Study of aerosol optical properties based on the AERONET data
- Vol. 26, Issue 5, Pages: 953-970(2022)
Published: 07 May 2022
DOI: 10.11834/jrs.20221191
扫 描 看 全 文
浏览全部资源
扫码关注微信
Published: 07 May 2022 ,
扫 描 看 全 文
周佩,汪洋,徐玲琳,程志强,盖宸德,庄留文.2022.基于AERONET数据的气溶胶光学特性分析.遥感学报,26(5): 953-970
Zhou P,Wang Y,Xu L L,Cheng Z Q,Ge C D and Zhuang L W. 2022. Study of aerosol optical properties based on AERONET data. National Remote Sensing Bulletin, 26(5):953-970
大气气溶胶的监测对全球气候变化、区域空气质量和公共健康等研究具有重要的意义,而中国台湾岛四面环海,地理位置特殊,若忽略其大气环流和局地排放源造成的气溶胶特征时空异质性将会导致气溶胶参数反演误差。因此本研究使用中国台湾岛多个具有代表性的AERONET(AErosol RObotic NETwork)观测站历史数据和MODIS气溶胶光学厚度AOD(Aerosol Optical Depth)反演产品,分析5个典型站点气溶胶参数及其类型的时空变化特征及差异,分析结果表明:(1)各站点AOD年平均值逐年下降,呈现春季最高(0.5257)的季节变化特征和双峰结构的日变化规律,主导气溶胶类型为城市工业型(仅鹿林站点为海洋型)。(2)中国台湾地区风向多为东北风,风速越大,AOD值越低,海洋型气溶胶占比越高;反之则以城市工业型气溶胶为主。(3)Ångström波长指数(AE)、单次散射比(SSA)、复折射指数虚部、不对称因子平均值分别为1.3283、0.9564、0.0054、0.7292;相比于北京(39.9768°N,116.3813°E)站,台湾“中央大学”AOD年平均值、季节变化、主导气溶胶类型均存在较大的差异。(4)MODIS AOD分站点验证精度较高,而在高山鹿林站的验证精度稍低(
R
2
=0.5925);而利用不同气溶胶类型的分类验证结果显示,城市工业(
R
2
=0.7238)、生物质燃烧(
R
2
=0.6161)和次大陆型(
R
2
=0.5116)精度较高,但海洋型(
R
2
=0.1585)、大陆型(
R
2
=0.1111)AOD验证精度显著降低。本研究表明,中国台湾岛气溶胶类型呈现西南沿岸站点秋冬季次大陆型占比上升,西北沿岸大陆型上升的时空特征差异,细化气溶胶参数的时间差异和时间动态变化信息将对气溶胶卫星反演算法在环流特征明显的近海区域有着重要指导作用。
The study of atmospheric aerosols lays the foundation of global climate change
air quality
and public health research. Different from those in the Chinese mainland
the special atmospheric circulation and local emission sources in Taiwan
china from its seagirt terrain have led to the difference in aerosols’ characteristics. Lack of information on aerosol temporal and spatial characteristics might cause errors in the retrieval of satellite aerosol parameters.
On the basis of the historical data of several representative Aerosol Robotic NETwork (AERONET) sites in Taiwan
this study explored the temporal and spatial variation characteristics and differences of aerosol parameters and types of typical sites in Taiwan
China. First
the change trend of aerosol optical parameters was analyzed. The observation sample points of AERONET were divided into six categories
namely
maritime
continental
desert dust
sub-continental
urban industry
and biomass burning aerosols
using the graphical classification method. The differences in aerosol types at different sites and the effects of wind direction and speed on Aerosol Optical Depth (AOD) and aerosol types were explored
and they were comparing with the aerosol optical parameters of Beijing. Second
the MODIS data were validated against the AERONET data.
