Multi-dimension evaluation of remote sensing indices for land surface phenology monitoring
- Pages: 1-20(2022)
DOI: 10.11834/jrs.20221135
Quote
扫 描 看 全 文
扫 描 看 全 文
Quote
孙莉昕,朱文泉,谢志英,詹培,李雪莹.XXXX.应用于陆表物候监测的遥感指数多维度评估.遥感学报,XX(XX): 1-20
Sun Lixin,Zhu Wenquan,Xie Zhiying,Zhan Pei,Li Xueying. XXXX. Multi-dimension evaluation of remote sensing indices for land surface phenology monitoring. National Remote Sensing Bulletin, XX(XX):1-20
针对陆表植被物候监测已发展了很多遥感指数,但不同遥感指数表征陆表植被季节性变化的能力存在差异。目前,有关陆表植被物候遥感指数的评估大多在不同标准下开展,导致研究结果间的可比性较差,致使无法根据不同区域选择出最佳的遥感指数,从而影响大尺度(如半球乃至全球)的陆表物候监测精度。本文在北半球中高纬度地区,以75个碳通量塔站点的406条记录和129个物候相机站点的482条记录为参考标准,对10种遥感指数应用于陆表物候监测的能力进行了系统性评估,并从两个精度评估视角(物候提取准确度、物候变化趋势一致性)、四个维度(植被类型、地理环境、物候类型、物候事件)对比分析了各种情况下的最佳遥感指数及其精度。虽然部分遥感指数在多数情况下均表现最佳,但不同植被类型、地理环境、物候类型(功能物候、结构物候)、物候事件(春季、秋季)组合情况下的最佳遥感指数并不聚焦于少数几种,而是散布于各类遥感指数之中;即使是采用了最佳遥感指数,但在某些情况下,其用于陆表物候监测的误差仍较大。从不同的精度评估视角来看,物候提取准确度高的遥感指数并不一定与物候变化趋势一致性高的遥感指数相对应,说明应根据关注视角来选择最佳遥感指数。本文研究结果可为不同情况下的陆表植被物候监测提供最佳遥感指数选择依据,从而有利于提高大尺度的陆表植被物候监测精度以及评估其不确定性。
Many remote sensing indices have been developed for land surface phenology monitoring, but there are differences in the ability of different remote sensing indices to represent the seasonal changes of land surface vegetation. At present, the evaluations of remote sensing indices for land surface phenology monitoring are mostly carried out under different standards, resulting in poor comparability among research results. Thus it`s impossible to select the best remote sensing indices according to different regions based on those research results, which would have an impact on the large-scale (e.g. hemispheric and even global) land surface phenology monitoring. Taking 406 records from 75 carbon flux tower stations and 482 records from 129 phenological camera stations as the reference standard, this paper systematically evaluated the application of 10 remote sensing indexes in monitoring land surface phenology in the middle and high latitudes of the northern hemisphere. In addition, the best remote sensing indices and their accuracy under different conditions are also compared and analyzed from two evaluation perspectives (including phenological extraction accuracy and phenological change trend consistency) and four dimensions (including vegetation type, geographical environment, phenological type and phenological event).Although some remote sensing indices are the best in most conditions, the best remote sensing indices for different vegetation types, geographical environment, phenological types (functional phenology, structural phenology) and phenological events (spring and autumn) don`t focus on a few of remote sensing indices, but are scattered among all kinds of them. Even with the best remote sensing index, the error of land surface phenology monitoring is still large in some conditions. From different evaluation perspectives, the remote sensing indices with a high accuracy of phenology extraction are not exactly the same as those with a high consistency of phenological change trend, which suggested that the best remote sensing index should be selected according to the objects. The results of this paper can provide the best remote sensing index selection basis for land surface phenology monitoring under different conditions, which will be helpful to improve the accuracy of large-scale land surface phenology monitoring and evaluate its uncertainty.
