Study on the applicability of multi-source high-resolution satellite images for monitoring black and odorous water body
- Vol. 26, Issue 1, Pages: 179-192(2022)
Published: 07 January 2022
DOI: 10.11834/jrs.20220479
扫 描 看 全 文
浏览全部资源
扫码关注微信
Published: 07 January 2022 ,
扫 描 看 全 文
王茹,申茜,彭红春,姚月,李俊生,汪明秀,史佳睿,徐雯婷.2022.多源高分辨率卫星影像监测黑臭水体的适用性研究.遥感学报,26(1): 179-192
Wang R,Shen Q,Peng H C,Yao Y,Li J S,Wang M X,Shi J R and Xu W T. 2022. Study on the applicability of multi-source high-resolution satellite images for monitoring black and odorous water body. National Remote Sensing Bulletin, 26(1):179-192
高分辨率卫星的幅宽一般很小,受云雨和轨道回访周期影响,单颗卫星的短时段内覆盖能力有限,因此,单一高分辨率卫星常常无法满足一定时段内的黑臭水体监测需求,需要多源卫星协同监测黑臭水体。为了分析多源高分辨率影像对黑臭水体遥感监测的适用性,本文基于地物光谱仪实测的水体遥感反射率数据,以GeoEye-1、WorldView-2、北京二号(DMC3)、高景一号SV1(SuperView-1)以及GF-PMS系列(GF-1/1B/1C/1D、GF-2、GF-6)传感器波段进行等效计算,结果表明:(1)采用反射率比值模型——BOI(Black and Odorous water Index)模型,GeoEye-1、WorldView-2、SuperView-1和GF-1/1B/1C/1D/2/6影像识别黑臭水体正确率均较高,分别为89.5%、89.5%、92.1%和92.1%。(2)BOI模型不适用于DMC3,这里采用了归一化水体指数NDWI≤0.55判别黑臭水体,识别正确率为89.5%。(3)BOI模型应用于仅有的2景同步卫星影像——GF-2影像,经实测数据验证,识别精度为83.3%,精度较高。针对通州区内的某重叠区,2016年—2021年10颗多源卫星影像协同观测的结果一致性较好,表明了多源遥感影像监测黑臭水体的适用性较好。综合考虑卫星影像空间分辨率和采购成本,给出了合理的协同观测建议。
The width of high-resolution satellite is generally very small. Affected by cloud and rain and orbital return visit cycle
the coverage capacity of a single satellite is limited in a short period of time. Therefore
A single high-resolution satellite is often unable to meet the needs of black and odorous water monitoring in a certain period of time
and multi-source satellites are needed to monitor black and odorous water. In order to analyze the applicability of multi-source high-resolution image to the remote sensing monitoring of black and odorous water
based on the water remote sensing reflectance data measured by the surface object spectrometer
the equivalent calculation was carried out with GeoEye-1
WorldView-2
DMC3
SuperView-1 (SV1) and GF-PMS series (GF-1/1B/1C/1D
GF-2
GF-6) sensor bands.
Take the multi-source sensor remote sensing images as the research object. First compared the GeoEye-1
WorldView-2
DMC3
SuperView (SV1) and GF-PMS series (GF-1/1B/1C/1D
GF-2
GF-6) image spatial resolution
spectral response function
and band Settings; then
based on the BOI (Black and Odorous Water Index) recognition model
the applicability of multi-source sensor image monitoring is analyzed with the same threshold value
and a new model is proposed for DMC3 which is not suitable for BOI model
and the high-quality multi-source images are selected and applied; Finally
some suggestions are put forward for cooperative monitoring of black and smelly water with multi-source sensor remote sensing image.
The research results show that: (1) It is found that GeoEye-1
WorldView-2
SuperView-1 and GF-1/1B/1C/1D/2/6 images can use the same threshold for black and odorous water Monitoring
with good identification accuracy; The normalized differential water body index (NDWI) for DMC3 can effectively identify the general water body and the black and smelly water body. (2) High quality multi-source images were selected with the threshold of BOI=0.05 and NDWI=0.55 for the application of black and smelly water monitoring. It was found that the collaboration of multi-source remote sensing images could provide continuous supervision for river water quality monitoring. (3) In the process of black smelly water monitoring
comprehensive consider price and spatial resolution image
when the river width in 2—10 meters
select GF-2
SV1 or DMC3 image as a conventional remote sensing image
GeoEye-1
WorldView-2 images as a supplement; When most of the river width is more than 10 meters
GF-1 or GF-6 images are selected as conventional remote sensing images
and the supplementary data sources are GF-2
SV1
DMC3
GF-1B/1C/1D
Geoeye-1
and WorldView-2 images
respectively.
