Monitoring lakes and reservoirs using satellite radar altimetry: Theory, methods, and progresses
- Vol. 26, Issue 1, Pages: 104-114(2022)
Published: 07 January 2022
DOI: 10.11834/jrs.20221221
扫 描 看 全 文
浏览全部资源
扫码关注微信
Published: 07 January 2022 ,
扫 描 看 全 文
姜丽光,刘俊,张星星.2022.基于卫星雷达测高技术的湖库动态监测理论、方法和研究进展.遥感学报,26(1): 104-114
Jiang L G,Liu J and Zhang X X. 2022. Monitoring lakes and reservoirs using satellite radar altimetry: Theory, methods, and progresses. National Remote Sensing Bulletin, 26(1):104-114
水位是反映水体变化的重要变量,利用卫星测高技术获取湖库的水位信息,很大程度上改变了传统地面观测数据匮乏的现状。本文综述了卫星雷达测高技术在湖泊和水库动态监测方面的理论、主要的数据处理方法和数据产品,以及当前的主要研究进展。从文献检索可以看出,当前的应用研究对象主要聚焦在个别湖泊或小范围内的湖泊群;在数据处理方面,数据以单一测高任务数据为主,并依赖于主流数据库的三级产品,针对一级、二级产品的数据处理方法研究较少;在研究主题方面,主要以湖库水位变化趋势及影响因素分析为主,也有少量研究聚焦在水量估算、流域水文模拟等方向。未来发展新的数据处理方法,如全聚焦SAR技术和干涉宽刈幅数据处理技术等,研发新的测高任务(如测高小卫星星簇计划SMASH、地表水和海洋地形SWOT、以及欧盟的下一代测高任务Sentinel-3 NGT等),来提高中小型湖库的测高数据精度、覆盖范围以及频率,将为测高研究带来新的机遇。
Water level is an important variable that indicates the variations in the vertical dimension of inland water bodies. However
in-situ monitoring of water level of lakes and reservoirs is expensive. Thus
the coverage of gauging network is relatively low. The satellite altimetry technology
originally used for ocean research
has been widely applied for inland water research on a local to regional and global scale. As the success of several altimetry missions
the situation of data scarcity has been mitigated
especially in the recent decade.
The literature review shows that the mainstream of altimetry research for lakes and reservoirs focuses on one specific or few lakes/reservoirs aiming at a detailed investigation. Regarding the altimetry data sets
most studies use high-level products (i.e. water level data instead of raw signals) from one certain database
such as Hydroweb
DAHITI
etc.
but very few exploit the low-level products. The major research foci include temporal variations of water level
and the attribution of water level changes in the context of climate changes. Besides
some publications research the water storage changes and thus assess the water resources and management issues
while some others focus on catchment hydrologic modeling with water levels of lakes/reservoirs as constraints.
In this short review article
we first briefly introduced the theory of inland altimetry
followed by the descriptions of major freely open-access products of different levels. Then
we summarized the common data processing procedures including data screening
waveform retracking
outlier removal
time series construction
etc. We intend to guide the newcomers to prepare data for their own studies of interest when dealing with low-level products if necessary. Moreover
we reviewed the latest progresses of inland water altimetry
especially for lakes and reservoirs research. The progresses are reported in three main directions
i.e.
water level monitoring and analysis
dynamics of water storage
and catchment hydrologic modeling. The latter two directions involve more data sets other than altimetry-derived water levels and still need more research for further advancement.
We concluded this study with recommendations on future research topics
such as new data processing techniques (e.g. Fully-Focused SAR and Wide swath InSAR processing
Machine Learning
etc.) to extract water levels that are more accurate. We also provide introductions of several proposed or planed future altimetry missions (e.g. SWOT
Sentinel-3 Next Generation Topography
Sentinel-6-Next Generation
etc.) that will provide many opportunities for lake and reservoir research beyond just lake/reservoir monitoring. Moreover
we highlight the value of multi-mission (or constellations) data sets for high spatio-temporal resolution mapping of inland water bodies. Meanwhile
it is also very important to develop freely open-access high-level databases for end users
such as hydrological modelers.