遥感指数陆表植被物候植被类型地理环境结构物候功能物候
remote sensing indexland surface phenologyvegetation typegeographical environmentstructural phenologyfunctional phenology
Badgley, Grayson, Christopher B. Field, and Joseph A. Berry. 2017. Canopy near-infrared reflectance and terrestrial photosynthesis. Science Advances 3 (3): e1602244 [DOI: 10.1126/sciadv.1602244http://dx.doi.org/10.1126/sciadv.1602244]
Beurs, Kirsten M De, and Geoffrey M Henebry. 2004. Land surface phenology, climatic variation, and institutional change: Analyzing agricultural land cover change in Kazakhstan. Remote Sensing of Environment 89 (4): 497-509 [DOI: 10.1016/j.rse.2003.11.006http://dx.doi.org/10.1016/j.rse.2003.11.006]
Busetto L., R. Colombo, M. Migliavacca, E. Cremonese, M. Meroni, M. Galvagno, M. Rossini, C. Siniscalco, U. Morra Di Cella, and E. Pari. 2010. Remote sensing of larch phenological cycle and analysis of relationships with climate in the Alpine region. Global Change Biology 16 (9) [DOI: 10.1111/j.1365-2486.2010.02189.x]
Cao, Ruyin, Jin Chen, Miaogen Shen, and Yanhong Tang. 2015. An improved logistic method for detecting spring vegetation phenology in grasslands from MODIS EVI time-series data. Agricultural Forest Meteorology 200: 9-20 [DOI: 10.1016/j.agrformet.2014.09.009http://dx.doi.org/10.1016/j.agrformet.2014.09.009]
Cardot H., P. Maisongrande, and R. Faivre. 2008. Varying-time random effects models for longitudinal data: Unmixing and temporal interpolation of remote-sensing data. Journal of Applied Statistics 35 (8):827-46 [DOI: 10.1080/02664760802061970http://dx.doi.org/10.1080/02664760802061970]
Chandrasekar K., M. V. R. SESHA SAI, P. S. ROY, and R. S. DWEVEDI. 2010. Land Surface Water Index (LSWI) response to rainfall and NDVI using the MODIS Vegetation Index product. International Journal of Remote Sensing 31 (15-16):3987-4005 [DOI: 10.1080/01431160802575653http://dx.doi.org/10.1080/01431160802575653]
Che, ML, Chen, BZ, Innes, JL, Wang, GY, Dou, and XM. 2014. Spatial and temporal variations in the end date of the vegetation growing season throughout the Qinghai-Tibetan Plateau from 1982 to 2011. Agricultural Forest Meteorology 2014,189 (-):81-90 [DOI: 10.1016/j.agrformet.2014.01.004http://dx.doi.org/10.1016/j.agrformet.2014.01.004]
Delbart, Nicolas, Thuy Le Toan, Laurent Kergoat, and Violetta Fedotova. 2008. Remote sensing of spring phenology in boreal regions: A free of snow-effect method using NOAA-AVHRR and SPOT-VGT data (1982–2004). Remote Sensing of Environment 101 (1):52-62 [DOI: 10.1016/j.rse.2005.11.012http://dx.doi.org/10.1016/j.rse.2005.11.012]
Dong, Qi, Xuehong Chen, Jin Chen, Chishan Zhang, and Xihong Cui. 2020. Mapping Winter Wheat in North China Using Sentinel 2A/B Data: A Method Based on Phenology-Time Weighted Dynamic Time Warping. Remote Sensing 12 (8):1274 [DOI: 10.3390/rs12081274http://dx.doi.org/10.3390/rs12081274]
Duchemin, Benoı̂T, Jérôme Goubier, and Gaston Courrier. 2012. Monitoring Phenological Key Stages and Cycle Duration of Temperate Deciduous Forest Ecosystems with NOAA/AVHRR Data. Remote Sensing of Environment 67 (1):68–82 [DOI: 10.1016/S0034-4257(98)00067-4http://dx.doi.org/10.1016/S0034-4257(98)00067-4]
