰云太赫兹亮温的影响。在综合了太赫兹亮温的敏感性分析、雅可比矩阵的峰值高度分析和痕量气体吸收的基础上,给出了太赫兹冰云探测器的优化探测频段(183 GHz、243 GHz、325 GHz、448 GHz、664 GHz 和874 GHz)和观测角度(53°±5°)。冰云散射和辐射特性表明太赫兹冰云探测需要同时考虑冰粒子和霰粒子。提供了冰、霰两种冰云粒子的辐射散射特性,突破现有研究仅仅计算单一冰粒子的局限,可为中国发展冰云太赫兹探测载荷提供技术支撑。
Satellite-borne passive terahertz remote sensing is currently most promising method for ice cloud sounding due to a number of potential advantages that complement existing visible and infrared techniques. Since the wavelength of terahertz radiation is comparable to the size of ice crystals
observed brightness temperature are well correlated to ice mass. The purpose of this article is to present the terahertz radiation and scattering characteristics of ice and graupel particles which constitute ice clouds and to understand how ice cloud parameters affect the terahertz brightness temperature
which guide the design of terahertz ice cloud sounding instruments. In this study
the terahertz brightness temperature and Jacobian matrix are simulated by applying the Discrete-Ordinate Tangent Linear Radiative Transfer (DOTLRT) model to the spatially and microphysically detailed output of ice clouds predicted by the Weather Research and Forecasting (WRF) model and Final (FNL) analysis data. The DOTLRT model uses the classical Mie scattering formula to calculate the scattering characteristics of liquid
rain
ice
snow
and graupel particles in clouds. The validity of the simulated 183 GHz brightness temperature is verified by comparison with the collocated observation from the Advanced Technology Microwave Sounder (ATMS). The simulation shows that the terahertz brightness temperature of the ice clouds is affected by ice and graupel particles with different properties
e.g.
for a cloud with IWP of 300 g/m
2
and GWP of 300 g/m
2
the brightness temperature depression due to ice and graupel particles at 183.31+2.0 GHz are 2.28 K and 12.26 K respectively
and at 183.31+7.0 GHz are 6.30 K and 62.37 K respectively. Then
the impacts of the observation geometry and the parameters of the ice and graupel particles
including mass equivalent spherical diameter (D
me
)
Ice Water Path (IWP)
and Graupel Water Path (GWP)
on the terahertz brightness temperature were quantitatively analyzed. Finally
the optimal sounding frequency bands (183 GHz
243 GHz
325 GHz
448 GHz
664 GHz
and 874 GHz) and observation angle (53°±5°) of the terahertz ice cloud sounding instrument were derived based on the sensitivity analysis of the terahertz brightness temperature
Jacobian matrix
and trace gas absorption. The calculated terahertz brightness temperature spectrums indicate that the ice and graupel particles need to be considered in the terahertz ice cloud remote sensing. The terahertz radiation and scattering characteristics of the ice and graupel particles studied in this work can provide technical support for the development of the future terahertz ice cloud sounding instrument.