遥感多源高分辨率影像黑臭水体监测适用性BOI
multi-source imageblack-odor water monitoringapplicabilityBOIthreshold
Bai H W, Qiu Y Z, Li Q J, Zhang T and Yang L Q. 2019. Discussion on water environment management mechanism based on river chief system in Beijing. Beijing Water, (2): 39-45
白慧文, 邱彦昭, 李其军, 张彤, 杨兰琴. 2019. 基于河长制的北京市水环境管理体制分析. 北京水务, (2): 39-45 [DOI: 10.19671/j.1673-4637.2019.02.010]
Bai Y, He X Q, Pan D L, Zhu Q K and Gong F. 2009. The black water around the Changjiang (Yangtze) Estuary in the spring of 2003. Acta Oceanologica Sinica, 28(4): 23-31 [DOI: 10.3969/j.issn.0253-505X.2009.04.004http://dx.doi.org/10.3969/j.issn.0253-505X.2009.04.004]
Black and smelly water treatment project for the Qijicun river and Xihe roadside ditch [EB/OL]. (2017-04-16)[2020-08-20]. https://www.meipian.cn/l3q7vap (https://www.meipian.cn/l3q7vap(
七级河及西和路边沟黑臭水体治理工程[EB/OL]. (2017-04-16)[2020-08-20]. https://www.meipian.cn/l3q7vaphttps://www.meipian.cn/l3q7vap
China Centre for Resource Satellite Data and Application. 2016. Calibration[EB/OL]. (2016-10-10)[2020-08-20]. http://www.cresda.com/CN/Downloads/dbcs/10506.shtml (http://www.cresda.com/CN/Downloads/dbcs/10506.shtml(
中国资源卫星应用中心. 2016. 2016年国产陆地观测卫星外场绝对辐射定标系数[EB/OL]. (2016-10-10)[2020-8-20]. http://www.cresda.com/CN/Downloads/dbcs/10506.shtmlhttp://www.cresda.com/CN/Downloads/dbcs/10506.shtml
Guo L F, Gao X H, Kang J and Meng X Q. 2009. Application of the pseudo-invariant feature in normalization process of the remote sensing images. Remote Sensing Technology and Application, 24(5): 588-595
郭丽峰, 高小红, 亢健, 孟小前. 2009. 伪不变特征法在遥感影像归一化处理中的应用. 遥感技术与应用, 24(5): 588-595 [DOI: 10.11873/j.issn.1004-0323.2009.5.588http://dx.doi.org/10.11873/j.issn.1004-0323.2009.5.588]
Hu M, Zhang N, Wang L J and Peng Y Y. 2017. Remote sensing monitoring of black smelly water controlling by multi-source data. Environment and Development, 29(9): 159-161
胡淼, 张宁, 王罗娟, 彭彦彦. 2017. 多源数据对黑臭水体整治的遥感监测. 环境与发展, 29(9): 159-161 [DOI: 10.16647/j.cnki.cn15-1369/X.2017.09.092http://dx.doi.org/10.16647/j.cnki.cn15-1369/X.2017.09.092]
Huang Z Q and Zheng J C. Extraction of black and odorous water based on aerial Hyperspectral CASI image//Proceedings of IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium. Yokohama: IEEE [DOI: 10.1109/IGARSS.2019.8898314http://dx.doi.org/10.1109/IGARSS.2019.8898314]
Jin H X and Pan J. 2017. Urban black-odor water body remote sensing monitoring based on GF-2 satellite data fusion. Scientific and Technological Management of Land and Resources, 34(04): 107-117
靳海霞, 潘健. 2017. 基于高分二号卫星融合数据的城镇黑臭水体遥感监测研究. 国土资源科技管理, 34(04): 107-117 [DOI: 10.3969/j.issn.1009-4210.2017.04.013http://dx.doi.org/10.3969/j.issn.1009-4210.2017.04.013]
Kutser T, Paavel B, Verpoorter C, Ligi M, Soomets T, Toming K and Casal G. 2016. Remote sensing of black lakes and using 810 nm reflectance peak for retrieving water quality parameters of optically complex waters. Remote Sensing, 8(6): 497 [DOI: 10.3390/rs8060497http://dx.doi.org/10.3390/rs8060497]
