Research progress on remote sensing assessment of lake nutrient status and retrieval algorithms of characteristic parameters
- Vol. 26, Issue 1, Pages: 77-91(2022)
Published: 07 January 2022
DOI: 10.11834/jrs.20221232
扫 描 看 全 文
浏览全部资源
扫码关注微信
Published: 07 January 2022 ,
扫 描 看 全 文
周博天,张雅燕,施坤.2022.湖泊营养状态遥感评价及其表征参数反演算法研究进展.遥感学报,26(1): 77-91
Zhou B T, Zhang Y Y and Shi K. 2022. Research progress on remote sensing assessment of lake nutrient status and retrieval algorithms of characteristic parameters. National Remote Sensing Bulletin, 26(1):77-91
湖泊富营养化由于其可导致藻类水华暴发,引发生态系统灾变和饮用水风险,是中国乃至全球湖泊面临的主要生态环境问题。湖泊营养状态精准、实时、大范围的同步监测是准确掌握湖泊水环境变化特征,开展富营养化成因分析、评价评估、治理修复和管理考核的重要基石。相比地面调查的传统手段,遥感具有快速、大范围、周期性等优点,已经广泛应用于叶绿素、透明度和营养状态等多种湖泊水环境参数监测。通过深入分析近年来大量相关文献,本文系统总结了现有湖泊营养状态遥感估算和评价方法,介绍了表征湖泊营养状态关键参数反演算法的研究进展,最后从遥感大数据视角对湖泊富营养化研究的发展提出了建议与展望。
Lakes are the main components of water resources on the earth surface and are closely related to natural environment
human life
and social economics. The variation of lake ecosystem triggered by natural changes and human activities has attracted attention of scientists and governments worldwide. As a major lake ecological problem
lake eutrophication can lead to algal blooms
causing ecosystem disaster and drinking water risk. Therefore
effective monitoring of lake eutrophication process is an important cornerstone to accurately grasp the lake ecological dynamics and strictly control the lake environment pollution. This study mainly discusses the research progress on remote sensing assessment of lake nutrient status and retrieval algorithms of characteristic parameters.
Through in-depth analysis of a large number of relevant literatures in recent years
this study systematically summarizes the existing methods for remote sensing assessment of lake nutrient status and introduces the research progress on retrieval algorithms of characteristic parameters. In addition
suggestions and prospects for the studies of lake eutrophication are put forward from the perspective of remote sensing big data. Thus
the objectives of this study are to provide an overview of remote sensing algorithms as useful reference and demonstrate the feasibility of remote sensing big data for the assessment of lake nutrient status.
Accurate
real-time
and large-scale monitoring of lake nutrient status is an important basis for understanding the characteristics of lake environment change
through analysis
evaluation
remediation
and management of lake eutrophication. Compared with the traditional survey approaches
remote sensing has the advantages of fast
wide and periodicity. It has been broadly used in monitoring various lake environmental parameters
such as chlorophyll
transparency
and nutrient status. This study focuses on remote sensing assessments based on Trophic State Index (TSI) and Trophic Level Index (TLI). Moreover
the latest studies on retrieval algorithms (including empirical model
semi mechanism model
and machine learning model) of characteristic parameters are summarized. Therefore
the reliability of remote sensing assessment of lake nutrient status has been fully demonstrated.
Through combing the research progress on the conventional assessments (i.e.
TSI and TLI) and the retrieval algorithms of key characteristic parameters (i.e.
ZSecchi Disk
Forel—Ule index
chlorophyll a
total nitrogen
and total phosphorus)
the potential correlation between the two methods is clarified. The results can provide reference for the studies on lake ecological environment and the possibility for improving the remote sensing technology of lake optics and water color in the future.
In recent years
with the continuous improvement of quantitative retrieval algorithm and satellite sensor technology
research progress on remote sensing assessment of lake nutrient status has entered a rapid development stage. The review of related studies has advanced our understanding of lake eutrophication by remote sensing data and technology. In summary
remote sensing plays a significant role in the research of lake eutrophication and provides practical contribution to the monitoring and protection of lake ecological environment in China and even the world.