太赫兹冰云遥感辐射散射特性亮温模拟冰水路径总量等效粒径冰粒子霰粒子
Terahertzice cloud remote sensingthe radiation and scattering characteristicsbrightness temperature simulationice water pathmass equivalent spherical diameterice particlesgraupel particles
Accadia C, Schlüssel P, Phillips P L and Wilson J J W. 2013. The EUMETSAT polar system-second generation (EPS-SG) micro-wave and sub-millimetre wave imaging missions//Proceedings of SPIE 8889, Sensors, Systems, and Next-Generation Satellites XVII. Dresden: SPIE: 66-74 [DOI: 10.1117/12.2028676http://dx.doi.org/10.1117/12.2028676]
Baran A J, Ishimoto H, Sourdeval O, Hesse E and Harlow C. 2018. The applicability of physical optics in the millimetre and sub-millimetre spectral region. Part Ⅱ: application to a three-component model of ice cloud and its evaluation against the bulk single-scattering properties of various other aggregate models. Journal of Quantitative Spectroscopy and Radiative Transfer, 206: 83-100 [DOI: 10.1016/j.jqsrt.2017.10.027http://dx.doi.org/10.1016/j.jqsrt.2017.10.027]
Battaglia A, Westbrook C D, Kneifel S, Kollias P, Humpage N and Petty G W. 2014. G-band atmospheric radars: new frontiers in cloud physics. Atmospheric Measurement Techniques, 7: 1527-1546 [DOI: 10.5194/amtd-7-1527-2014http://dx.doi.org/10.5194/amtd-7-1527-2014]
Bennartz R and Bauer P. 2003. Sensitivity of microwave radiances at 85—183 GHz to precipitating ice particles. Radio Science, 38(4): 1-8 [DOI: 10.1029/2002RS002626http://dx.doi.org/10.1029/2002RS002626]
Buehler S A, Defer E, Evans F, Eliasson S, Mendrok J, Eriksson P, Lee C, Jiménez C, Prigent C, Crewell S, Kasai Y, Bennartz R and Gasiewski A J. 2012. Observing ice clouds in the submillimeter spectral range: the CloudIce mission proposal for ESA’s Earth Explorer 8[J]. Atmospheric Measurement Techniques, 5(7): 1529-1549 [DOI: 10.5194/amt-5-1529-2012http://dx.doi.org/10.5194/amt-5-1529-2012]
Buehler S A, Jiménez C, Evans K F, Eriksson, P, Rydberg B, Heymsfield A J, Stubenrauch C J, Lohmann U, Emde C, John V O, Sreerekha T R and Davis C P. 2007. A concept for a satellite mission to measure cloud ice water path, ice particle size, and cloud altitude. Quarterly Journal of the Royal Meteorological Society: A Journal of the Atmospheric Sciences, Applied Meteorology and Physical Oceanography, 133(S2), 109-128 [DOI: 10.1002/qj.143http://dx.doi.org/10.1002/qj.143]
Dong P M, Li W, Huang J P and Liu L K. 2014. Study on the effect and sensitivity of water content on the satellite microwave remote sensing. Remote Sensing Technology and Application, 29(2):300-308
董佩明, 李玮, 黄江平, 刘靓坷. 2014. 卫星微波遥感受水成物影响及其敏感度分析研究. 遥感技术与应用, 29(2): 300-308 [DOI:10.11873/j.issn.1004-0323.2014.2.0300http://dx.doi.org/10.11873/j.issn.1004-0323.2014.2.0300]
Duan M Z and Lu D R. 2007. Rapid Yet Accurate Radiative Transfer Algorithm for Remote Sensing. Journal of Remote Sensing, 11(3):359-366
段民征, 吕达仁. 2007. 适用于遥感应用的辐射传输高精度快速计算方法. 遥感学报, 11(3):359-366 [DOI: 10.11834/jrs.20070349http://dx.doi.org/10.11834/jrs.20070349]
Duncan D I and Eriksson P. 2018. An update on global atmospheric ice estimates from satellite observations and reanalyses. Atmospheric Chemistry and Physics, 18(15), 11205-11219 [DOI: 10.5194/acp-18-11205-2018http://dx.doi.org/10.5194/acp-18-11205-2018]