Dye, Dennis G., Middleton, Barry R., Vogel, John M., and Zhuoting. 2016. Exploiting Differential Vegetation Phenology for Satellite-Based Mapping of Semiarid Grass Vegetation in the Southwestern United States and Northern Mexico. Remote Sensing 8 (12):889 [DOI: 10.3390/rs8110889http://dx.doi.org/10.3390/rs8110889]
Fan D Q, Zhao X S, Zhu W Q, Zheng Z T. 2016. Review of influencing factors of accuracy of plant phenology monitoring based on remote sensing data. Advances in Earth Science, 35 (3):304-19
范德芹, 赵学胜, 朱文泉, 郑周涛. 2016. 植物物候遥感监测精度影响因素研究综述. 地球科学进展, 35 (3): 304-19 [DOI: 10.18306/dlkxjz.2016.03.005http://dx.doi.org/10.18306/dlkxjz.2016.03.005]
Fan D Q, Zhu W Q, Pan Y Z, Jiang N, Zheng Z T. 2014. Identifying an optimal method for estimating green-up date of Kobresia pygmaea alpine meadow in Qinghai-Tibetan Plateau. Journal of Remote Sensing, 18(05): 1117-1127
范德芹, 朱文泉, 潘耀忠, 姜楠, 郑周涛. 2014. 青藏高原小嵩草高寒草甸返青期遥感识别方法筛选. 遥感学报, 18(05): 1117-1127 [DOI: 10.11834/jrs.20143299http://dx.doi.org/10.11834/jrs.20143299]
Fu Y Z. 2010. Study on Vegetation Index of Remote Sensing and Its Aplications. Master, FuZhou University. (傅银贞. 2010. 遥感植被指数分析及应用研究. 硕士, 福州大学)
Gao, Bo-cai. 1996. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sensing of Environment 58 (3):257-66 [DOI: 10.1016/S0034-4257(96)00067-3http://dx.doi.org/10.1016/S0034-4257(96)00067-3]
Gonsamo, Alemu, Jing M. Chen, David T. Price, Werner A. Kurz, and Chaoyang Wu. 2012. Land surface phenology from optical satellite measurement and CO2eddy covariance technique. Journal of Geophysical Research: Biogeosciences 117 (G3) [DOI: 10.1029/2012jg002070]
Guyon, Dominique, Marie Guillot, Yann Vitasse, Hervé Cardot, Olivier Hagolle, Sylvain Delzon, and Jean-Pierre Wigneron. 2011. Monitoring elevation variations in leaf phenology of deciduous broadleaf forests from SPOT/VEGETATION time-series. Remote Sensing of Environment 115 (2):615-27 [DOI: 10.1016/j.rse.2010.10.006http://dx.doi.org/10.1016/j.rse.2010.10.006]
Heumann B. W., J. W. Seaquist, L. Eklundh, and P. J Nsson. 2007. AVHRR derived phenological change in the Sahel and Soudan, Africa, 1982–2005. Remote Sensing of Environment 108 (4):385-92 [DOI: 10.1016/j.rse.2006.11.025http://dx.doi.org/10.1016/j.rse.2006.11.025]
Hird, Jennifer N., and Gregory J. Mcdermid. 2009. Noise reduction of NDVI time series: An empirical comparison of selected techniques. Remote Sensing of Environment 113 (1):248-58 [DOI: 10.1016/j.rse.2008.09.003http://dx.doi.org/10.1016/j.rse.2008.09.003]
Hudson I. L., and M. R. Keatley. 2010. Phenological Research: Methods for Environmental and Climate Change Analysis: Springer Ebooks.
Huete A., K. Didan, T. Miura, E. P Rodriguez, X. Gao, and L. G Ferreira. 2002. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment 83 (1-2):195-213 [DOI: 10.1016/S0034-4257(02)00096-2http://dx.doi.org/10.1016/S0034-4257(02)00096-2]
Jiang Z., A. Huete, K. Didan, and T. Miura. 2008. Development of a two-band enhanced vegetation index without a blue band. Remote Sensing of Environment 112 (10):3833-45 [DOI: 10.1016/j.rse.2008.06.006http://dx.doi.org/10.1016/j.rse.2008.06.006]
Jin, Hongxiao, and Lars Eklundh. 2014. A physically based vegetation index for improved monitoring of plant phenology. Remote Sensing of Environment 152:512-25 [DOI: 10.1016/j.rse.2014.07.010http://dx.doi.org/10.1016/j.rse.2014.07.010]
Kaduk, Jrg D., and Martin Heimann. 1996. A prognostic phenology model for global terrestrial carbon cycle models. Climate Research 6 (1):1-19 [DOI: 10.3354/cr006001http://dx.doi.org/10.3354/cr006001]