The annual average of AOD at each station is decreasing annually
which suggests the highest seasonal variation in spring (0.5257) and the diurnal variation of bimodal structure. The dominant aerosol type is urban industrial
and only Lulin station is maritime type. The northeast wind prevails in Taiwan
China
and the AOD is lower and the maritime aerosol type occupies larger proportion when the wind speed is higher. Conversely
urban industrial aerosols dominate. The average values of Ångström Exponent
Single Scattering Albedo
Refractive Index-Imaginary Part
and Asymmetry Factor are 1.3283
0.9564
0.0054
and 0.7292
respectively. Compared with those in the Beijing site (39.9768°N
116.3813°E)
the annual average of AOD
seasonal variation
and dominant aerosol types in the “Central University” shows a dramatic difference. For the remote retrieval products
MODIS AOD has higher verification accuracy at different sites
and only the Lulin site is slightly lower (
R
2
=0.5925). As for the verification results of different aerosol types
urban industry (
R
2
=0.7238)
biomass burning (
R
2
=0.6161)
and sub-continental (
R
2
=0.5116) have higher accuracy
while maritime (
R
2
=0.1585) and continental (
R
2
=0.1111) have significantly lower accuracy.
The types of aerosols in Taiwan
China show differences in temporal and spatial characteristics. The proportion of sub-continental types in the southwest coastal sites increases in autumn and winter
while the continental types in the northwest coast increase. Refining the characteristic changes of aerosol parameters plays an important role in guiding the aerosol satellite retrieval algorithm for island regions with distinct features of circulation.
大气遥感气溶胶AERONET气溶胶光学特性时空分布
atmospheric remote sensingaerosolAERONETaerosol optical propertiestemporal and spatial analysis
Ångström A. 1929. On the atmospheric transmission of sun radiation and on dust in the air. Geografiska Annaler, 11(2): 156-166 [DOI: 10.2307/519399http://dx.doi.org/10.2307/519399]
Bilal M, Nichol J E and Wang L C. 2017. New customized methods for improvement of the MODIS C6 Dark Target and Deep Blue merged aerosol product. Remote Sensing of Environment, 197: 115-124 [DOI: 10.1016/j.rse.2017.05.028http://dx.doi.org/10.1016/j.rse.2017.05.028]
Chan K L and Chan K L. 2017. Aerosol optical depths and their contributing sources in Taiwan. Atmospheric Environment, 148: 364-375 [DOI: 10.1016/j.atmosenv.2016.11.011http://dx.doi.org/10.1016/j.atmosenv.2016.11.011]
Che H Z, Zhang X Y, Chen H B, Damiri B, Goloub P, Li Z Q, Zhang X C, Wei Y, Zhou H G, Dong F, Li D P and Zhou T M. 2009. Instrument calibration and aerosol optical depth validation of the China Aerosol Remote Sensing Network. Journal of Geophysical Research: Atmospheres, 114(D3): D03206 [DOI: 10.1029/2008jd 011030http://dx.doi.org/10.1029/2008jd011030]
Chen Q X, Shen W X, Yuan Y and Tan H P. 2019. Verification of aerosol classification methods through satellite and ground-based measurements over Harbin, Northeast China. Atmospheric Research, 216: 167-175 [DOI: 10.1016/j.atmosres.2018.09.022http://dx.doi.org/10.1016/j.atmosres.2018.09.022]
Chen Q X, Yuan Y, Huang X, He Z H and Tan H P. 2018. Assessment of column aerosol optical properties using ground-based sun-photometer at urban Harbin, Northeast China. Journal of Environmental Sciences, 74: 50-57 [DOI: 10.1016/j.jes.2018.02.003http://dx.doi.org/10.1016/j.jes.2018.02.003]