Evans K F, Evans A H, Nolt I G and Marshall B T. 1999. The prospect for remote sensing of cirrus clouds with a submillimeter-wave spectrometer. Journal of Applied Meteorology, 38(5): 514-525 [DOI: 10.1175/1520-0450(1999)038<0514:TPFRSO>2.0.CO;2http://dx.doi.org/10.1175/1520-0450(1999)038<0514:TPFRSO>2.0.CO;2]
Evans K F and Stephens G L. 1995a. Microwave radiative transfer through clouds composed of realistically shaped ice crystals. Part I. Single scattering properties. Journal of the Atmospheric Sciences, 52(11): 2041-2057 [DOI: 10.1175/1520-0469(1995)052<2041:MRTTCC>2.0.CO;2http://dx.doi.org/10.1175/1520-0469(1995)052<2041:MRTTCC>2.0.CO;2]
Evans K F and Stephens G L. 1995b. Microweve radiative transfer through clouds composed of realistically shaped ice crystals. Part Ⅱ. Remote sensing of ice clouds. Journal of the Atmospheric Sciences, 52(11): 2058-2072 [DOI: 10.1175/1520-0469(1995)052<2058:MRTTCC>2.0.CO;2http://dx.doi.org/10.1175/1520-0469(1995)052<2058:MRTTCC>2.0.CO;2]
Evans K F, Walter S J, Heymsfield A J and Deeter M N. 1998. Modeling of submillimeter passive remote sensing of cirrus clouds. Journal of Applied Meteorology, 37(2): 184-205 [DOI: 10.1175/1520-0450(1998)037<0184:MOSPRS>2.0.CO;2http://dx.doi.org/10.1175/1520-0450(1998)037<0184:MOSPRS>2.0.CO;2]
Evans K F, Walter S J, Heymsfield A J and McFarquhar G M. 2002. Submillimeter-wave cloud ice radiometer: simulations of retrieval algorithm performance. Journal of Geophysical Research: Atmospheres, 107(D3): 4028 [DOI: 10.1029/2001JD000709http://dx.doi.org/10.1029/2001JD000709]
Evans K F, Wang J R, Racette P E, Heymsfield G and Li L H. 2005. Ice cloud retrievals and analysis with the compact scanning submillimeter imaging radiometer and the cloud radar system during CRYSTAL FACE. Journal of Applied Meteorology, 44(6): 839-859 [DOI: 10.1175/JAM2250.1http://dx.doi.org/10.1175/JAM2250.1]
He J Y and Zhang S W. 2016. Channel selection of sub-millimeter ice-cloud sounder. Journal of Terahertz Science and Electronic Information Technology, 14(2): 180-185
何杰颖, 张升伟. 2016. 亚毫米波冰云成像仪通道选择. 太赫兹科学与电子信息学报, 14(2): 180-185 [DOI: 10.11805/TKYDA201602.0180http://dx.doi.org/10.11805/TKYDA201602.0180]
Hong G, Yang P, Baum B A, Heymsfield A J, Weng F Z, Liu Q H, Heygster G and Buehler S A. 2009. Scattering database in the millimeter and submillimeter wave range of 100—1000 GHz for nonspherical ice particles. Journal of Geophysical Research: Atmospheres, 114(D6): D06201 [DOI: 10.1029/2008JD010451http://dx.doi.org/10.1029/2008JD010451]
Jiménez C, Buehler S A, Rydberg B, Eriksson P and Evans K F. 2007. Performance simulations for a submillimetre-wave satellite instrument to measure cloud ice. Quarterly Journal of the Royal Meteorological Society, 133(S2): 129-149 [DOI: 10.1002/qj.134http://dx.doi.org/10.1002/qj.134]
Kangas V, D’Addio S, Klein U, Loiselet M, Mason G, Orlhac J C, Gonzalez R, Bergada M, Brandt M and Thomas B. 2014. Ice cloud imager instrument for MetOp Second Generation//Proceedings of the 13th Specialist Meeting on Microwave Radiometry and Remote Sensing of the Environment (MicroRad). Pasadena: IEEE: 228-231 [DOI: 10.1109/MicroRad.2014.6878946http://dx.doi.org/10.1109/MicroRad.2014.6878946]