湖泊富营养化营养状态遥感评价水体参数反演算法遥感大数据
lake eutrophicationremote sensing assessment of nutritional statuswater parameter retrieval algorithmremote sensing big data
Aizaki M, Otsuki A, Fukushima T, Hosomi M and Muraoka K. 1981. Application of Carlson’s trophic state index to Japanese lakes and relationships between the index and other parameters. Internationale Vereinigung für Theoretische und Angewandte Limnologie: Verhandlungen, 21(1): 675-681 [DOI: 10.1080/03680770.1980.11897067http://dx.doi.org/10.1080/03680770.1980.11897067]
Ayele H S and Atlabachew M. 2021. Review of characterization, factors, impacts, and solutions of Lake eutrophication: lesson for lake Tana, Ethiopia. Environmental Science and Pollution Research, 28(12): 14233-14252 [DOI: 10.1007/s11356-020-12081-4http://dx.doi.org/10.1007/s11356-020-12081-4]
Bricker S B, Longstaff B, Dennison W, Jones A, Boicourt K, Wicks C and Woerner J. 2008. Effects of nutrient enrichment in the nation’s estuaries: a decade of change. Harmful Algae, 8(1): 21-32 [DOI: 10.1016/j.hal.2008.08.028http://dx.doi.org/10.1016/j.hal.2008.08.028]
Cao C, Wang S L, Li J S, Zhao H L, Shen W and Xie Y. 2021. MODIS-based monitoring of spatial distribution of trophic status in 144 key lakes and reservoirs of China in summer of 2018. Journal of Lake Sciences, 33(2): 405-413
曹畅, 王胜蕾, 李俊生, 赵红莉, 申维, 谢娅. 2021. 基于MODIS数据的全国144个重点湖库营养状态监测: 以2018年夏季为例. 湖泊科学, 33(2): 405-413 [DOI: 10.18307/2021.0203http://dx.doi.org/10.18307/2021.0203]
Carlson R E. 1977. A trophic state index for lakes. Limnology and Oceanography, 22(2): 361-369 [DOI: 10.4319/lo.1977.22.2.0361http://dx.doi.org/10.4319/lo.1977.22.2.0361]
Coimbra K T O, Alcântara E and de Souza Filho C R. 2021. Satellite evidence for pervasive water eutrophication in the Doce River reservoirs following the collapse of the Fundao dam in Brazil. Environmental Pollution, 272: 116014 [DOI: 10.1016/j.envpol.2020.116014http://dx.doi.org/10.1016/j.envpol.2020.116014]
Companhia Ambiental do Estado de São Paulo. 2017. Qualidade das águas interiores no estado de São Paulo - 2016[EB/OL]. https://cetesb.sp.gov.br/aguasinteriores/publicacoes-e-relatorios/https://cetesb.sp.gov.br/aguasinteriores/publicacoes-e-relatorios/
Dall’Olmo G, Gitelson A A and Rundquist D C. 2003. Towards a unified approach for remote estimation of chlorophyll-a in both terrestrial vegetation and turbid productive waters. Geophysical Research Letters, 30(18): 1938 [DOI: 10.1029/2003GL018065http://dx.doi.org/10.1029/2003GL018065]
Dillon P J and Rigler F H. 1974. The phosphorus-chlorophyll relationship in lakes. Limnology and Oceanography, 19(5): 767-773 [DOI: 10.4319/lo.1974.19.5.0767http://dx.doi.org/10.4319/lo.1974.19.5.0767]
Du C G, Wang Q, Li Y M, Lyu H, Zhu L, Zheng Z B, Wen S, Liu G and Guo Y L. 2018. Estimation of total phosphorus concentration using a water classification method in inland water. International Journal of Applied Earth Observation and Geoinformation, 71: 29-42 [DOI: 10.1016/j.jag.2018.05.007http://dx.doi.org/10.1016/j.jag.2018.05.007]
