Spatio-temporal probability threshold method of remote sensing for mangroves mapping in China
- Vol. 26, Issue 6, Pages: 1083-1095(2022)
Published: 07 June 2022
DOI: 10.11834/jrs.20220449
扫 描 看 全 文
浏览全部资源
扫码关注微信
Published: 07 June 2022 ,
扫 描 看 全 文
黄可,孟祥珍,杨刚,孙伟伟.2022.中国红树林制图的遥感时空概率阈值方法.遥感学报,26(6): 1083-1095
Huang K,Meng X Z,Yang G and Sun W W. 2022. Spatio-temporal probability threshold method of remote sensing for mangroves mapping in China. National Remote Sensing Bulletin, 26(6):1083-1095
红树林作为热带和亚热带海岸带上特有的森林群落,具有独特的生态功能以及重大的社会、经济价值。中国红树林经历了反复的破坏与保护,遥感监测手段可以为实施大规模的红树林生态系统保护和恢复行动提供科学技术支撑。本研究依托Google Earth Engine平台提出一种时空概率阈值法对中国红树林范围进行提取。研究选取2015年516景Landsat 8数据,首先使用非监督分类法进行水陆分离,其次通过生成缓冲区确定红树林潜在生长区,然后协同多种指数与光谱信息构建多特征决策树提取红树林粗略的生长范围,最后基于长时序的红树林粗略范围数据计算红树林生长概率,并通过实验确定概率阈值对红树林进行精细提取。通过实验对比发现时空概率阈值法的红树林生产者精度达90.36%,且能较好地提取幼小、分散的红树林。研究得到了2015年中国红树林分布结果,全国红树林面积为21932 ha,广西和广东两省红树林面积占中国红树林总面积的73.22%,为中国红树林主要分布区域。
As an appropriate forest community in tropical and subtropical coastal zone
mangrove has unique ecological function and great social and economic value. However
mangroves globally are decreasing at an average rate of 1% per year and are facing threats
such as the reduction of biodiversity and the degradation of ecosystem service functions. Mangroves in China have experienced repeated destruction and protection
and remote sensing monitoring can provide scientific support and decision-making reference suggestions for implementing large-scale mangrove ecosystem protection and restoration in China. Based on Google Earth Engine platform
this study proposed a Spatio-temporal Probability Threshold Method to extract mangrove extent in China
and it is conducive to analyzing the temporal and spatial changing trends of mangroves in China.
In this study
we selected 516 images of Landsat 8 in 2015. We used unsupervised classification for land-water separation
and then generated the potential growth area of mangroves. A multi-feature decision tree classification method was constructed based on multiple indexes and spectral information to extract rough mangrove growth extent
and the mangrove growth probability was further calculated based on long time-series data. The probability threshold was determined through experiments to extract precise mangrove extent. In addition
we set up four comparative experiments for mangrove extraction
using two decision tree classification methods (based on spectral indices only and based on original bands only) and two supervised classification methods (CART and SVM).
Results show that the best mangrove probability threshold is 0.5
and the producer’s accuracy for mangrove is 90.36%. CAS_Mangrove dataset has the highest producer’s accuracy for mangrove (91.73%)
but the details of the edge are inaccurate; the producer’s accuracy for mangrove of GMW dataset is the lowest (64.64%)
thereby ignoring the young and scattered mangroves. All methods of four comparative experiments overestimate the mangrove extent in varying degrees. The total area of mangroves in China in 2015 extracted by the proposed method is 21932 hectares.
This study proposed a Spatio-temporal Probability Threshold Method for mangrove extraction
considering the impact of tidal inundation from a new perspective through the mangrove growth probability. This method has high accuracy (90.36%) of mangrove extraction
and it can extract young and scattered mangroves effectively. According to the study
the distribution of mangrove in China in 2015 was obtained
and the total area of mangroves in China is 21932 hectares. The mangroves are mainly distributed in Guangxi and Guangdong
accounting for 73.22 percent of the country’s area. Compared with the method of selecting images at low tide for mangrove extraction
Spatio-temporal Probability Threshold Method makes full use of Landsat data
which are simpler and faster
and avoids the high uncertainty in the artificial coastal area.