Kattawar G W, Hitzfelder S J and Binstock J. 1973. An explicit form of the Mie phase matrix for multiple scattering calculations in the I, Q, U and V Representation. Journal of the Atmospheric Sciences, 30(2): 289-295 [DOI: 10.1175/1520-0469(1973)030<0289:AEFOTM>2.0.CO;2http://dx.doi.org/10.1175/1520-0469(1973)030<0289:AEFOTM>2.0.CO;2]
Liu L, Weng C S, Li S L, Hu S, Ye J, Dou F L and Shang J. 2020. Review of terahertz passive remote sensing of ice clouds. Advances in Earth Science, 35(12): 1211-1221
刘磊, 翁陈思, 李书磊, 胡帅, 叶进, 窦芳丽, 商建. 2020. 太赫兹波被动遥感冰云研究现状及进展. 地球科学进展, 35(12): 1211-1221 [DOI: 10.11867/j.issn.1001-8166.2020.103http://dx.doi.org/10.11867/j.issn.1001-8166.2020.103]
Liu G S. 2008. A database of microwave single-scattering properties for nonspherical ice particles. Bulletin of the American Meteorological Society, 89(10): 1563-1570 [DOI: 10.1175/2008BAMS2486.1http://dx.doi.org/10.1175/2008BAMS2486.1]
Liu S S, Dong P M, Han W and Zhang W J. 2012. Simulative study of satellite microwave observations for Typhoon Luosha using RTTOV and CRTM and the comparison. Acta Meteorologica Sinica, 70(3): 585-597
刘硕松, 董佩明, 韩威, 张文军. 2012. RTTOV和CRTM对“罗莎”台风卫星微波观测的模拟研究与比较. 气象学报, 70(3): 585-597 [DOI: 10.11676/qxxb2012.048http://dx.doi.org/10.11676/qxxb2012.048]
Miao J, Johnsen K P, Buehler S and Kokhanovsky A. 2003. The potential of polarization measurements from space at mm and sub-mm wavelengths for determining cirrus cloud parameters. Atmospheric Chemistry and Physics, 3(1): 39-48 [DOI: 10.5194/acp-3-39-2003http://dx.doi.org/10.5194/acp-3-39-2003]
Rule I, Lee C and Moyna B. 2013. An introduction to ISMAR//Proceedings of the 6th UK, Europe, China Millimeter Waves and THz Technology Workshop (UCMMT). Rome: IEEE: 1-2 [DOI: 10.1109/UCMMT.2013.6641543http://dx.doi.org/10.1109/UCMMT.2013.6641543]
Skofronick-Jackson G M, Gasiewski A J and Wang J R. 2002. Influence of microphysical cloud parameterizations on microwave brightness temperatures. IEEE Transactions on Geoscience and Remote Sensing, 40(1): 187-196 [DOI: 10.1109/36.981360http://dx.doi.org/10.1109/36.981360]
Tang C and Aydin K. 1995. Scattering from ice crystals at 94 and 220 GHz millimeter wave frequencies. IEEE Transactions on Geoscience and Remote Sensing, 33(1): 93-99 [DOI: 10.1109/36.368218http://dx.doi.org/10.1109/36.368218]
Voronovich A G, Gasiewski A J and Weber B L. 2004. A fast multistream scattering-based Jacobian for microwave radiance assimilation. IEEE Transactions on Geoscience and Remote Sensing, 42(8): 1749-1761 [DOI: 10.1109/TGRS.2004.830637http://dx.doi.org/10.1109/TGRS.2004.830637]
Wang H, Duan C D, Lyu R C, Lei H W, Zhu Z B and Chen G. 2017. Development of space borne Terahertz ice clouds measurement technology and existing technical problems. Journal of Terahertz Science and Electronic Information Technology, 15(5): 722-727
王虎, 段崇棣, 吕容川, 雷红文, 朱忠博, 陈刚. 2017. 星载太赫兹冰云探测技术发展和面临问题. 太赫兹科学与电子信息学报, 15(5): 722-727 [DOI: 10.11805/TKYDA201705.0722http://dx.doi.org/10.11805/TKYDA201705.0722]
Yang B Y, Zhang H, Peng J, Wang Z L and Jing X W. 2014. Analysis on global distribution characteristics of cloud microphysical and optical properties based on the CloudSat data. Plateau Meteorology, 33(4): 1105-1118
杨冰韵, 张华, 彭杰, 王志立, 荆现文. 2014. 利用CloudSat卫星资料分析云微物理和光学性质的分布特征. 高原气象, 33(4): 1105-1118 [DOI: 10.7522/j.issn.1000-0534.2013.00026http://dx.doi.org/10.7522/j.issn.1000-0534.2013.00026]
相关作者
相关机构