卫星测高水位湖泊和水库监测研究综述
satellite altimetrywater levellake and reservoirmonitoringreview
Arsen A, Crétaux J F and del Rio R A. 2015. Use of SARAL/AltiKa over mountainous lakes, intercomparison with Envisat mission. Marine Geodesy, 38: 534-548 [DOI: 10.1080/01490419.2014.1002590http://dx.doi.org/10.1080/01490419.2014.1002590]
Bauer-Gottwein P, Jensen I H, Guzinski R, Bredtoft G K T, Hansen S and Michailovsky C I. 2015. Operational river discharge forecasting in poorly gauged basins: the Kavango River basin case study. Hydrology and Earth System Sciences, 19(3): 1469-1485 [DOI: 10.5194/hess-19-1469-2015http://dx.doi.org/10.5194/hess-19-1469-2015]
Becker M, Santos J, Calmant S, Robinet V, Linguet L and Seyler F. 2014. Water level fluctuations in the Congo Basin derived from ENVISAT satellite altimetry. Remote Sensing, 6(10): 9340-9358 [DOI: 10.3390/rs6109340http://dx.doi.org/10.3390/rs6109340]
Berry P A M, Garlick J D, Freeman J A and Mathers E L. 2005. Global inland water monitoring from multi-mission altimetry. Geophysical Research Letters, 32(16): L16401 [DOI: 10.1029/2005GL022814http://dx.doi.org/10.1029/2005GL022814]
Birkett C M. 1995. The contribution of TOPEX/POSEIDON to the global monitoring of climatically sensitive lakes. Journal of Geophysical Research: Oceans, 100(C12): 25179-25204 [DOI: 10.1029/95JC02125http://dx.doi.org/10.1029/95JC02125]
Biskop S, Maussion F, Krause P and Fink M. 2016. Differences in the water-balance components of four lakes in the southern-central Tibetan Plateau. Hydrology and Earth System Sciences, 20(1): 209-225 [DOI: 10.5194/hess-20-209-2016http://dx.doi.org/10.5194/hess-20-209-2016]
Brooks R L. 1982. Lake Elevation from Satellite Radar Altimetry from a Validation Area in Canada. Reporte Geosci. Res, Salisbury, MD, USA
Busker T, De Roo A, Gelati E, Schwatke C, Adamovic M, Bisselink B, Pekel J F and Cottam A. 2019. A global lake and reservoir volume analysis using a surface water dataset and satellite altimetry. Hydrology and Earth System Sciences, 23(2): 669-690 [DOI: 10.5194/hess-23-669-2019http://dx.doi.org/10.5194/hess-23-669-2019]
Cai Z S, Jin T Y, Li C Y, Ofterdinger U, Zhang S, Ding A Z and Li J C. 2016. Is China’s fifth-largest inland lake to dry-up? Incorporated hydrological and satellite-based methods for forecasting Hulun Lake Water Levels. Advances in Water Resources, 94: 185-199 [DOI: 10.1016/j.advwatres.2016.05.010http://dx.doi.org/10.1016/j.advwatres.2016.05.010]
Chelton D B, Ries J C, Haines B J, Fu L L and Callahan P S. 2001. Satellite altimetry//International Geophysics. San Diego: Academic Press, 69: 1-131, i-ii [DOI: 10.1016/S0074-6142(01)80146-7http://dx.doi.org/10.1016/S0074-6142(01)80146-7]
Chelton D B, Walsh E J and MacArthur J L. 1989. Pulse compression and sea level tracking in satellite altimetry. Journal of Atmospheric and Oceanic Technology, 6(3): 407-438 [DOI: 10.1175/1520-0426(1989)006<0407:PCASLT>2.0.CO;2http://dx.doi.org/10.1175/1520-0426(1989)006<0407:PCASLT>2.0.CO;2]
Chen J M and Liao J J. 2020. Monitoring lake level changes in China using multi-altimeter data (2016-2019). Journal of Hydrology, 590: 125544 [DOI: 10.1016/j.jhydrol.2020.125544http://dx.doi.org/10.1016/j.jhydrol.2020.125544]