Li J Q, Li J G, Zhu L, Shen Q, Dai H Y and Zhu Y F. 2019. Remote sensing identification and validation of urban black and odorous water in Taiyuan city. Journal of Remote Sensing, 23(4): 773-784
李佳琦, 李家国, 朱利, 申茜, 戴华阳, 朱云芳. 2019. 太原市黑臭水体遥感识别与地面验证. 遥感学报, 23(4): 773-784 [DOI: 10.11834/jrs.20197292http://dx.doi.org/10.11834/jrs.20197292]
Li X W, Niu Z C, Jiang S and Jin Y. 2012. Remote sensing monitoring of black color water blooms in Lake Taihu based on HT satellite CCD data. Environmental Monitoring and Forewarning, 4(3): 1-9
李旭文, 牛志春, 姜晟, 金焰. 2012. 环境卫星CCD影像在太湖湖泛暗色水团监测中的应用. 环境监控与预警, 4(3): 1-9 [DOI: 10.3969/j.issn.1674-6732.2012.03.001http://dx.doi.org/10.3969/j.issn.1674-6732.2012.03.001]
Liu F, Chen T, He J J, Wen Q, Qiao Y X, Wu W B and Wang Z Y. 2017. The research on extraction method of black-odor water body based on Triplesat constellation remote sensing data//Proceedings of the 38th Asian Conference on Remote Sensing (ACRS 2017). New Delhi: [s.n.]
Long T F, Jiao W L, He G J and Zhang Z M. 2016. A fast and reliable matching method for automated Georeferencing of remotely-sensed imagery. Remote Sensing, 8(1): 56 [DOI: 10.3390/rs8010056http://dx.doi.org/10.3390/rs8010056]
McFeeters S K. 1996. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. International Journal of Remote Sensing, 17(7): 1425-1432 [DOI: 10.1080/01431169608948714http://dx.doi.org/10.1080/01431169608948714]
Ministry of Housing and Urban-Rural Development of the People’s Republic of China and Ministry of Environmental Protection of the People's Republic of China. 2015. Urban blackodor water remediation work guide[EB/OL]. [2020-08-20]. http://www.mohurd.gov.cn/wjfb/201509/t20150911_224828.html (http://www.mohurd.gov.cn/wjfb/201509/t20150911_224828.html(
中华人民共和国住房和城乡建设部, 中华人民共和国环境保护部. 2015. 住房城乡建设部 环境保护部关于印发城市黑臭水体整治工作指南的通知[EB/OL]. [2020-08-20]. http://www.mohurd.gov.cn/wjfb/201509/t20150911_224828.htmlhttp://www.mohurd.gov.cn/wjfb/201509/t20150911_224828.html
Mobley C D. 1999. Estimation of the remote-sensing reflectance from above-surface measurements. Applied Optics, 38(36): 7442-7455 [DOI: 10.1364/AO.38.007442http://dx.doi.org/10.1364/AO.38.007442]
Nichol J E. 1993. Remote sensing of tropical blackwater rivers: a method for environmental water quality analysis. Applied Geography, 13(2): 153-168 [DOI: 10.1016/0143-6228(93)90056-7http://dx.doi.org/10.1016/0143-6228(93)90056-7]
Pixel-Knife GF Satellite Processing Software. 2018. Image sharpening[EB/OL]. (2018-03-15)[2020-08-20]. https://www.zybuluo.com/novachen/note/426294 (https://www.zybuluo.com/novachen/note/426294(
像素刻刀高分卫星处理软件. 2018. 基于全参考高分二号卫星图像融合质量评价[EB/OL]. (2018-03-15)[2020-08-20]. https://www.zybuluo.com/novachen/note/426294https://www.zybuluo.com/novachen/note/426294
Shen Q, Yao Y, Li J S, Zhang F F, Wang S L, Wu Y H, Ye H P and Zhang B. 2019. A CIE color purity algorithm to detect black and odorous water in urban rivers using high-resolution Multispectral Remote Sensing Images. IEEE Transactions on Geoscience and Remote Sensing, 57(9): 6577-6590 [DOI: 10.1109/TGRS.2019.2907283http://dx.doi.org/10.1109/TGRS.2019.2907283]