Duan H T, Yu L, Zhang B, Liu D W, Song K S and Wang Z M. 2006. Hyperspectral data applied in monitoring and evaluating the water trophic state of Lake Chagan. Acta Scientiae Circumstantiae, 26(7): 1219-1226
段洪涛, 于磊, 张柏, 刘殿伟, 宋开山, 王宗明. 2006. 查干湖富营养化状况高光谱遥感评价研究. 环境科学学报, 26(7): 1219-1226 [DOI: 10.13671/j.hjkxxb.2006.07.028http://dx.doi.org/10.13671/j.hjkxxb.2006.07.028]
Duan H T, Zhang Y Z, Zhang B, Song K S and Wang Z M. 2007. Assessment of chlorophyll-a concentration and trophic state for Lake Chagan using Landsat TM and field spectral data. Environmental Monitoring and Assessment, 129(1): 295-308 [DOI: 10.1007/s10661-006-9362-yhttp://dx.doi.org/10.1007/s10661-006-9362-y]
Espel D, Courty S, Auda Y, Sheeren D and Elger A. 2020. Submerged macrophyte assessment in rivers: an automatic mapping method using Pléiades imagery. Water Research, 186: 116353 [DOI: 10.1016/j.watres.2020.116353http://dx.doi.org/10.1016/j.watres.2020.116353]
European Commission. 2000. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community actions in the field of water policy. Official Journal of the European Communities
Feng L, Hou X J and Zheng Y. 2019. Monitoring and understanding the water transparency changes of fifty large lakes on the Yangtze Plain based on long-term MODIS observations. Remote Sensing of Environment, 221: 675-686 [DOI: 10.1016/j.rse.2018.12.007http://dx.doi.org/10.1016/j.rse.2018.12.007]
Gibson G, Carlson R, Simpson J, Smeltzer E, Gerritson J, Chapra S, Heiskary S, Jones J and Kennedy R. 2000. Nutrient criteria technical guidance manual: lakes and reservoirs. Washington, DC, USA
Gohin F, Saulquin B, Oger-Jeanneret H, Lozac’h L, Lampert L, Lefebvre A, Riou P and Bruchon F. 2008. Towards a better assessment of the ecological status of coastal waters using satellite-derived chlorophyll-a concentrations. Remote Sensing of Environment, 112(8): 3329-3340 [DOI: 10.1016/j.rse.2008.02.014http://dx.doi.org/10.1016/j.rse.2008.02.014]
Gomes A C, Alcântara E, Rodrigues T and Bernardo N. 2020. Satellite estimates of euphotic zone and Secchi disk depths in a colored dissolved organic matter-dominated inland water. Ecological Indicators, 110: 105848 [DOI: 10.1016/j.ecolind.2019.105848http://dx.doi.org/10.1016/j.ecolind.2019.105848]
Gong S Q, Huang J Z, Li Y M, Wei Y C and Gu Z F. 2005. Integrated fuzzy evaluation of water eutrophication based on GIS in the Taihu Lake. Environmental Science, 26(5): 34-37
龚绍琦, 黄家柱, 李云梅, 韦玉春, 顾征帆. 2005. 基于GIS下的太湖水质富营养化模糊综合评价. 环境科学, 26(5): 34-37 [DOI: 10.13227/j.hjkx.2005.05.007http://dx.doi.org/10.13227/j.hjkx.2005.05.007]
Guan Q, Feng L, Hou X J, Schurgers G, Zheng Y and Tang J. 2020. Eutrophication changes in fifty large lakes on the Yangtze Plain of China derived from MERIS and OLCI observations. Remote Sensing of Environment, 246: 111890 [DOI: 10.1016/j.rse.2020.111890http://dx.doi.org/10.1016/j.rse.2020.111890]
Hu W, Li C H, Ye C, Wang J, Wei W W and Deng Y. 2020. Research progress on ecological model in the field of water eutrophication. Research of Environmental Sciences, 33(2): 349-362
