Information extraction of temporal and spatial distribution of short-rotation plantations in Guangxi Zhuang Autonomous Region
- Vol. 27, Issue 11, Pages: 2617-2627(2023)
Published: 07 November 2023
DOI: 10.11834/jrs.20221059
扫 描 看 全 文
浏览全部资源
扫码关注微信
Published: 07 November 2023 ,
扫 描 看 全 文
段文胜,陈元鹏,王力,黄妮,贺原惠子,张昌赛,张阳坚,周泉,牛铮.2023.广西壮族自治区短轮伐期人工林时空分布信息提取.遥感学报,27(11): 2617-2627
Duan W S,Chen Y P,Wang L,Huang N,He Y H Z,Zhang C S,Zhang Y J,Zhou Q and Niu Z. 2023. Information extraction of temporal and spatial distribution of short-rotation plantations in Guangxi Zhuang Autonomous Region. National Remote Sensing Bulletin, 27(11):2617-2627
短轮伐期人工林SRPs(Short-Rotation Plantations)作为主要的经济型林类,对于生态环境保护以及社会经济发展都有着重要的影响,但精细的SRPs时空分布信息十分缺乏。本研究以中国SRPs种植最为广泛的广西壮族自治区(以下简称广西)为研究区域,基于Google Earth Engine云平台以及1986年—2019年的Landsat影像数据,应用LandTrendr时间序列分割算法对SRPs的时空分布信息进行了提取。结果分析表明:(1)广西SRPs种植面积近30年呈逐年稳定快速增加的态势,1990年种植面积仅1.93×10
5
ha,到2019年达到了4.04×10
6
ha,年均增长速度达到1.33×10
5
ha;(2)从空间分布来看,广西东部、南部SRPs分布较为集中,其主要分布在海拔500 m以下的低海拔地区以及地表坡度在20°左右的坡地,且河池市是广西SRPs种植分布面积最大的地级市;(3)SRPs种植面积变化趋势与林业产值存在很强的相关性(
r
=0.83,
p
<
0.001),表明SRPs是影响林业经济的重要因素。本文提出的基于长时序的SRPs时空变化信息的提取方法,可以为林业管理提供决策支持,并为森林碳循环的研究提供基础数据。
Short-Rotation Plantations (SRPs) as the main economic forests have an important impact on ecological environmental protection and social economic development
but detailed information on the temporal and spatial distribution of SRPs is lacking. SRPs have nearly half a century of plantation history and extensive distribution in South China. This study aims to extract the long-term temporal and spatial distribution information of SRPs and analyze its changing trends and driving factors.
The Guangxi Zhuang Autonomous Region
where SRPs are most widely grown in China
was used as the research area in this study. Based on the Google Earth Engine cloud platform and Landsat image data from 1986 to 2019
the 34-year Normalized Burn Ratio (NBR) long-term series data were first reconstructed by per pixel composite method. Then
the LandTrendr time series trajectory segmentation algorithm was used to segment and fit the NBR time series data for extracting the spatiotemporal distribution information of SRPs. Finally
Google Earth high-resolution images were used to select samples for verifying the accuracy of classification and extraction and analyzing the spatiotemporal characteristics and related factors of planting area changes in SRPs.
(1) The accuracy of the SRP information extraction results was evaluated by the confusion matrix: the overall accuracy of the binary classifications reached 80.52%
the mapping accuracy of SRPs was 79.6%
the user accuracy of SRPs was 81.2%
and the kappa coefficient was over 0.6
which indicate that the classification model has a good classification effect. (2) The planting area of SRPs in Guangxi has been increasing steadily and rapidly year by year in the past 30 years. The planting area was only 1.93×10
5
ha in 1990
and it reached 4.04×10
6
ha by 2019
with an average annual growth rate of 1.33×10
5
ha. (3) In terms of spatial distribution
SRPs are concentrated in eastern and southern Guangxi. They are mainly distributed in low-altitude areas below 500 m and slopes with a surface slope of about 20°. Among them
Hechi City is the prefecture-level city with the largest planting and distribution area of SRPs in Guangxi. (4) A strong correlation exists between the change trend of SRP planting area and forestry output value (
r
=0.830894
p
<
0.001)
which suggests that SRPs are an important affecting factor of forestry economy.