Chen Q X, Yuan Y, Huang X, Jiang Y Q and Tan H P. 2017. Estimation of surface-level PM2.5 concentration using aerosol optical thickness through aerosol type analysis method. Atmospheric Environment, 159: 26-33 [DOI: 10.1016/j.atmosenv.2017.03.050http://dx.doi.org/10.1016/j.atmosenv.2017.03.050]
Chen Q X, Yuan Y, Shuai Y and Tan H P. 2016. Graphical aerosol classification method using aerosol relative optical depth. Atmospheric Environment, 135: 84-91 [DOI: 10.1016/j.atmosenv.2016.03.061http://dx.doi.org/10.1016/j.atmosenv.2016.03.061]
Chen W N, Chen Y W, Chou C C K, Chang S Y, Lin P H and Chen J P. 2009. Columnar optical properties of tropospheric aerosol by combined lidar and sunphotometer measurements at Taipei, Taiwan. Atmospheric Environment, 43(17): 2700-2708 [DOI: 10.1016/j.atmosenv.2009.02.059http://dx.doi.org/10.1016/j.atmosenv.2009.02.059]
Dai Y F, Zhang G H and Wei X. 2018. Overview of the use of AERONET site data in China. Science and Technology Innovation Herald, 15(6): 153-156
戴一枫, 张广何, 韦旭. 2018. 中国地区AERONET站点数据的使用概述. 科技创新导报, 15(6): 153-156 [DOI: 10.16660/j.cnki.1674-098X.2018.06.153http://dx.doi.org/10.16660/j.cnki.1674-098X.2018.06.153]
Eck T F, Holben B N, Dubovik O, Smirnov A, Goloub P, Chen H B, Chatenet B, Gomes L, Zhang X Y, Tsay S C, Ji Q, Giles D and Slutsker I. 2005. Columnar aerosol optical properties at AERONET sites in central eastern Asia and aerosol transport to the tropical mid-Pacific. Journal of Geophysical Research: Atmospheres, 110(D6): D06202 [DOI: 10.1029/2004jd005274http://dx.doi.org/10.1029/2004jd005274]
Eck T F, Holben B N, Reid J S, Dubovik O, Smirnov A, O’Neill N T, Slutsker I and Kinne S. 1999. Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols. Journal of Geophysical Research: Atmospheres, 104(D24): 31333-31349 [DOI: 10.1029/1999JD900923http://dx.doi.org/10.1029/1999JD900923]
Ehn M, Thornton J A, Kleist E, Sipilä M, Junninen H, Pullinen I, Springer M, Rubach F, Tillmann R, Lee B, Lopez-Hilfiker F, Andres S, Acir I H, Rissanen M, Jokinen T, Schobesberger S, Kangasluoma J, Kontkanen J, Nieminen T, Kurtén T, Nielsen L B, Jørgensen S, Kjaergaard H G, Canagaratna M, Dal Maso M, Berndt T, Petäjä T, Wahner A, Kerminen V M, Kulmala M, Worsnop D R, Wildt J and Mentel T F. 2014. A large source of low-volatility secondary organic aerosol. Nature, 506(7489): 476-479 [DOI: 10.1038/nature13032http://dx.doi.org/10.1038/nature13032]
He Q S, Li C C, Geng F H, Yang H Q, Li P R, Li T T, Liu D W and Pei Z. 2012. Aerosol optical properties retrieved from Sun photometer measurements over Shanghai, China. Journal of Geophysical Research: Atmospheres, 117(D16): D16204 [DOI: 10.1029/2011JD 017220http://dx.doi.org/10.1029/2011JD017220]
He X, Zhou R, Yao Y, Shen Z X and Zhu J. 2020. The spatiotemporal variations of aerosol types in representative sites of China basing on the Aerosol Robotic Network (AERONET). China Environmental Science, 40(2): 485-496
贺欣, 周茹, 姚媛, 沈子宣, 朱君. 2020. 基于AERONET的中国地区典型站点气溶胶类型变化特征. 中国环境科学, 40(2): 485-496 [DOI: 10.3969/j.issn.1000-6923.2020.02.003http://dx.doi.org/10.3969/j.issn.1000-6923.2020.02.003]
Holben B N, Eck T F, Slutsker I, Tanré D, Buis J P, Setzer A, Vermote E, Reagan J A, Kaufman Y J, Nakajima T, Lavenu F, Jankowiak I and Smirnov A. 1998. AERONET-A federated instrument network and data archive for aerosol characterization. Remote Sensing of Environment, 66(1): 1-16 [DOI: 10.1016/s0034-4257(98)00031-5http://dx.doi.org/10.1016/s0034-4257(98)00031-5]