胡文, 李春华, 叶春, 王济, 魏伟伟, 邓勇. 2020. 生态模型在水体富营养化研究领域的应用进展. 环境科学研究, 33(2): 349-362 [DOI: 10.13198/j.issn.1001-6929.2019.05.23http://dx.doi.org/10.13198/j.issn.1001-6929.2019.05.23]
Jiang G J, Loiselle S A, Yang D T, Ma R H, Su W and Gao C J. 2020. Remote estimation of chlorophyll a concentrations over a wide range of optical conditions based on water classification from VIIRS observations. Remote Sensing of Environment, 241: 111735 [DOI: 10.1016/j.rse.2020.111735http://dx.doi.org/10.1016/j.rse.2020.111735]
Kloiber S M, Brezonik P L, Olmanson L G and Bauer M E. 2002. A procedure for regional lake water clarity assessment using Landsat multispectral data. Remote Sensing of Environment, 82(1): 38-47 [DOI: 10.1016/S0034-4257(02)00022-6http://dx.doi.org/10.1016/S0034-4257(02)00022-6]
Le C F, Li Y M, Zha Y, Sun D Y and Wang L Z. 2008. Euphotic depth: retrieval from in situ reflectance and application in assessing eutrophication. Acta Ecologica Sinica, 28(6): 2614-2621
乐成峰, 李云梅, 查勇, 孙德勇, 王莉珍. 2008. 真光层深度的遥感反演及其在富营养化评价中的应用. 生态学报, 28(6): 2614-2621 [DOI: 10.3321/j.issn:1000-0933.2008.06.022http://dx.doi.org/10.3321/j.issn:1000-0933.2008.06.022]
Lee Z, Shang S L, Hu C M, Du K P, Weidemann A, Hou W L, Lin J F and Lin G. 2015. Secchi disk depth: a new theory and mechanistic model for underwater visibility. Remote Sensing of Environment, 169: 139-149 [DOI: 10.1016/j.rse.2015.08.002http://dx.doi.org/10.1016/j.rse.2015.08.002]
Li Y, Zhang Y L, Shi K, Zhu G W, Zhou Y Q, Zhang Y B and Guo Y L. 2017. Monitoring spatiotemporal variations in nutrients in a large drinking water reservoir and their relationships with hydrological and meteorological conditions based on Landsat 8 imagery. Science of the Total Environment, 599-600: 1705-1717 [DOI: 10.1016/j.scitotenv.2017.05.075http://dx.doi.org/10.1016/j.scitotenv.2017.05.075]
Li Y M, Huang J Z, Wei Y C, Lu W N and Shi J Z. 2006. Evaluating eutrophic state of Taihu Lake by in situ Hyperspectra. Environmental Science, 27(9): 1770-1775
李云梅, 黄家柱, 韦玉春, 陆皖宁, 石浚哲. 2006. 湖泊富营养化状态的地面高光谱遥感评价. 环境科学, 27(9): 1770-1775 [DOI: 10.13227/j.hjkx.2006.09.013http://dx.doi.org/10.13227/j.hjkx.2006.09.013]
Li Z Y and Zhang H J. 1993. Trophic state index and its correlation with lake parameters. Acta Scientiae Circumstantiae, 13(4): 391-397
李祚泳, 张辉军. 1993. 我国若干湖泊水库的营养状态指数TSIC及其与各参数的关系. 环境科学学报, 13(4): 391-397 [DOI: 10.13671/j.hjkxxb.1993.04.002http://dx.doi.org/10.13671/j.hjkxxb.1993.04.002]
Liu G, Li L, Song K S, Li Y M, Lyu H, Wen Z D, Fang C, Bi S, Sun X P, Wang Z M, Cao Z G, Shang Y X, Yu G L, Zheng Z B, Huang C C, Xu Y F and Shi K. 2020. An OLCI-based algorithm for semi-empirically partitioning absorption coefficient and estimating chlorophyll a concentration in various turbid case-2 waters. Remote Sensing of Environment, 239: 111648 [DOI: 10.1016/j.rse.2020.111648http://dx.doi.org/10.1016/j.rse.2020.111648]
Liu J K. 1984. Lakes of the middle and lower basins of the Changjiang (China)//Tanb F B, ed. Ecosystems of the World 23: Lakes and Reservoirs. Amsterdam: Elsevier: 331-355