Crétaux J F, Biancamaria S, Arsen A, Bergé-Nguyen M and Becker M. 2015. Global surveys of reservoirs and lakes from satellites and regional application to the Syrdarya River Basin. Environmental Research Letters, 10(1): 015002 [DOI: 10.1088/1748-9326/10/1/015002http://dx.doi.org/10.1088/1748-9326/10/1/015002]
Crétaux J F and Birkett C. 2006. Lake studies from satellite radar altimetry. Comptes Rendus Geoscience, 338(14/15): 1098-1112 [DOI: 10.1016/j.crte.2006.08.002http://dx.doi.org/10.1016/j.crte.2006.08.002]
da Silva J S, Calmant S, Seyler F, Filho O C R, Cochonneau G and Mansur W J. 2010. Water levels in the Amazon basin derived from the ERS 2 and ENVISAT radar altimetry missions. Remote Sensing of Environment, 114(10): 2160-2181 [DOI: 10.1016/j.rse.2010.04.020http://dx.doi.org/10.1016/j.rse.2010.04.020]
da Silva J S, Calmant S, Seyler F, Moreira D M, Oliveira D and Monteiro A. 2014. Radar altimetry aids managing gauge networks. Water Resources Management, 28(3): 587-603 [DOI: 10.1007/s11269-013-0484-zhttp://dx.doi.org/10.1007/s11269-013-0484-z]
De Paiva R C D, Buarque D C, Collischonn W, Bonnet M P, Frappart F, Calmant S and Mendes C A B. 2013. Large-scale hydrologic and hydrodynamic modeling of the Amazon River basin. Water Resources Research, 49(3): 1226-1243 [DOI: 10.1002/wrcr.20067http://dx.doi.org/10.1002/wrcr.20067]
Dinardo S, Fenoglio-Marc L, Buchhaupt C, Becker M, Scharroo R, Fernandes M J and Benveniste J. 2018. Coastal SAR and PLRM altimetry in German Bight and West Baltic Sea. Advances in Space Research, 62(6): 1371-1404 [DOI: 10.1016/j.asr.2017.12.018http://dx.doi.org/10.1016/j.asr.2017.12.018]
Egido A and Smith W H F. 2017. Fully focused SAR altimetry: theory and applications. IEEE Transactions on Geoscience and Remote Sensing, 55(1): 392-406 [DOI: 10.1109/TGRS.2016.2607122http://dx.doi.org/10.1109/TGRS.2016.2607122]
Frappart F, Legrésy B, Niño F, Blarel F, Fuller N, Fleury S, Birol F and Calmant S. 2016. An ERS-2 altimetry reprocessing compatible with ENVISAT for long-term land and ice sheets studies. Remote Sensing of Environment, 184: 558-581 [DOI: 10.1016/j.rse.2016.07.037http://dx.doi.org/10.1016/j.rse.2016.07.037]
Ganguly D, Chander S, Desai S and Chauhan P. 2015. A subwaveform-based retracker for multipeak waveforms: a case study over Ukai Dam/Reservoir. Marine Geodesy, 38: 581-596 [DOI: 10.1080/01490419.2015.1030482http://dx.doi.org/10.1080/01490419.2015.1030482]
Gao H L, Birkett C and Lettenmaier D P. 2012. Global monitoring of large reservoir storage from satellite remote sensing. Water Resources Research, 48(9): W09504 [DOI: 10.1029/2012WR012063http://dx.doi.org/10.1029/2012WR012063]
Gray L, Burgess D, Copland L, Cullen R, Galin N, Hawley R and Helm V. 2013. Interferometric swath processing of cryosat data for glacial ice topography. The Cryosphere, 7(6): 1857-1867 [DOI: 10.5194/tc-7-1857-2013http://dx.doi.org/10.5194/tc-7-1857-2013]
Guo J Y, Gao Y G, Hwang C and Sun J L. 2010. A multi-subwaveform parametric retracker of the radar satellite altimetric waveform and recovery of gravity anomalies over coastal oceans. Science China Earth Sciences, 53(4): 610-616 [DOI: 10.1007/s11430-009-0171-3http://dx.doi.org/10.1007/s11430-009-0171-3]
Han Z Y, Long D, Huang Q, Li X D, Zhao F Y and Wang J H. 2020. Improving reservoir outflow estimation for ungauged basins using satellite observations and a hydrological model. Water Resources Research, 56(9):