Holben B N, Tanré D, Smirnov A, Eck T F, Slutsker I, Abuhassan N, Newcomb W W, Schafer J S, Chatenet B, Lavenu F, Kaufman Y J, Castle J V, Setzer A, Markham B, Clark D, Frouin R, Halthore R, Karneli A, O’neill N T, Pietras C, Pinker R T, Voss K and Zibordi G. 2001. An emerging ground-based aerosol climatology: aerosol optical depth from AERONET. Journal of Geophysical Research: Atmospheres, 106(D11): 12067-12097 [DOI: 10.1029/2001JD900014http://dx.doi.org/10.1029/2001JD900014]
Hsu N C, Jeong M J, Bettenhausen C, Sayer A M, Hansell R, Seftor C S, Huang J and Tsay S C. 2013. Enhanced Deep Blue aerosol retrieval algorithm: the second generation. Journal of Geophysical Research: Atmospheres, 118(16): 9296-9315 [DOI: 10.1002/jgrd.50712http://dx.doi.org/10.1002/jgrd.50712]
Hsu N C, Tsay S C, King M D and Herman J R. 2004. Aerosol properties over bright-reflecting source regions. IEEE Transactions on Geoscience and Remote Sensing, 42(3): 557-569 [DOI: 10.1109/TGRS.2004.824067http://dx.doi.org/10.1109/TGRS.2004.824067]
Hsu N C, Tsay S C, King M D and Herman J R. 2006. Deep blue retrievals of asian aerosol properties during ACE-asia. IEEE Transactions on Geoscience and Remote Sensing, 44(11): 3180-3195 [DOI: 10.1109/TGRS.2006.879540http://dx.doi.org/10.1109/TGRS.2006.879540]
Ichoku C, Chu D A, Mattoo S, Kaufman Y J, Remer L A, Tanré D, Slutsker I and Holben B N. 2002. A spatio-temporal approach for global validation and analysis of MODIS aerosol products. Geophysical Research Letters, 29(12): 1616 [DOI: 10.1029/2001GL 013206http://dx.doi.org/10.1029/2001GL013206]
Jia L L, Wang X Q, Su H and Wang F. 2018. Validation of retrieving aerosol over Taiwan Island using GF-1 satellite WFV data. Acta Scientiae Circumstantiae, 38(3): 1117-1127
贾亮亮, 汪小钦, 苏华, 王峰. 2018. 台湾岛高分一号卫星WFV数据气溶胶反演与验证. 环境科学学报, 38(3): 1117-1127 [DOI: 10.13671/j.hjkxxb.2017.0431http://dx.doi.org/10.13671/j.hjkxxb.2017.0431]
Jin S K, Ma Y Y, Zhang M, Gong W, Lei L F and Ma X. 2019. Comparation of aerosol optical properties and associated radiative effects of air pollution events between summer and winter: a case study in January and July 2014 over Wuhan, Central China. Atmospheric Environment, 218: 117004 [DOI: 10.1016/j.atmosenv.2019.117004http://dx.doi.org/10.1016/j.atmosenv.2019.117004]
Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo K C, Ropelewski C, Wang J, Leetmaa A, Reynolds R, Jenne R and Joseph D. 1996. The NCEP/NCAR 40-year reanalysis project. Bulletin of the American Meteorological Society, 77(3): 437-472 [DOI: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2http://dx.doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2]
Kaufman Y J, Herring D D, Ranson K J and Collatz G J. 1998. Earth observing system AM1 mission to earth. IEEE Transactions on Geoscience and Remote Sensing, 36(4): 1045-1055 [DOI: 10.1109/36.700989http://dx.doi.org/10.1109/36.700989]
Kaufman Y J, Wald A E, Remer L A, Gao B C, Li R R and Flynn L. 1997. The MODIS 2.1-μm channel-correlation with visible reflectance for use in remote sensing of aerosol. IEEE Transactions on Geoscience and Remote Sensing, 35(5): 1286-1298 [DOI: 10.1109/36.628795http://dx.doi.org/10.1109/36.628795]