The method proposed in this study based on the LandTrendr time series trajectory segmentation algorithm of SRP spatiotemporal information extraction is proven to be very effective. The mapping and analysis of the spatiotemporal distribution of SRPs can provide decision support for forestry management and provide basic data for the research on forest carbon cycle.
遥感短轮伐期人工林LandTrendrLandsat时空分布制图长时间序列时序分割
remote seningShort-Rotation PlantationsLandTrendrLandsatspatiotemporal distribution mappinglong time seriestime series trajectory segmentation
Brockerhoff E G, Jactel H, Parrotta J A, Quine C P and Sayer J. 2008. Plantation forests and biodiversity: oxymoron or opportunity? Biodiversity and Conservation, 17(5): 925-951 [DOI: 10.1007/s10531-008-9380-xhttp://dx.doi.org/10.1007/s10531-008-9380-x]
Bu Q L, Tan Z H and Zhang Y P. 2020. Carbon dynamic of a tropical forest succession series in Southwest China. Acta Ecologica Sinica, 40(15): 5258-5265
步巧利, 谭正洪, 张一平. 2020. 中国西南地区热带森林演替序列碳动态. 生态学报, 40(15): 5258-5265 [DOI: 10.5846/stxb201901090076http://dx.doi.org/10.5846/stxb201901090076]
Claverie M, Vermote E F, Franch B and Masek J G. 2015. Evaluation of the landsat-5 TM and landsat-7 ETM+surface reflectance products. Remote Sensing of Environment, 169: 390-403 [DOI: 10.1016/j.rse.2015.08.030http://dx.doi.org/10.1016/j.rse.2015.08.030]
Dong J W, Xiao X M, Menarguez M A, Zhang G L, Qin Y W, Thau D, Biradar C and Moore B. 2016. Mapping paddy rice planting area in northeastern Asia with Landsat 8 images, phenology-based algorithm and google earth engine. Remote Sensing of Environment, 185: 142-154 [DOI: 10.1016/j.rse.2016.02.016http://dx.doi.org/10.1016/j.rse.2016.02.016]
Flood N. 2013. Seasonal composite Landsat TM/ETM+ images using the Medoid (a multi-dimensional median). Remote Sensing, 5(12): 6481-6500 [DOI: 10.3390/rs5126481http://dx.doi.org/10.3390/rs5126481]
Ge Q S, Dai J H, He F N, Pan Y and Wang M M. 2008. Land use changes and their relations with carbon cycles over the past 300 a in China. Science in China Series D: Earth Sciences, 51(6): 871-884
葛全胜, 戴君虎, 何凡能, 潘嫄, 王梦麦. 2008. 过去300年中国土地利用、土地覆被变化与碳循环研究. 中国科学 D辑: 地球科学, 38(2): 197-210 [DOI: 10.3321/j.issn:1006-9267.2008.02.006http://dx.doi.org/10.3321/j.issn:1006-9267.2008.02.006]
Gorelick N, Hancher M, Dixon M, Ilyushchenko S, Thau D and Moore R. 2017. Google earth engine: planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 202: 18-27 [DOI: 10.1016/j.rse.2017.06.031http://dx.doi.org/10.1016/j.rse.2017.06.031]
Hansen M C, Potapov P V, Moore R, Hancher M, Turubanova S A, Tyukavina A, Thau D, Stehman S V, Goetz S J, Loveland T R, Kommareddy A, Egorov A, Chini L, Justice C O and Townshend J R G. 2013. High-resolution global maps of 21st-century forest cover change. Science, 342(6160): 850-853 [DOI: 10.1126/science.1244693http://dx.doi.org/10.1126/science.1244693]
Huang G Q and Zhao Q G. 2014. The history, status quo, ecological problems and countermeasures of Eucalyptus plantations in Guangxi. Acta Ecologica Sinica, 34(18): 5142-5152