e2020WR027590 [DOI: 10.1029/2020WR027590http://dx.doi.org/10.1029/2020WR027590]
Huang Q, Li X D, Han P F, Long D, Zhao F Y and Hou A Z. 2019. Validation and application of water levels derived from Sentinel-3A for the Brahmaputra River. Science China Technological Sciences, 62(10): 1760-1772 [DOI: 10.1007/s11431-019-9535-3http://dx.doi.org/10.1007/s11431-019-9535-3]
Huang Q, Long D, Du M D, Han Z Y and Han P F. 2020. Daily continuous river discharge estimation for ungauged basins using a hydrologic model calibrated by satellite altimetry: implications for the SWOT mission. Water Resources Research, 56(7):
e2020WR027309 [DOI: 10.1029/2020WR027309http://dx.doi.org/10.1029/2020WR027309]
Hulsman P, Winsemius H C, Michailovsky C I, Savenije H H G and Hrachowitz M. 2020. Using altimetry observations combined with GRACE to select parameter sets of a hydrological model in a data-scarce region. Hydrology and Earth System Sciences, 24(6): 3331-3359 [DOI: 10.5194/hess-24-3331-2020http://dx.doi.org/10.5194/hess-24-3331-2020]
Hwang C, Cheng Y S, Han J C, Kao R, Huang C Y, Wei S H and Wang H H. 2016. Multi-decadal monitoring of lake level changes in the Qinghai-Tibet Plateau by the TOPEX/Poseidon-family altimeters: climate implication. Remote Sensing, 8(6): 446 [DOI: 10.3390/rs8060446http://dx.doi.org/10.3390/rs8060446]
Jain M, Andersen O B, Dall J and Stenseng L. 2015. Sea surface height determination in the Arctic using Cryosat-2 SAR data from primary peak empirical retrackers. Advances in Space Research, 55(1): 40-50 [DOI: 10.1016/j.asr.2014.09.006http://dx.doi.org/10.1016/j.asr.2014.09.006]
Jiang L G, Andersen O B, Nielsen K, Zhang G Q and Bauer-Gottwein P. 2019a. Influence of local geoid variation on water surface elevation estimates derived from multi-mission altimetry for Lake Namco. Remote Sensing of Environment, 221: 65-79 [DOI: 10.1016/j.rse.2018.11.004http://dx.doi.org/10.1016/j.rse.2018.11.004]
Jiang L G, Madsen H and Bauer-Gottwein P. 2019b. Simultaneous calibration of multiple hydrodynamic model parameters using satellite altimetry observations of water surface elevation in the Songhua River. Remote Sensing of Environment, 225: 229-247 [DOI: 10.1016/j.rse.2019.03.014http://dx.doi.org/10.1016/j.rse.2019.03.014]
Jiang L G, Nielsen K, Andersen O B and Bauer-Gottwein P. 2017a. CryoSat-2 radar altimetry for monitoring freshwater resources of China. Remote Sensing of Environment, 200: 125-139 [DOI: 10.1016/j.rse.2017.08.015http://dx.doi.org/10.1016/j.rse.2017.08.015]
Jiang L G, Nielsen K, Andersen O B and Bauer-Gottwein P. 2020a. A bigger picture of how the Tibetan lakes have changed over the past decade revealed by CryoSat-2 altimetry. Journal of Geophysical Research: Atmospheres, 125(23):
e2020JD033161 [DOI: 10.1029/2020JD033161http://dx.doi.org/10.1029/2020JD033161]
Jiang L G, Nielsen K, Dinardo S, Andersen O B and Bauer-Gottwein P. 2020b. Evaluation of Sentinel-3 SRAL SAR altimetry over Chinese rivers. Remote Sensing of Environment, 237: 111546 [DOI: 10.1016/j.rse.2019.111546http://dx.doi.org/10.1016/j.rse.2019.111546]
Jiang L G, Schneider R, Andersen O B and Bauer-Gottwein P. 2017b. CryoSat-2 altimetry applications over rivers and lakes. Water, 9(3): 211 [DOI: 10.3390/w9030211http://dx.doi.org/10.3390/w9030211]