King M D, Kaufman Y J, Menzel W P and Tanre D. 1992. Remote sensing of cloud, aerosol, and water vapor properties from the moderate resolution imaging spectrometer (MODIS). IEEE Transactions on Geoscience and Remote Sensing, 30(1): 2-27 [DOI: 10.1109/36.124212http://dx.doi.org/10.1109/36.124212]
Kishcha P, Wang S H, Lin N H, da Silva A, Lin T H, Lin P H, Liu G R, Starobinets B and Alpert P. 2018. Differentiating between local and remote pollution over Taiwan. Aerosol and Air Quality Research, 18(7): 1788-1798 [DOI: 10.4209/aaqr.2017.10.0378http://dx.doi.org/10.4209/aaqr.2017.10.0378]
Kumar K R, Sivakumar V, Reddy R R, Gopal K R and Adesina A J. 2014. Identification and classification of different aerosol types over a subtropical rural site in mpumalanga, south africa: seasonal variations as retrieved from the AERONET sunphotometer. Aerosol and Air Quality Research, 14(1): 108-123 [DOI: 10.4209/aaqr.2013.03.0079http://dx.doi.org/10.4209/aaqr.2013.03.0079]
Levy R C, Mattoo S, Munchak L A, Remer L A, Sayer A M, Patadia F and Hsu N C. 2013. The Collection 6 MODIS aerosol products over land and ocean. Atmospheric Measurement Techniques, 6(11): 2989-3034 [DOI: 10.5194/amt-6-2989-2013http://dx.doi.org/10.5194/amt-6-2989-2013]
Li Z Q, Li D H, Li K T, Xu H, Chen X F, Chen C, Xie Y S, Li L, Li L, Li W, Lv Y, Qie L L, Zhang Y and Gu X F. 2015. Sun-sky radiometer observation network with the extension of multi-wavelength polarization measurements. Journal of Remote Sensing, 19(3): 495-519
李正强, 李东辉, 李凯涛, 许华, 陈兴峰, 陈澄, 谢一凇, 李莉, 李雷, 李伟, 吕阳, 伽丽丽, 张莹, 顾行发. 2015. 扩展多波长偏振测量的太阳—天空辐射计观测网. 遥感学报, 19(3): 495-519 [DOI: 10.11834/jrs.20154129http://dx.doi.org/10.11834/jrs.20154129]
Mao Q J, Zhang H X, Chen Q X, Huang C L and Yuan Y. 2019. Satellite-based assessment of direct aerosol radiative forcing using a look-up table established through AERONET observations. Infrared Physics and Technology, 102: 103017 [DOI: 10.1016/j.infrared.2019.103017http://dx.doi.org/10.1016/j.infrared.2019.103017]
Parkinson C L. 2003. Aqua: an Earth-Observing Satellite mission to examine water and other climate variables. IEEE Transactions on Geoscience and Remote Sensing, 41(2): 173-183 [DOI: 10.1109/tgrs.2002.808319http://dx.doi.org/10.1109/tgrs.2002.808319]
Qi B, Du R G, Yu Z F and Zhou B. 2014. Aerosol optical depth in urban site of Hangzhou. China Environmental Science, 34(3): 588-595
齐冰, 杜荣光, 于之锋, 周斌. 2014. 杭州市大气气溶胶光学厚度研究. 中国环境科学, 34(3): 588-595 [DOI: 10.3969/j.issn.1000-6923.2014.03.008http://dx.doi.org/10.3969/j.issn.1000-6923.2014.03.008]
Rao J W, Ma R H, Duan H T, Jiang G J, Shang L L and Zhou L. 2012. Aerosol optical thickness of the atmospheric aerosol over taihu lake and its features: results of in-site measurements. Chinese Journal of Environmental Science, 33(7): 2158-2164
饶加旺, 马荣华, 段洪涛, 姜广甲, 尚琳琳, 周琳. 2012. 太湖上空大气气溶胶光学厚度及其特征分析. 环境科学, 33(7): 2158-2164 [DOI: 10.13227/j.hjkx.2012.07.016http://dx.doi.org/10.13227/j.hjkx.2012.07.016]
Rosenfeld D, Andreae M O, Asmi A, Chin M, de Leeuw G, Donovan D P, Kahn R, Kinne S, Kivekäs N, Kulmala M, Lau W, Schmidt K S, Suni T, Wagner T, Wild M and Quaas J. 2014. Global observations of aerosol-cloud-precipitation-climate interactions. Reviews of Geophysics, 52(4): 750-808 [DOI: 10.1002/2013RG000441http://dx.doi.org/10.1002/2013RG000441]
Si Y D, Chen L F, Xiong X Z, Shi S Y, Husi L and Cai K. 2020. Evaluation of the MISR fine resolution aerosol product using MODIS, MISR, and ground observations over China. Atmospheric Environment, 223: 117229 [DOI: 10.1016/j.atmosenv.2019.117229http://dx.doi.org/10.1016/j.atmosenv.2019.117229]