Li, He, Zhong-xin Chen, Zhi-wei Jiang, Wen-bin Wu, Jian-qiang Ren, Bin Liu, and Hasi Tuya. 2017. Comparative analysis of GF-1, HJ-1, and Landsat-8 data for estimating the leaf area index of winter wheat. Journal of Integrative Agriculture 16 (2):266-85 [DOI: 10.1016/s2095-3119(15)61293-xhttp://dx.doi.org/10.1016/s2095-3119(15)61293-x]
Lin Z H, Mo X G. 2006. Phenologies f rom harmonics analysis of AVHRR NDVI time series. Transactions of the Chinese Society of Agricultural Engineering, (12):138-44
林忠辉, 莫兴国. 2006. NDVI时间序列谐波分析与地表物候信息获取. 农业工程学报, (12): 138-44 [DOI: CNKI:SUN:NYGU.0.2006-12-028http://dx.doi.org/CNKI:SUN:NYGU.0.2006-12-028]
Liu X L. 2019. Remote Sensing of Vegetation Phenology in Snow-covered Area of Northern Hemisphere. Master, University Of Electronic Science And Technology Of China. (刘喜龙. 2019. 北半球积雪地区遥感植被物候研究. 硕士, 电子科技大学)
Liu, Yan, Michael J. Hill, Xiaoyang Zhang, Zhuosen Wang, Andrew D. Richardson, Koen Hufkens, Gianluca Filippa, Dennis D. Baldocchi, Siyan Ma, and Joseph Verfaillie. 2017. Using data from Landsat, MODIS, VIIRS and PhenoCams to monitor the phenology of California oak/grass savanna and open grassland across spatial scales. Agricultural Forest Meteorology s 237–238:311-25 [DOI: 10.1016/j.agrformet.2017.02.026http://dx.doi.org/10.1016/j.agrformet.2017.02.026]
Liu, Yuxia, Chaoyang Wu, Dailiang Peng, Shiguang Xu, Alemu Gonsamo, Rachhpal S. Jassal, M. Altaf Arain, Linlin Lu, Bin Fang, and Jing M. Chen. 2016. "Improved modeling of land surface phenology using MODIS land surface reflectance and temperature at evergreen needleleaf forests of central North America. Remote Sensing of Environment 176:152-62 [DOI: 10.1016/j.rse.2016.01.021http://dx.doi.org/10.1016/j.rse.2016.01.021]
Matsushita, Bunkei, Wei Yang, Jin Chen, Yuyichi Onda, and Guoyu Qiu. 2007. Sensitivity of the Enhanced Vegetation Index (EVI) and Normalized Difference Vegetation Index (NDVI) to Topographic Effects: A Case Study in High-density Cypress Forest. Sensors 7, no. 11: 2636-2651. [DOI: 10.3390/s7112636http://dx.doi.org/10.3390/s7112636]
Mou M J, Zhu W Q, Wang L L, Xu Y J, Liu J H. 2012. Evaluation of remote sensing extraction methods for vegetation phenology based on flux tower net ecosystem carbon exchange data. Chinese Journal of Applied Ecology, 23 (02): 319-27
牟敏杰, 朱文泉, 王伶俐, 许映军, 刘建红. 2012. 基于通量塔净生态系统碳交换数据的植被物候遥感识别方法评价. 应用生态学报, 23 (02): 319-27 [DOI: 10.13287/j.1001-9332.2012.0072http://dx.doi.org/10.13287/j.1001-9332.2012.0072]
Nicola, Clerici, Christof J., Weissteiner, France, and Gerard. 2012. Exploring the Use of MODIS NDVI-Based Phenology Indicators for Classifying Forest General Habitat Categories. Remote Sensing 4 (6):1781- [DOI: 10.3390/rs4061781http://dx.doi.org/10.3390/rs4061781]
Pan, Yaozhong, Li Le, Jinshui Zhang, Shunlin Liang, Xiufang Zhu, and Damien Sulla-Menashe. 2012. Winter wheat area estimation from MODIS-EVI time series data using the Crop Proportion Phenology Index. Remote Sensing of Environment 119 (none):232-42 [DOI: 10.1016/j.rse.2011.10.011http://dx.doi.org/10.1016/j.rse.2011.10.011]
Pastick, Neal J., Devendra Dahal, Bruce K. Wylie, Sujan Parajuli, and Zhouting Wu. 2020. Characterizing Land Surface Phenology and Exotic Annual Grasses in Dryland Ecosystems Using Landsat and Sentinel-2 Data in Harmony. Remote Sensing 12 (4):725 [DOI: 10.3390/rs12040725http://dx.doi.org/10.3390/rs12040725]