Kittel C M M, Arildsen A L, Dybkjær S, Hansen E R, Linde I, Slott E, Tøttrup C and Bauer-Gottwein P. 2020. Informing hydrological models of poorly gauged river catchments - a parameter regionalization and calibration approach. Journal of Hydrology, 587: 124999 [DOI: 10.1016/j.jhydrol.2020.124999http://dx.doi.org/10.1016/j.jhydrol.2020.124999]
Kittel C M M, Jiang L G, Schneider R, Andersen O B, Neilsen K and Bauer-Gottwein P. 2018b. CryoSat-2 for inland water applications-potential, challenges and future prospects//25 Years of Progress in Radar Altimetry Symposium. Azores Archipelago, Portugal: European Space Agency: 85
Kittel C M M, Jiang L G, Tøttrup C and Bauer-Gottwein P. 2021. Sentinel-3 radar altimetry for river monitoring-a catchment-scale evaluation of satellite water surface elevation from Sentinel-3A and Sentinel-3B. Hydrology and Earth System Sciences, 25(1): 333-357 [DOI: 10.5194/hess-25-333-2021http://dx.doi.org/10.5194/hess-25-333-2021]
Kittel C M M, Nielsen K, Tøttrup C and Bauer-Gottwein P. 2018a. Informing a hydrological model of the Ogooué with multi-mission remote sensing data. Hydrology and Earth System Sciences, 22(2): 1453-1472 [DOI: 10.5194/hess-22-1453-2018http://dx.doi.org/10.5194/hess-22-1453-2018]
Koblinsky C J, Clarke R T, Brenner A C and Frey H. 1993. Measurement of river level variations with satellite altimetry. Water Resources Research, 29(6): 1839-1848 [DOI: 10.1029/93WR00542http://dx.doi.org/10.1029/93WR00542]
Kraemer B M, Seimon A, Adrian R and McIntyre P B. 2020. Worldwide lake level trends and responses to background climate variation. Hydrology and Earth System Sciences, 24(5): 2593-2608 [DOI: 10.5194/hess-24-2593-2020http://dx.doi.org/10.5194/hess-24-2593-2020]
Lee H, Shum C K, Yi Y C, Ibaraki M, Kim J W, Braun A, Kuo C Y and Lu Z. 2009. Louisiana wetland water level monitoring using retracked TOPEX/POSEIDON altimetry. Marine Geodesy, 32(3): 284-302 [DOI: 10.1080/01490410903094767http://dx.doi.org/10.1080/01490410903094767]
Li P and Li H. 2020. Monitoring lake level variations in Dongting lake basin over 2003-2017 using multi-mission satellite altimetry data. Earth Science, 45(6): 1956-1966
黎鹏, 李辉. 2020. 基于多源卫星测高数据的洞庭湖流域2003—2017年湖泊水位变化监测. 地球科学, 45(6): 1956-1966 [DOI: 10.3799/dqkx.2020.005http://dx.doi.org/10.3799/dqkx.2020.005]
Li P, Li H, Chen F and Cai X B. 2020. Monitoring long-term lake level variations in middle and lower Yangtze basin over 2002-2017 through Integration of multiple satellite altimetry datasets. Remote Sensing, 12(9): 1448 [DOI: 10.3390/rs12091448http://dx.doi.org/10.3390/rs12091448]
Liao J J, Gao L and Wang X M. 2014. Numerical simulation and forecasting of water level for Qinghai lake using multi-altimeter data between 2002 and 2012. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(2): 609-622 [DOI: 10.1109/JSTARS.2013.2291516http://dx.doi.org/10.1109/JSTARS.2013.2291516]
Liao J J, Xue H and Chen J M. 2020. Monitoring lake level changes on the Tibetan Plateau from 2000 to 2018 using satellite altimetry data. Journal of Remote Sensing, 24(12): 1534-1547
廖静娟, 薛辉, 陈嘉明. 2020. 卫星测高数据监测青藏高原湖泊2010年—2018年水位变化. 遥感学报, 24(12): 1534-1547 [DOI: 10.11834/jrs.20209281http://dx.doi.org/10.11834/jrs.20209281]