Smirnov A, Holben B N, Eck T F, Dubovik O and Slutsker I. 2000. Cloud-screening and quality control algorithms for the AERONET database. Remote Sensing of Environment, 73(3): 337-349 [DOI: 10.1016/s0034-4257(00)00109-7http://dx.doi.org/10.1016/s0034-4257(00)00109-7]
Tanré D, Kaufman Y J, Herman M and Mattoo S. 1997. Remote sensing of aerosol properties over oceans using the MODIS/EOS spectral radiances. Journal of Geophysical Research: Atmospheres, 102(D14): 16971-16988 [DOI: 10.1029/96JD03437http://dx.doi.org/10.1029/96JD03437]
Wai K M, Ng E Y Y, Wong C M S, Tan T Z, Lin T H, Lien W H, Tanner P A, Wang C S H, Lau K K L, He N M H and Kim J. 2017. Aerosol pollution and its potential impacts on outdoor human thermal sensation: East Asian perspectives. Environmental Research, 158: 753-758 [DOI: 10.1016/j.envres.2017.07.036http://dx.doi.org/10.1016/j.envres.2017.07.036]
Wang F, Wang X Q and Ding Y. 2020. Retrieval of aerosol optical depth over taiwan island using visible channels of sentinel-3A OLCI. Journal of Geo-Information Science, 22(10): 2038-2050
王峰, 汪小钦, 丁宇. 2020. 利用Sentinel-3A OLCI可见光通道反演台湾岛气溶胶光学厚度. 地球信息科学学报, 22(10): 2038-2050 [DOI: 10.12082/dqxxkx.2020.190394http://dx.doi.org/10.12082/dqxxkx.2020.190394]
Wang H B, Zhang L, Jiao S M, Zhang Z W, Zhu Y Y and Zhu C Y. 2016. Evaluation of the MODIS aerosol products and analysis of the retrieval errors in China. Plateau Meteorology, 35(3): 810-822
王宏斌, 张镭, 焦圣明, 张志薇, 朱毓颖, 朱承瑛. 2016. 中国地区MODIS气溶胶产品的验证及反演误差分析. 高原气象, 35(3): 810-822 [DOI: 10.7522/j.issn.1000-0534.2015.00043http://dx.doi.org/10.7522/j.issn.1000-0534.2015.00043]
Wang S H, Lei H W, Pani S K, Huang H Y, Lin N H, Welton E J, Chang S C and Wang Y C. 2020a. Determination of lidar ratio for major aerosol types over western north pacific based on long-term MPLNET data. Remote Sensing, 12(17): 2769 [DOI: 10.3390/rs12172769http://dx.doi.org/10.3390/rs12172769]
Wang X Q, Wang F, Jia L L and Ding Y. 2020b. Retrieval and validation of aerosol optical depth using GF-1 WFV cameras data. Advances in Space Research, 65(3): 997-1007 [DOI: 10.1016/j.asr.2019.10.023http://dx.doi.org/10.1016/j.asr.2019.10.023]
Wang Y, Xia W W, Liu X H, Xie S C, Lin W Y, Tang Q, Ma H Y, Jiang Y Q, Wang B and Zhang G J. 2021. Disproportionate control on aerosol burden by light rain. Nature Geoscience, 14(2): 72-76 [DOI: 10.1038/s41561-020-00675-zhttp://dx.doi.org/10.1038/s41561-020-00675-z]
Wang Y S, Xin J Y, Li Z Q, Wang P C, Wang S G, Wen T X and Sun Y. 2006. AOD and Ångström parameters of aerosols observed by the chinese sun hazemeter network from August to December 2004. Chinese Journal of Environmental Science, 27(9): 1703-1711
王跃思, 辛金元, 李占清, 王普才, 王式功, 温天雪, 孙扬. 2006. 中国地区大气气溶胶光学厚度与Ångström参数联网观测(2004-08—2004-12). 环境科学, 27(9): 1703-1711 [DOI: 10.3321/j.issn:0250-3301.2006.09.002http://dx.doi.org/10.3321/j.issn:0250-3301.2006.09.002]
Wei J, Li Z Q, Peng Y R and Sun L. 2019. MODIS Collection 6.1 aerosol optical depth products over land and ocean: validation and comparison. Atmospheric Environment, 201: 428-440 [DOI: 10.1016/j.atmosenv.2018.12.004http://dx.doi.org/10.1016/j.atmosenv.2018.12.004]
Xiao C G. 2008. An overview of climate change of Taiwan in the last hundred years // Proseminar of meteorological science and technology between both sides of Taiwan Straits. Beijing: Chinese Meteorological Society, 2008.