遥感Google Earth EngineLandsat红树林长时序CMRI
remote sensingGoogle Earth EngineLandsatmangroveslong time-seriesCMRI
Awty-Carroll K, Bunting P, Hardy A and Bell G. 2019. Using continuous change detection and classification of Landsat data to investigate long-term mangrove dynamics in the sundarbans region. Remote Sensing, 11(23): 2833 [DOI: 10.3390/rs11232833http://dx.doi.org/10.3390/rs11232833]
Bunting P, Rosenqvist A, Lucas R M, Rebelo L M, Hilarides L, Thomas N, Hardy A, Itoh T, Shimada M and Finlayson C M. 2018. The global mangrove watch-a new 2010 global baseline of mangrove extent. Remote Sensing, 10(10): 1669 [DOI: 10.3390/rs10101669http://dx.doi.org/10.3390/rs10101669]
Canny J. 1986. A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-8: 679-698 [DOI: 10.1109/TPAMI.1986.4767851http://dx.doi.org/10.1109/TPAMI.1986.4767851]
Chen B Q, Xiao X M, Li X P, Pan L H, Doughty R, Ma J, Dong J W, Qin Y W, Zhao B, Wu Z X, Sun R, Lan G Y, Xie G S, Clinton N and Giri C. 2017. A mangrove forest map of China in 2015: analysis of time series Landsat 7/8 and Sentinel-1A imagery in Google Earth Engine cloud computing platform. ISPRS Journal of Photogrammetry and Remote Sensing, 131: 104-120 [DOI: 10.1016/j.isprsjprs.2017.07.011http://dx.doi.org/10.1016/j.isprsjprs.2017.07.011]
Giri C, Pengra B, Long J and Loveland T R. 2013. Next generation of global land cover characterization, mapping, and monitoring. International Journal of Applied Earth Observation and Geoinformation, 25: 30-37 [DOI: 10.1016/j.jag.2013.03.005http://dx.doi.org/10.1016/j.jag.2013.03.005]
Guo J L, Zhu Y J, Wu G J, Guo Z H and Wen W Y. 2015. Health assessment of mangrove wetland in Qinglangang, Hainan. Scientia Silvae Sinicae, 51(10): 17-25
郭菊兰, 朱耀军, 武高洁, 郭志华, 文菀玉. 2015. 海南省清澜港红树林湿地健康评价. 林业科学, 51(10): 17-25 [DOI: 10.11707/j.1001-7488.20151003http://dx.doi.org/10.11707/j.1001-7488.20151003]
Gupta K, Mukhopadhyay A, Giri S, Chanda A, Majumdar S D, Samanta S, Mitra D, Samal R N, Pattnaik A K and Hazra S. 2018. An index for discrimination of mangroves from non-mangroves using LANDSAT 8 OLI imagery. MethodsX, 5: 1129-1139 [DOI: 10.1016/j.mex.2018.09.011http://dx.doi.org/10.1016/j.mex.2018.09.011]
Hao B F, Han X J, Ma M G, Liu Y T and Li S W. 2018. Research progress on the application of Google earth engine in geoscience and environmental sciences. Remote Sensing Technology and Application, 33(4): 600-611
郝斌飞, 韩旭军, 马明国, 刘一韬, 李世卫. 2018. Google Earth Engine在地球科学与环境科学中的应用研究进展. 遥感技术与应用, 33(4): 600-611 [DOI: 10.11873/j.issn.1004-0323.2018.4.0600http://dx.doi.org/10.11873/j.issn.1004-0323.2018.4.0600]
He Y H, Zhang D S, Qiu B W, Li Y T, Han Y S and Liu X Z. 2019. Gravity transfer characteristics and common relationships of mangroves in China and mangrove communities in typical area. Chinese Journal of Ecology, 38(8): 2326-2336
何玉花, 张东水, 邱炳文, 李燕婷, 韩用顺, 刘贤赵. 2019. 中国红树林与典型区红树林群落重心迁移特征及共性关系. 生态学杂志, 38(8): 2326-2336 [DOI: 10.13292/j.1000-4890.201908.038http://dx.doi.org/10.13292/j.1000-4890.201908.038]
Hu L J, Li W Y and Xu B. 2018. Monitoring mangrove forest change in China from 1990 to 2015 using Landsat-derived spectral-temporal variability metrics. International Journal of Applied Earth Observation and Geoinformation, 73: 88-98 [DOI: 10.1016/j.jag.2018.04.001http://dx.doi.org/10.1016/j.jag.2018.04.001]