Michailovsky C I and Bauer-Gottwein P. 2014. Operational reservoir inflow forecasting with radar altimetry: the Zambezi case study. Hydrology and Earth System Sciences, 18(3): 997-1007 [DOI: 10.5194/hess-18-997-2014http://dx.doi.org/10.5194/hess-18-997-2014]
Michailovsky C I, Milzow C and Bauer-Gottwein P. 2013. Assimilation of radar altimetry to a routing model of the Brahmaputra River. Water Resources Research, 49(8): 4807-4816 [DOI: 10.1002/wrcr.20345http://dx.doi.org/10.1002/wrcr.20345]
Morris C S and Gill S K. 1994. Variation of Great Lakes water levels derived from Geosat altimetry. Water Resources Research, 30(4): 1009-1017 [DOI: 10.1029/94WR00064http://dx.doi.org/10.1029/94WR00064]
Nielsen K, Stenseng L, Andersen O B, Villadsen H and Knudsen P. 2015. Validation of CryoSat-2 SAR mode based lake levels. Remote Sensing of Environment, 171: 162-170 [DOI: 10.1016/j.rse.2015.10.023http://dx.doi.org/10.1016/j.rse.2015.10.023]
Paiva R C D, Collischonn W, Bonnet M P, De Gonçalves L G G, Calmant S, Getirana A and Santos da Silva J. 2013. Assimilating in situ and radar altimetry data into a large-scale hydrologic-hydrodynamic model for streamflow forecast in the Amazon. Hydrology and Earth System Sciences, 17(7): 2929-2946 [DOI: 10.5194/hess-17-2929-2013http://dx.doi.org/10.5194/hess-17-2929-2013]
Park E. 2020. Characterizing channel-floodplain connectivity using satellite altimetry: mechanism, hydrogeomorphic control, and sediment budget. Remote Sensing of Environment, 243: 111783 [DOI: 10.1016/j.rse.2020.111783http://dx.doi.org/10.1016/j.rse.2020.111783]
Ponchaut F and Cazenave A. 1998. Continental lake level variations from Topex/Poseidon (1993-1996). Comptes Rendus de l’Académie des Sciences-Series IIA-Earth and Planetary Science, 326(1): 13-20 [DOI: 10.1016/S1251-8050(97)83198-9http://dx.doi.org/10.1016/S1251-8050(97)83198-9]
Shen G Z, Liao J J and Zhao Y. 2016. Estimate the fluctuation of Poyang Lake water level using Cryosat-2 data//2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). Beijing, China: IEEE: 6799-6802 [DOI: 10.1109/IGARSS.2016.7730775http://dx.doi.org/10.1109/IGARSS.2016.7730775]
Song C Q, Ke L H, Huang B and Richards K S. 2015. Can mountain glacier melting explains the GRACE-observed mass loss in the southeast Tibetan Plateau: from a climate perspective?. Global and Planetary Change, 124: 1-9 [DOI: 10.1016/j.gloplacha.2014.11.001http://dx.doi.org/10.1016/j.gloplacha.2014.11.001]
Stern R J, Alon U, Fu L L, Zlotnicki V, Chelton D B, Parker A and Chapter I. 2014. Satellite Altimetry and Earth Sciences. Oceanography
Swenson S and Wahr J. 2009. Monitoring the water balance of Lake Victoria, East Africa, from Space. Journal of Hydrology, 370(1/4): 163-176 [DOI: 10.1016/j.jhydrol.2009.03.008http://dx.doi.org/10.1016/j.jhydrol.2009.03.008]
Tarpenelli A, Amarnath G, Brocca L, Massari C and Moramarco T. 2017. Discharge estimation and forecasting by MODIS and altimetry data in Niger-Benue River. Remote Sensing of Environment, 195:96-106
Tourian M J, Schwatke C and Sneeuw N. 2017. River discharge estimation at daily resolution from satellite altimetry over an entire river basin. Journal of Hydrology, 546: 230-247 [DOI: 10.1016/j.jhydrol.2017.01.009http://dx.doi.org/10.1016/j.jhydrol.2017.01.009]