萧长庚. 2008. 近百年来台湾气候变化概述//2008年海峡两岸气象科学技术研讨会论文集. 北京: 中国气象学会
Xin J Y, Wang Y S, Li Z Q, Wang P C, Hao W M, Nordgren B L, Wang S G, Liu G R, Wang L L, Wen T X, Sun Y and Hu B. 2007. Aerosol optical depth (AOD) and Ångström exponent of aerosols observed by the Chinese Sun Hazemeter Network from August 2004 to September 2005. Journal of Geophysical Research: Atmospheres, 112(D5): D05203 [DOI: 10.1029/2006JD007075http://dx.doi.org/10.1029/2006JD007075]
Xu L, Liu Z M and Shi G Y. 1997.Measurement and analysis of atmospheric aerosol optical characteristics in Taiwan area. Journal of Applied Meteorology Science, 8(2): 252-253
许黎, 柳中明, 石广玉. 1997. 台湾地区大气气溶胶光学特性的测量与分析. 应用气象学报, 8(2): 252-253
Yan L B and Liu X D. 2009. Seasonal variation of atmospheric aerosol and its relation to cloud faction over Beijing-Tianjin-Hebei region. Research of Environmental Sciences, 22(8): 924-931
晏利斌, 刘晓东. 2009. 京津冀地区气溶胶季节变化及与云量的关系. 环境科学研究, 22(8): 924-931 [DOI: 10.13198/j.res.2009.08.52.yanlb.019http://dx.doi.org/10.13198/j.res.2009.08.52.yanlb.019]
Zhang Z, Ding J L, Wang J J, Chen X Y, Liu X T and Osman A. 2021. Temporal and spatial distribution characteristics of aerosol optical properties in urban agglomerations on the North Slope of the Tianshan mountains. Environmental Science, 42(5): 2202-2212
张喆, 丁建丽, 王瑾杰, 陈香月, 刘兴涛, 阿提干·吾斯曼. 2021. 天山北坡城市群气溶胶光学特性时空分布特征. 环境科学, 42(5): 2202-2212 [DOI: 10.13227/j.hjkx.202009083http://dx.doi.org/10.13227/j.hjkx.202009083]
Zhao P S, Dong F, He D, Zhao X J, Zhang X L, Zhang W Z, Yao Q and Liu H Y. 2013. Characteristics of concentrations and chemical compositions for PM2.5 in the region of Beijing, Tianjin, and Hebei, China. Atmospheric Chemistry and Physics, 13(9): 4631-4644 [DOI: 10.5194/acp-13-4631-2013http://dx.doi.org/10.5194/acp-13-4631-2013]
Zhao Y and Sun X J. 2016. Analysis and research on aerosoloptical depth in Taiwan based on MODIS and sun photometers. Meteorological, Hydrological and Marine Instruments, 33(1): 37-45
赵阳, 孙学金. 2016. 基于MODIS和太阳光度计对台湾地区气溶胶光学厚度的分析研究. 气象水文海洋仪器, 33(1): 37-45 [DOI: 10.3969/j.issn.1006-009X.2016.01.008http://dx.doi.org/10.3969/j.issn.1006-009X.2016.01.008]
相关文章
相关作者
相关机构