Huang X, Xin K, Li X Z, Wang X P, Ren L J, Li X Z and Yan Z Z. 2015. Landscape pattern change of Dongzhai Harbour mangrove, South China analyzed with a patch-based method and its driving forces. Chinese Journal of Applied Ecology, 26(5): 1510-1518
黄星, 辛琨, 李秀珍, 王薛平, 任璘婧, 李希之, 闫中正. 2015. 基于斑块的东寨港红树林湿地景观格局变化及其驱动力. 应用生态学报, 26(5): 1510-1518 [DOI: 10.13287/j.1001-9332.20150302.014http://dx.doi.org/10.13287/j.1001-9332.20150302.014]
Jia M M, Wang Z M, Wang C, Mao D H and Zhang Y Z. 2019. A new vegetation index to detect periodically submerged mangrove forest using single-tide sentinel-2 imagery. Remote Sensing, 11(17): 2043 [DOI: 10.3390/rs11172043http://dx.doi.org/10.3390/rs11172043]
Jia M M, Wang Z M, Zhang Y Z, Mao D H and Wang C. 2018. Monitoring loss and recovery of mangrove forests during 42 years: the achievements of mangrove conservation in China. International Journal of Applied Earth Observation and Geoinformation, 73: 535-545 [DOI: 10.1016/j.jag.2018.07.025http://dx.doi.org/10.1016/j.jag.2018.07.025]
Kovacs J M, Wang J F and Flores-Verdugo F. 2005. Mapping mangrove leaf area index at the species level using IKONOS and LAI-2000 sensors for the Agua Brava Lagoon, Mexican Pacific. Estuarine, Coastal and Shelf Science, 62(1/2): 377-384 [DOI: 10.1016/j.ecss.2004.09.027http://dx.doi.org/10.1016/j.ecss.2004.09.027]
Li C G, Xia Y L and Dai H B. 2015. Temporal analysis on spatial structure of mangrove distribution in Guangxi, China from 1960 to 2010. Wetland Science, 13(3): 265-275
李春干, 夏阳丽, 代华兵. 2015. 1960~2010年广西红树林空间结构演变分析. 湿地科学, 13(3): 265-275 [DOI: 10.13248/j.cnki.wetlandsci.2015.03.001http://dx.doi.org/10.13248/j.cnki.wetlandsci.2015.03.001]
Li H Y, Jia M M, Zhang R, Ren Y X and Wen X. 2019. Incorporating the plant phenological trajectory into mangrove species mapping with dense time series sentinel-2 imagery and the Google earth engine platform. Remote Sensing, 11(21): 2479 [DOI: 10.3390/rs11212479http://dx.doi.org/10.3390/rs11212479]
Li T H, Zhao Z J and Han P. 2002. Detection and analysis of mangrove changes with multi-temporal remotely sensed imagery in the Shenzhen river estuary. Journal of Remote Sensing, 6(5): 364-369
李天宏, 赵智杰, 韩鹏. 2002. 深圳河河口红树林变化的多时相遥感分析. 遥感学报, 6(5): 364-369 [DOI: 10.11834/jrs.20020508http://dx.doi.org/10.11834/jrs.20020508]
Li X, Liu K, Zhu Y H, Meng L, Yu C X and Cao J J. 2018. Study on mangrove species classification based on ZY-3 image. Remote Sensing Technology and Application, 33(2): 360-369
李想, 刘凯, 朱远辉, 蒙琳, 于晨曦, 曹晶晶. 2018. 基于资源三号影像的红树林物种分类研究. 遥感技术与应用, 33(2): 360-369 [DOI: 10.11873/j.issn.1004-0323.2018.2.0360http://dx.doi.org/10.11873/j.issn.1004-0323.2018.2.0360]
Li X, Yeh A G Y, Wang S G, Liu K, Liu X P, Qian J P, Chen X Y, He Z J and Qin C F. 2006. Estimating mangrove wetland biomass using radar remote sensing. Journal of Remote Sensing, 10(3): 387-396
黎夏, 叶嘉安, 王树功, 刘凯, 刘小平, 钱峻屏, 陈晓越, 何执兼, 覃朝锋. 2006. 红树林湿地植被生物量的雷达遥感估算. 遥感学报, 10(3): 387-396 [DOI: 10.11834/jrs.20060359http://dx.doi.org/10.11834/jrs.20060359]
Lin P. 1987. Distribution of mangrove species. Scientia Silvae Sinicae, 23(4): 481-490
林鹏. 1987. 红树林的种类及其分布. 林业科学, 23(4): 481-490