Uebbing B, Kusche J and Forootan E. 2015. Waveform retracking for improving level estimations from TOPEX/Poseidon, Jason-1, and Jason-2 altimetry observations over African Lakes. IEEE Transactions on Geoscience and Remote Sensing, 53(4): 2211-2224 [DOI: 10.1109/TGRS.2014.2357893http://dx.doi.org/10.1109/TGRS.2014.2357893]
Vanderkelen I, Van Lipzig N P M and Thiery W. 2018. Modelling the water balance of Lake Victoria (East Africa) – Part 1: observational analysis. Hydrology and Earth System Sciences, 22(10): 5509-5525 [DOI: 10.5194/hess-22-5509-2018http://dx.doi.org/10.5194/hess-22-5509-2018]
Verron J, Bonnefond P, Andersen O, Ardhuin F, Bergé-Nguyen M, Bhowmick S, Blumstein D, Boy F, Brodeau L, Crétaux J F, Dabat M L, Dibarboure G, Fleury S, Garnier F, Gourdeau L, Marks K, Queruel N, Sandwell D, Smith W H F and Zaron E D. 2021. The SARAL/AltiKa mission: a step forward to the future of altimetry. Advances in Space Research, 68(2): 808-828 [DOI: 10.1016/j.asr.2020.01.030http://dx.doi.org/10.1016/j.asr.2020.01.030]
Villadsen H, Deng X L, Andersen O B, Stenseng L, Nielsen K and Knudsen P. 2016. Improved inland water levels from SAR altimetry using novel empirical and physical retrackers. Journal of Hydrology, 537: 234-247 [DOI: 10.1016/j.jhydrol.2016.03.051http://dx.doi.org/10.1016/j.jhydrol.2016.03.051]
Wang J D, Song C Q, Reager J T, Yao F F, Famiglietti J S, Sheng Y W, MacDonald G M, Brun F, Schmied H M, Marston R A and Wada Y. 2018. Recent global decline in endorheic basin water storages. Nature Geoscience, 11(12): 926-932 [DOI: 10.1038/s41561-018-0265-7http://dx.doi.org/10.1038/s41561-018-0265-7]
Wingham D J, Francis C R, Baker S, Bouzinac C, Brockley D, Cullen R, de Chateau-Thierry P, Laxon S W, Mallow U, Mavrocordatos C, Phalippou L, Ratier G, Rey L, Rostan F, Viau P and Wallis D W. 2006. CryoSat: a mission to determine the fluctuations in Earth’s land and marine ice fields. Advances in Space Research, 37(4): 841-871 [DOI: 10.1016/j.asr.2005.07.027http://dx.doi.org/10.1016/j.asr.2005.07.027]
Xue H, Liao J J and Zhao L F. 2018. A modified empirical retracker for lake level estimation using Cryosat-2 SARin data. Water, 10(11): 1584 [DOI: 10.3390/w10111584http://dx.doi.org/10.3390/w10111584]
Yuan C, Gong P, Zhang H, Guo H and Pan B Z. 2017. Monitoring water level changes from retracked Jason-2 altimetry data: a case study in the Yangtze River, China. Remote Sensing Letters, 8(5): 399-408 [DOI: 10.1080/2150704X.2016.1278309http://dx.doi.org/10.1080/2150704X.2016.1278309]
Zhang G Q, Yao T D, Xie H J, Yang K, Zhu L P, Shum C K, Bolch T, Yi S, Allen S, Jiang L G, Chen W F and Ke C Q. 2020a. Response of Tibetan Plateau lakes to climate change: trends, patterns, and mechanisms. Earth-Science Reviews, 208: 103269 [DOI: 10.1016/j.earscirev.2020.103269http://dx.doi.org/10.1016/j.earscirev.2020.103269]
Zhang X X, Jiang L G, Kittel C M M, Yao Z J, Nielsen K, Liu Z F, Wang R, Liu J, Andersen O B and Bauer-Gottwein P. 2020b. On the performance of Sentinel-3 altimetry over new reservoirs: approaches to determine onboard a priori elevation. Geophysical Research Letters, 47(17):
e2020GL088770 [DOI: 10.1029/2020GL088770http://dx.doi.org/10.1029/2020GL088770]
Zhong R D, Zhao T T G and Chen X H. 2020. Hydrological model calibration for dammed basins using satellite altimetry information. Water Resources Research, 56(8):
e2020WR027442 [DOI: 10.1029/2020WR027442http://dx.doi.org/10.1029/2020WR027442]
相关文章
相关作者
相关机构