Paulina, Karkauskaite, Tagesson Torbern, and Fensholt Rasmus. 2017. Evaluation of the Plant Phenology Index (PPI), NDVI and EVI for Start-of-Season Trend Analysis of the Northern Hemisphere Boreal Zone. Remote Sensing 9 (5):485 [DOI: 10.3390/rs9050485http://dx.doi.org/10.3390/rs9050485]
Peng, Dailiang, Xiaoyang Zhang, Chaoyang Wu, Wenjiang Huang, Alemu Gonsamo, Alfredo R. Huete, Kamel Didan, Bin Tan, Xinjie Liu, and Bing Zhang. 2017. Intercomparison and evaluation of spring phenology products using National Phenology Network and AmeriFlux observations in the contiguous United States. Agricultural and Forest Meteorology 242:33-46 [DOI: 10.1016/j.agrformet.2017.04.009http://dx.doi.org/10.1016/j.agrformet.2017.04.009]
Pidgorodetska L.V., and Ya.I. Zyelyk. 2015. Detection of winter crops by satellite data on the basis of soil-adaptive perpendicular vegetation index. Astronomical Schools Report 11 (1):91-8 [DOI: 10.18372/2411-6602.11.1091http://dx.doi.org/10.18372/2411-6602.11.1091]
Pieter A. S., Beck, and, Clement, Atzberger, and, Kjell, Arild, and Høgda. 2006. Improved monitoring of vegetation dynamics at very high latitudes: A new method using MODIS NDVI. Remote Sensing of Environment 99 (3):321-34 [DOI: 10.1016/j.rse.2005.10.021http://dx.doi.org/10.1016/j.rse.2005.10.021]
Reed B. C., J. F. Brown, D. VanderZee, T. R. Loveland, J. W. Merchant, and D. O. Ohlen. 1994. Measuring phenological variability from satellite imagery. Journal of Vegetation Science 5 (5):703-14 [DOI: 10.2307/3235884http://dx.doi.org/10.2307/3235884]
Richardson, A J., and C L. Wiegand. 1977. Distinguishing vegetation from soil background information. Photogrammetric engineering and remote sensing 43 (12):1541-52 [DOI: 10.1109/TGE.1977.294499http://dx.doi.org/10.1109/TGE.1977.294499]
Richardson, Andrew D., Koen Hufkens, Tom Milliman, Donald M. Aubrecht, Min Chen, Josh M. Gray, Miriam R. Johnston, et al. 2018. Tracking vegetation phenology across diverse North American biomes using PhenoCam imagery. Scientific Data 5 (1):180028 [DOI: 10.1038/sdata.2018.28http://dx.doi.org/10.1038/sdata.2018.28]
Rouse, J W J, R H Haas, and J A Schell, et al. . 1973. Monitoring vegetation systems in the Great Plains with ERTS. Third ERTS Symposium, NASA SP-351. US Gov. Printing office. Edited by SC Freden, EP Mercanti, and MA Becker. NASA, 351:309]
Sakamoto, Toshihiro, Masayuki Yokozawa, Hitoshi Toritani, Michio Shibayama, Naoki Ishitsuka, and Hiroyuki Ohno. 2005. A crop phenology detection method using time-series MODIS data. Remote Sensing of Environment 96 (3-4):366-74 [DOI: 10.1016/j.rse.2005.03.008http://dx.doi.org/10.1016/j.rse.2005.03.008]
Schwartz, Mark D. 2013. Phenology: An Integrative Environmental Science. Vol. 22, Springer Netherlands: Springer, Dordrecht.
Schwartz, Mark D., Bradley C. Reed, and Michael A. White. 2002. Assessing satellite-derived start-of-season measures in the conterminous USA. International Journal of Climatology 22 (14):1793-805 [DOI: 10.1002/joc.819http://dx.doi.org/10.1002/joc.819]
Shen, M, and S Piao. 2013. ncreasing altitudinal spring phenology gradient of vegetation over the last decade in Qinghai-Tibetan Plateau. Paper presented at the Agu Fall Meeting.