Liu C Y, Guo H Q, Zhang X H and Chen J. 2017. Combining decision trees with angle indices to identify mangrove forest at Shenzhen Bay, China. Journal of Resources and Ecology, 8(5): 545-549 [DOI: 10.5814/j.issn.1674-764x.2017.05.012http://dx.doi.org/10.5814/j.issn.1674-764x.2017.05.012]
Liu K, Gong H, Cao J J and Zhu Y H. 2019a. Comparison of mangrove remote sensing classification based on multi-type UAV data. Tropical Geography, 39(4): 492-501
刘凯, 龚辉, 曹晶晶, 朱远辉. 2019a. 基于多类型无人机数据的红树林遥感分类对比. 热带地理, 39(4): 492-501 [DOI: 10.13284/j.cnki.rddl.003150http://dx.doi.org/10.13284/j.cnki.rddl.003150]
Liu K, Peng L H, Li X, Tan M and Wang S G. 2019b. Monitoring the inter-annual change of mangroves based on the Google earth engine. Journal of Geo-information Science, 21(5): 731-739
刘凯, 彭力恒, 李想, 谭敏, 王树功. 2019b. 基于Google Earth Engine的红树林年际变化监测研究. 地球信息科学学报, 21(5): 731-739 [DOI: 10.12082/dqxxkx.2019.180354http://dx.doi.org/10.12082/dqxxkx.2019.180354]
McFeeters S K. 1996. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. International Journal of Remote Sensing, 17(7): 1425-1432 [DOI: 10.1080/01431169608948714http://dx.doi.org/10.1080/01431169608948714]
Rouse J W, Haas R H, Schell J A and Deering D W. 1974. Monitoring vegetation systems in the Great Plains with ERTS//Proceedings of the 3rd Earth Resource Technology Satellite. Washington: NASA: 48-62
Su X, Geng J, Ma X R, Wang H Y and Wang X. 2017. Mangrove species classification based on multiple vegetation index extraction and joint sparse representation. Marine Environmental Science, 36(1): 114-120
苏岫, 耿杰, 马晓瑞, 王洪玉, 王祥. 2017. 基于多种植被指数信息与联合稀疏表示的红树林种类识别. 海洋环境科学, 36(1): 114-120 [DOI: 10.13634/j.cnki.mes.2017.01.019http://dx.doi.org/10.13634/j.cnki.mes.2017.01.019]
Sun Y G, Zhao D Z, Guo W Y, Gao Y, Su X and Wei B Q. 2013. A review on the application of remote sensing in mangrove ecosystem monitoring. Acta Ecologica Sinica, 33(15): 4523-4538
孙永光, 赵冬至, 郭文永, 高阳, 苏岫, 卫宝泉. 2013. 红树林生态系统遥感监测研究进展. 生态学报, 33(15): 4523-4538 [DOI: 10.5846/stxb201205150715http://dx.doi.org/10.5846/stxb201205150715]
Thomas N, Lucas R, Bunting P, Hardy A, Rosenqvist A and Simard M. 2017. Distribution and drivers of global mangrove forest change, 1996-2010. PLoS One, 12(6): e0179302 [DOI: 10.1371/journal.pone.0179302http://dx.doi.org/10.1371/journal.pone.0179302]
Tian Y C, Huang Y L, Tao J, Zhang Q, Wu B, Zhang Y L, Huang H, Liang M Z and Zhou G Q. 2019. Estimating the net primary productivity of typical mangrove and archipelago ecosystems in the Beibu Gulf based on unmanned aerial vehicle imagery. Tropical Geography, 39(4): 583-596
田义超, 黄远林, 陶进, 张强, 吴彬, 张亚丽, 黄鹄, 梁铭忠, 周国清. 2019. 基于无人机影像的北部湾典型岛群红树林生态系统净初级生产力估算. 热带地理, 39(4): 583-596 [DOI: 10.13284/j.cnki.rddl.003161http://dx.doi.org/10.13284/j.cnki.rddl.003161]
Wan L M, Lin Y Y, Zhang H S, Wang F, Liu M F and Lin H. 2020. GF-5 hyperspectral data for species mapping of mangrove in Mai Po, Hong Kong. Remote Sensing, 12(4): 656 [DOI: 10.3390/rs12040656http://dx.doi.org/10.3390/rs12040656]
Wang W Q and Wang M. 2007. The Mangroves of China. Beijing: Science Press
王文卿, 王瑁. 2007. 中国红树林. 北京: 科学出版社
Wu P Q, Zhang J, Ma Y and Li X M. 2013. Remote sensing monitoring and analysis of the changes of mangrove resources in China in the Past 20 years. Advances in Marine Science, 31(3): 406-414