黄国勤, 赵其国. 2014. 广西桉树种植的历史、现状、生态问题及应对策略. 生态学报, 34(18): 5142-5152 [DOI: 10.5846/stxb201405100943http://dx.doi.org/10.5846/stxb201405100943]
Kennedy R E, Yang Z Q and Cohen W B. 2010. Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr — Temporal segmentation algorithms. Remote Sensing of Environment, 114(12): 2897-2910 [DOI: 10.1016/j.rse.2010.07.008http://dx.doi.org/10.1016/j.rse.2010.07.008]
Kennedy R E, Yang Z Q, Gorelick N, Braaten J, Cavalcante L, Cohen W B and Healey S. 2018. Implementation of the LandTrendr algorithm on google earth engine. Remote Sensing, 10(5): 691 [DOI: 10.3390/rs10050691http://dx.doi.org/10.3390/rs10050691]
Lan X, Du H, Song T Q, Zeng F P, Peng W X, Liu Y X, Fan Z L and Zhang J Y. 2019. Vegetation carbon storage in the main forest types in Guangxi and the related influencing factors. Acta Ecologica Sinica, 39(6): 2043-2053
兰秀, 杜虎, 宋同清, 曾馥平, 彭晚霞, 刘永贤, 范稚莲, 张家涌. 2019. 广西主要森林植被碳储量及其影响因素. 生态学报, 39(6): 2043-2053 [DOI: 10.5846/stxb201803210557http://dx.doi.org/10.5846/stxb201803210557]
Le Maire G, Dupuy S, Nouvellon Y, Loos R A and Hakamada R. 2014. Mapping short-rotation plantations at regional scale using MODIS time series: case of eucalypt plantations in Brazil. Remote Sensing of Environment, 152: 136-149 [DOI: 10.1016/j.rse.2014.05.015http://dx.doi.org/10.1016/j.rse.2014.05.015]
Meng L L, Zhong S Q, Mo J F, Chen Y L and Liang W H. 2019. Research on eucalyptus information extraction based on GF-1 object-oriented. Geospatial Information, 17(8): 24-29
蒙良莉, 钟仕全, 莫建飞, 陈燕丽, 梁文海. 2019. 基于GF-1面向对象的桉树林信息提取研究. 地理空间信息, 17(8): 24-29 [DOI: 10.3969/j.issn.1672-4623.2019.08.006http://dx.doi.org/10.3969/j.issn.1672-4623.2019.08.006]
National Forestry and Grassland Administration. 2019. China Forestry and Grassland Statistical Yearbook 2018. Beijing: China Forestry Publishing House
国家林业和草原局. 2019. 中国林业和草原统计年鉴2018. 北京: 中国林业出版社
Padarian J, Minasny B and McBratney A B. 2015. Using Google's cloud-based platform for digital soil mapping. Computers and Geosciences, 83: 80-88 [DOI: 10.1016/j.cageo.2015.06.023http://dx.doi.org/10.1016/j.cageo.2015.06.023]
Qiao H L, Wu M Q, Shakir M, Wang L, Kang J and Niu Z. 2016. Classification of small-scale eucalyptus plantations based on NDVI time series obtained from multiple high-resolution datasets. Remote Sensing, 8(2): 117 [DOI: 10.3390/rs8020117http://dx.doi.org/10.3390/rs8020117]
Qiu B B. 2017. Study on the difference of spectral and urban green land biomass estimation based on Landsat OLI and ETM+ image. Hangzhou: Zhejiang Agriculture and Forestry University
邱布布. 2017. Landsat OLI与ETM+遥感影像光谱信息差异及城市绿地生物量估算研究. 杭州: 浙江农林大学
Roy D P, Kovalskyy V, Zhang H K, Vermote E F, Yan L, Kumar S S and Egorov A. 2016. Characterization of Landsat-7 to Landsat-8 reflective wavelength and normalized difference vegetation index continuity. Remote Sensing of Environment, 185: 57-70 [DOI: 10.1016/j.rse.2015.12.024http://dx.doi.org/10.1016/j.rse.2015.12.024]
Shen W J and Li M S. 2014. Method for Landsat dense time series data format unification and surface reflectance conversion. Remote Sensing for Land and Resources, 26(4): 78-84