Shen Q, Zhu L and Cao H Y. 2017. Remote sensing monitoring and screening for urban black and odorous water body: a review. Chinese Journal of Applied Ecology, 28(10): 3433-3439
申茜, 朱利, 曹红业. 2017. 城市黑臭水体遥感监测与筛查研究进展. 应用生态学报, 28(10): 3433-3439 [DOI: 10.13287/j.1001-9332.201710.033http://dx.doi.org/10.13287/j.1001-9332.201710.033]
Sun W W, Yang G, Chen C, Chang M H, Huang K, Meng X Z and Liu L Y. 2020. Development status and literature analysis of China’s earth observation remote sensing satellites. Journal of Remote Sensing, 24(5): 479-510
孙伟伟, 杨刚, 陈超, 常明会, 黄可, 孟祥珍, 刘良云. 2020. 中国地球观测遥感卫星发展现状及文献分析. 遥感学报, 24(5): 479-510 [DOI: 10.11834/jrs.20209464http://dx.doi.org/10.11834/jrs.20209464]
Tang J W, Tian G L, Wang X Y, Wang X M and Song Q J. 2004. The methods of water spectra measurement and analysis I: above-water method. Journal of Remote Sensing, 8(1): 37-44
唐军武, 田国良, 汪小勇, 王晓梅, 宋庆君. 2004. 水体光谱测量与分析Ⅰ: 水面以上测量法. 遥感学报, 8(1): 37-44 [DOI: 10.11834/jrs.20040106http://dx.doi.org/10.11834/jrs.20040106]
Wen S, Wang Q, Li Y M, Zhu L, Lü H, Lei S H, Ding X L and Miao S. 2018. Remote sensing identification of urban black-odor water bodies based on high-resolution images: a case study in Nanjing. Environmental Science, 39(1): 57-67
温爽, 王桥, 李云梅, 朱利, 吕恒, 雷少华, 丁潇蕾, 苗松. 2018. 基于高分影像的城市黑臭水体遥感识别: 以南京为例. 环境科学, 39(1): 57-67 [DOI: 10.13227/j.hjkx.201703264http://dx.doi.org/10.13227/j.hjkx.201703264]
Yao H M, Lu Y N and Gong Z Q. 2019. Remote sensing identification of urban black and odorous water body based on PlanetScope images: A case study in Qinzhou, Guangxi. Environmental Engineering, 37(10):35-43
姚焕玫, 卢燕南, 龚祝清. 2019. 基于PlanetScope影像的广西钦州市黑臭水体识别方法研究. 环境工程, 37(10): 35-43 [DOI: 10.13205/j.hjgc.201910006http://dx.doi.org/10.13205/j.hjgc.201910006]
Yao Y, Shen Q, Zhu L, Gao H J, Cao H Y, Han H, Sun J G and Li J S. 2019. Remote sensing identification of urban black-odor water bodies in Shenyang city based on GF-2 image. Journal of Remote Sensing, 23(2): 230-242
姚月, 申茜, 朱利, 高红杰, 曹红业, 韩惠, 孙建国, 李俊生. 2019. 高分二号的沈阳市黑臭水体遥感识别. 遥感学报, 23(2): 230-242 [DOI: 10.11834/jrs.20197482http://dx.doi.org/10.11834/jrs.20197482]
Zhao J, Hu C M, Lapointe B, Melo N, Johns E M and Smith R H. 2013. Satellite-observed black water events off southwest Florida: implications for coral reef health in the Florida keys national marine sanctuary. Remote Sensing, 5(1): 415-431 [DOI: 10.3390/rs5010415http://dx.doi.org/10.3390/rs5010415]
Zhang X, Lai J B, Li J G,Wang L,Zhu L and Chen Y J. 2019. Remote sensing recognition of black-odor waterbodies in Shenzhen city based on GF-1 satellite. Science Technology and Engineering, 19(04): 268-274
张雪, 赖积保, 李家国, 王力, 朱利, 陈宜金. 2019. 基于高分一号影像的深圳市黑臭水体遥感识别. 科学技术与工程, 19(04): 268-274 [DOI: CNKI:SUN:KXJS.0.2019-04-044http://dx.doi.org/CNKI:SUN:KXJS.0.2019-04-044]
相关文章
相关作者
相关机构