Tan, B, J. T Morisette, R. E Wolfe, F Gao, G. A Ederer, J Nightingale, and J. A Pedelty. 2011. An Enhanced TIMESAT Algorithm for Estimating Vegetation Phenology Metrics From MODIS Data. IEEE Journal of Selected Topics in Applied Earth Observations Remote Sensing 4 (2):361-71 [DOI: 10.1109/JSTARS.2010.2075916http://dx.doi.org/10.1109/JSTARS.2010.2075916]
Tong, Xiaoye, Feng Tian, Martin Brandt, Yi Liu, Wenmin Zhang, and Rasmus Fensholt. 2019. Trends of land surface phenology derived from passive microwave and optical remote sensing systems and associated drivers across the dry tropics 1992–2012. Remote Sensing of Environment 232:111307 [DOI: 10.1016/j.rse.2019.111307http://dx.doi.org/10.1016/j.rse.2019.111307]
Wang, Cong, Jin Chen, Jin Wu, Yanhong Tang, Peijun Shi T. Andrew Black, and Kai Zhu. 2017. A snow-free vegetation index for improved monitoring of vegetation spring green-up date in deciduous ecosystems. Remote Sensing of Environment 196:1-12 [DOI: 10.1016/j.rse.2017.04.031http://dx.doi.org/10.1016/j.rse.2017.04.031]
Wang, Jianmin, and Xiaoyang Zhang. 2020. Investigation of wildfire impacts on land surface phenology from MODIS time series in the western US forests. ISPRS Journal of Photogrammetry and Remote Sensing 159:281-95 [DOI: 10.1016/j.isprsjprs.2019.11.027http://dx.doi.org/10.1016/j.isprsjprs.2019.11.027]
Wang, Meng, Fu Lu Tao, and Wen Jiao Shi. 2014. Corn Yield Forecasting in Northeast China Using Remotely Sensed Spectral Indices and Crop Phenology Metrics. Journal of Integrative Agriculture 13 (7):1538-45 [DOI: 10.1016/S2095-3119(14)60817-0http://dx.doi.org/10.1016/S2095-3119(14)60817-0]
Wang X., S. Piao, P. Ciais, J. Li, P. Friedlingstein, C. Koven, and A. Chen. 2011. Spring temperature change and its implication in the change of vegetation growth in North America from 1982 to 2006. Proceedings of the National Academy of Sciences of the United States of America 108 (4):1240-5 [DOI: 10.1073/pnas.1014425108http://dx.doi.org/10.1073/pnas.1014425108]
Wardlow B., S. Egbert, and J. Kastens. 2007. Analysis of time-series MODIS 250 m vegetation index data for crop classification in the U.S. Central Great Plains. Remote Sensing of Environment 108 (3):290-310 [DOI: 10.1016/j.rse.2006.11.021http://dx.doi.org/10.1016/j.rse.2006.11.021]
White M.A., P.E. Thornton, and S.W. Running. 1997. A continental phenology model for monitoring vegetation responses to interannual climatic variability. Global Biogeochem. Cycles 11 (2):217-34 [DOI: 10.1029/97GB00330http://dx.doi.org/10.1029/97GB00330]
Wu Y F, Li M S, Song J Q. 2008. Advance in vegetation phenology monitoring based on remote sensing. Journal of Meteorology and Environment, (03):51-58
武永峰, 李茂松, 宋吉青. 2008. 植物物候遥感监测研究进展. 气象与环境学报, (03): 51-58 [DOI: 10.13287/j.1001-9332.2012.0072http://dx.doi.org/10.13287/j.1001-9332.2012.0072]
Wu C., A. Gonsamo, J. M. Chen, W. A. Kurz, D. T. Price, P. M. Lafleur, R. S. Jassal, et al. 2012. Interannual and spatial impacts of phenological transitions, growing season length, and spring and autumn temperatures on carbon sequestration: A North America flux data synthesis. Global and Planetary Change 92-93:179-90 [DOI: 10.1016/j.gloplacha.2012.05.021http://dx.doi.org/10.1016/j.gloplacha.2012.05.021]