吴培强, 张杰, 马毅, 李晓敏. 2013. 近20a来我国红树林资源变化遥感监测与分析. 海洋科学进展, 31(3): 406-414 [DOI: 10.3969/j.issn.1671-6647.2013.03.013http://dx.doi.org/10.3969/j.issn.1671-6647.2013.03.013]
Xiao H Y, Zeng H, Zan Q J, Bai Y and Cheng H H. 2007. Decision tree model in extraction of mangrove community information using hyperspectral image data. Journal of Remote Sensing, 11(4): 531-537
肖海燕, 曾辉, 昝启杰, 白钰, 程好好. 2007. 基于高光谱数据和专家决策法提取红树林群落类型信息. 遥感学报, 11(4): 531-537 [DOI: 10.11834/jrs.20070473http://dx.doi.org/10.11834/jrs.20070473]
Yin Y J, Liu S L, Cheng F Y, Lü Y H, An N N and Liu X M. 2017. Ecosystem health evaluation of mangrove wetlands in Guangxi based on landscape characteristics. Journal of Safety and Environment, 17(3): 1164-1170
尹艺洁, 刘世梁, 成方妍, 吕一河, 安南南, 刘昕明. 2017. 基于景观特征的广西典型红树林湿地生态系统健康评价. 安全与环境学报, 17(3): 1164-1170 [DOI: 10.13637/j.issn.1009-6094.2017.03.066http://dx.doi.org/10.13637/j.issn.1009-6094.2017.03.066]
Zhang Z H. 2019. China mangrove protection and development forum and “China mangrove protection and restoration strategy research project” seminar held in Beijing[EB/OL]. [2019-11-20]. http://www.forestry.gov.cn/main/72/20190729/174808275303596.htmlhttp://www.forestry.gov.cn/main/72/20190729/174808275303596.html
张之豪. 2019. 中国红树林保护和发展论坛暨“中国红树林保护及恢复战略研究项目”研讨会在京举行[EB/OL]. [2019-11-20]. http://www.forestry.gov.cn/main/72/20190729/174808275303596. htmlhttp://www.forestry.gov.cn/main/72/20190729/174808275303596.html
Zhao C P and Qin C Z. 2020. 10-m-resolution mangrove maps of China derived from multi-source and multi-temporal satellite observations. ISPRS Journal of Photogrammetry and Remote Sensing, 169: 389-405 [DOI: 10.1016/j.isprsjprs.2020.10.001http://dx.doi.org/10.1016/j.isprsjprs.2020.10.001]
Zhao Y L. 2017. Remote sensing survey and proposal for protection of the shoreline and the mangrove wetland in Guangdong Province. Remote Sensing for Land and Resources, 29(S1): 114-120
赵玉灵. 2017. 广东省海岸线与红树林现状遥感调查与保护建议. 国土资源遥感, 29(S1): 114-120 [DOI: 10.6046/gtzyyg.2017.s1.19http://dx.doi.org/10.6046/gtzyyg.2017.s1.19]
Zhen J N, Liao J J and Shen G Z. 2019. Remote sensing monitoring and analysis on the dynamics of mangrove forests in Qinglan Habor of Hainan Province since 1987. Wetland Science, 17(1): 44-51
甄佳宁, 廖静娟, 沈国状. 2019. 1987以来海南省清澜港红树林变化的遥感监测与分析. 湿地科学, 17(1): 44-51 [DOI: 10.13248/j.cnki.wetlandsci.2019.01.006http://dx.doi.org/10.13248/j.cnki.wetlandsci.2019.01.006]
Zhou L, Ma Y and Ren G B. 2019. Change analysis of mangrove in Bangladesh coastal zone based on remote sensing in the recent 30 years. Marine Environmental Science, 38(1): 60-67
周磊, 马毅, 任广波. 2019. 孟加拉国海岸带近30a红树林变化遥感分析. 海洋环境科学, 38(1): 60-67 [DOI: 10.13634/j.cnki.mes.2019.01.033http://dx.doi.org/10.13634/j.cnki.mes.2019.01.033]
Zhou Z C, Li H, Huang C, Liu Q S, Liu G H, He Y and Yu H. 2018. Review on dynamic monitoring of mangrove forestry using remote sensing. Journal of Geo-information Science, 20(11): 1631-1643
周振超, 李贺, 黄翀, 刘庆生, 刘高焕, 何云, 于涵. 2018. 红树林遥感动态监测研究进展. 地球信息科学学报, 20(11): 1631-1643 [DOI: 10.12082/dqxxkx.2018.180247http://dx.doi.org/10.12082/dqxxkx.2018.180247]
Zhu Z and Woodcock C E. 2014. Continuous change detection and classification of land cover using all available Landsat data. Remote Sensing of Environment, 144: 152-171 [DOI: 10.1016/j.rse.2014.01.011http://dx.doi.org/10.1016/j.rse.2014.01.011]
相关作者
相关机构