沈文娟, 李明诗. 2014. Landsat长时间序列数据格式统一与反射率转换方法实现. 国土资源遥感, 26(4): 78-84 [DOI: 10.6046/gtzyyg.2014.04.13http://dx.doi.org/10.6046/gtzyyg.2014.04.13]
Shen W J and Li M S. 2017. Mapping disturbance and recovery of plantation forests in southern China using yearly Landsat time series observations. Acta Ecologica Sinica, 37(5): 1438-1449
沈文娟, 李明诗. 2017. 基于长时间序列Landsat影像的南方人工林干扰与恢复制图分析. 生态学报, 37(5): 1438-1449 [DOI: 10.5846 /stxb201510142074http://dx.doi.org/10.5846/stxb201510142074]
Shen W J, Li M S and Wei A S. 2017. Spatio-temporal variations in plantation forests’ disturbance and recovery of northern Guangdong Province using yearly Landsat time series observations (1986-2015). Chinese Geographical Science, 27(4): 600-613 [DOI: 10.1007/s11769-017-0880-zhttp://dx.doi.org/10.1007/s11769-017-0880-z]
Thomas V A, Wynne R H, Kauffman J, McCurdy W, Brooks E B, Thomas R Q and Rakestraw J. 2021. Mapping thins to identify active forest management in southern pine plantations using Landsat time series stacks. Remote Sensing of Environment, 252: 112127 [DOI: 10.1016/j.rse.2020.112127http://dx.doi.org/10.1016/j.rse.2020.112127]
Williams R A. 2015. Mitigating biodiversity concerns in eucalyptus plantations located in South China. Journal of Biosciences and Medicines, 3(6): 1-8 [DOI: 10.4236/jbm.2015.36001http://dx.doi.org/10.4236/jbm.2015.36001]
Woodcock C E, Allen R, Anderson M, Belward A, Bindschadler R, Cohen W, Gao F, Goward S N, Helder D, Helmer E, Nemani R, Oreopoulos L, Schott J, Thenkabail P S, Vermote E F, Vogelmann J, Wulder M A and Wynne R. 2008. Free access to Landsat imagery. Science, 320(5879): 1011-1011 [DOI: 10.1126/science.320.5879.1011ahttp://dx.doi.org/10.1126/science.320.5879.1011a]
Wu X Q, Qin X L, Zhou R L, Lu Y, Chen E X and Li Z Y. 2010. Progress of study on forest cover change detection by using remote sensing technique. Forest Resources Management, (4): 82-87
吴雪琼, 覃先林, 周汝良, 卢颖, 陈尔学, 李增元. 2010. 森林覆盖变化遥感监测方法研究进展. 林业资源管理, (4): 82-87 [DOI: 10.13466/j.cnki.lyzygl.2010.04.013http://dx.doi.org/10.13466/j.cnki.lyzygl.2010.04.013]
Zhang S S, Cui Y P, Fu S L, Fu Y M, Liu X Y, Tan X Y, Chen L Y and Li N. 2020. Modeling greenhouse gas sequestration potential of forest change in China. Acta Ecologica Sinica, 40(4): 1140-1149
张帅帅, 崔耀平, 傅声雷, 付一鸣, 刘小燕, 唐希颖, 陈良雨, 李楠. 2020. 中国森林面积变化及其温室气体储量模拟研究. 生态学报, 40(4): 1140-1149 [DOI: 10.5846/stxb201812312853http://dx.doi.org/10.5846/stxb201812312853]
Zhang Z J, Zhang H, Chang Y G and Chen Z C. 2015. Review of radiometric calibration methods of Landsat series optical remote sensors. Journal of Remote Sensing, 19(5): 719-732
张志杰, 张浩, 常玉光, 陈正超. 2015. Landsat系列卫星光学遥感器辐射定标方法综述. 遥感学报, 19(5): 719-732 [DOI: 10.11834/jrs.20154240http://dx.doi.org/10.11834/jrs.20154240]
Zhu Z, Wang S X and Woodcock C E. 2015. Improvement and expansion of the Fmask algorithm: cloud, cloud shadow, and snow detection for Landsats 4-7, 8, and Sentinel 2 images. Remote Sensing of Environment, 159: 269-277 [DOI: 10.1016/j.rse.2014.12.014http://dx.doi.org/10.1016/j.rse.2014.12.014]
相关文章
相关作者
相关机构