Wu, Chaoyang, Alemu Gonsamo, Christopher M. Gough, Jing M. Chen, and Shiguang Xu. 2014. Modeling growing season phenology in North American forests using seasonal mean vegetation indices from MODIS. Remote Sensing of Environment 147:79-88 [DOI: 10.1016/j.rse.2014.03.001http://dx.doi.org/10.1016/j.rse.2014.03.001]
Xu D D, Li W L. 2009. Vegetation index controlling soil background. Beijing: China Scientific Papers Online [2009-06-12]. (徐丹丹, 李文龙. 2009. 控制土壤背景的植被指数. 北京:中国科技论文在线[2009-06-12]. http://www.paper.edu.cn/releasepaper/content/200906-376)
Xu Y Y, Zhang J H, Yang L M. 2012. Detecting major phenological stages of rice using MODIS-EVI data and Symlet11 wavelet in Northeast China. Acta Ecologica Sinica, 32 (07): 2091-2098
徐岩岩, 张佳华. 2012. 基于MODIS-EVI数据和Symlet11小波识别东北地区水稻主要物候期. 生态学报, 32 (07): 2091-2098 [DOI: CNKI:SUN:STXB.0.2012-07-015http://dx.doi.org/CNKI:SUN:STXB.0.2012-07-015]
Yang, Wei, Hideki Kobayashi, Cong Wang, Miaogen Shen, Jin Chen, Bunkei Matsushita, Yanhong Tang, Yongwon Kim, M. Syndonia Bret-Harte, and Donatella Zona. 2019. A semi-analytical snow-free vegetation index for improving estimation of plant phenology in tundra and grassland ecosystems. Remote Sensing of Environment 228:31-44 [DOI: 10.1016/j.rse.2019.03.028http://dx.doi.org/10.1016/j.rse.2019.03.028]
Yuan, Huanhuan, Chaoyang Wu, Linlin Lu, and Xiaoyue Wang. 2018. A new algorithm predicting the end of growth at five evergreen conifer forests based on nighttime temperature and the enhanced vegetation index. Isprs Journal of Photogrammetry Remote Sensing 144 (OCT.):390-9 [DOI: 10.1016/j.isprsjprs.2018.08.013http://dx.doi.org/10.1016/j.isprsjprs.2018.08.013]
Zeng, Linglin, Brian D Wardlow, Daxiang Xiang, Shun Hu, and Deren Li. 2019. A review of vegetation phenological metrics extraction using time-series, multispectral satellite data. Remote Sensing of Environment 237 (111511) [DOI: 10.1016/j.rse.2019.111511]
Zhang F, Wu B F, Liu C L, Luo Z M. 2004. thods of monitoring crop phonological stages using time series of vegetation indicator. Transactions of the Chinese Society of Agricultural Engineering, (01): 155-159
张峰, 吴炳方, 刘成林, 罗治敏. 2004. 利用时序植被指数监测作物物候的方法研究. 农业工程学报, (01): 155-159 [DOI: CNKI:SUN:NYGU.0.2004-01-039http://dx.doi.org/CNKI:SUN:NYGU.0.2004-01-039]
Zhang, Xiaoyang, Bin Tan, Yunyue, and Huanhuan Yuan. 2014. Interannual variations and trends in global land surface phenology derived from enhanced vegetation index during 1982–2010. International Journal of Biometeorology 58 (4):547-64 [DOI: 10.1007/s00484-014-0802-zhttp://dx.doi.org/10.1007/s00484-014-0802-z]
Zhang, Xiaoyang, Mark A. Friedl, Crystal B. Schaaf, Alan H. Strahler, John C. F. Hodges, Feng Gao, Bradley C. Reed, and Alfredo Huete. 2003. Monitoring vegetation phenology using MODIS. Remote Sensing of Environment 84 (3):471-5 [DOI: 10.1016/S0034-4257(02)00135-9http://dx.doi.org/10.1016/S0034-4257(02)00135-9]
Zhu, Yixuan, Yangjian Zhang, Jiaxing Zu, Zhipeng Wang, Ke Huang, Nan Cong, and Ze Tang. 2019. Effects of data temporal resolution on phenology extractions from the alpine grasslands of the Tibetan Plateau. Ecological Indicators 104 (SEP.):365-77 [DOI: 10.1016/j.ecolind.2019.05.004http://dx.doi.org/10.1016/j.ecolind.2019.05.004]
相关文章
相关作者
相关机构