Maciel D A, Barbosa C C F, de Moraes Novo E M L, Cherukuru N, Martins V S, Júnior R F, Jorge D S, de Carvalho L A S and Carlos F M. 2020. Mapping of diffuse attenuation coefficient in optically complex waters of amazon floodplain lakes. ISPRS Journal of Photogrammetry and Remote Sensing, 170: 72-87 [DOI: 10.1016/j.isprsjprs.2020.10.009http://dx.doi.org/10.1016/j.isprsjprs.2020.10.009]
Michalak A M, Anderson E J, Beletsky D, Boland S, Bosch N S, Bridgeman T B, Chaffin J D, Cho K, Confesor R, Daloğlu I, DePinto J V, Evans M A, Fahnenstiel G L, He L L, Ho J C, Jenkins L, Johengen T H, Kuo K C, LaPorte E, Liu X J, McWilliams M R, Moore M R, Posselt D J, Richards R P, Scavia D, Steiner A L, Verhamme E, Wright D M and Zagorski M A. 2013. Record-setting algal bloom in Lake Erie caused by agricultural and meteorological trends consistent with expected future conditions. Proceedings of the National Academy of Sciences of the United States of America, 110(16): 6448-6452 [DOI: 10.1073/pnas.1216006110http://dx.doi.org/10.1073/pnas.1216006110]
Olmanson L G, Bauer M E and Brezonik P L. 2008. A 20-year Landsat water clarity census of Minnesota’s 10, 000 lakes. Remote Sensing of Environment, 112(11): 4086-4097 [DOI: 10.1016/j.rse.2007.12.013http://dx.doi.org/10.1016/j.rse.2007.12.013]
O’Reilly J E, Maritorena S, Mitchell B G, Siegel D A, Carder K L, Garver S A, Kahru M and McClain C. 1998. Ocean color chlorophyll algorithms for SeaWiFS. Journal of Geophysical Research: Oceans, 103(C11): 24937-24953 [DOI: 10.1029/98JC02160http://dx.doi.org/10.1029/98JC02160]
Organization for Economic Cooperation and Development. 1982. Eutrophication of Waters, Monitoring, Assessment and Control. Paris: OECD Publication
Pace M L, Batt R D, Buelo C D, Carpenter S R, Cole J J, Kurtzweil J T and Wilkinson G M. 2017. Reversal of a cyanobacterial bloom in response to early warnings. Proceedings of the National Academy of Sciences of the United States of America, 114(2): 352-357 [DOI: 10.1073/pnas.1612424114http://dx.doi.org/10.1073/pnas.1612424114]
Pahlevan N, Smith B, Binding C, Gurlin D, Li L, Bresciani M and Giardino C. 2021. Hyperspectral retrievals of phytoplankton absorption and chlorophyll-a in inland and nearshore coastal waters. Remote Sensing of Environment, 253: 112200 [DOI: 10.1016/j.rse.2020.112200http://dx.doi.org/10.1016/j.rse.2020.112200]
Pitarch J, van der Woerd H J, Brewin R J W and Zielinski O. 2019. Optical properties of Forel-Ule water types deduced from 15 years of global satellite ocean color observations. Remote Sensing of Environment, 231: 111249 [DOI: 10.1016/j.rse.2019.111249http://dx.doi.org/10.1016/j.rse.2019.111249]
Primpas I and Karydis M. 2011. Scaling the trophic index (TRIX) in oligotrophic marine environments. Environmental Monitoring and Assessment, 178: 257-269 [DOI: 10.1007/s10661-010-1687-xhttp://dx.doi.org/10.1007/s10661-010-1687-x]
Pyo J, Duan H T, Baek S, Kim M S, Jeon T, Kwon Y S, Lee H and Cho K H. 2019. A convolutional neural network regression for quantifying cyanobacteria using hyperspectral imagery. Remote Sensing of Environment, 233: 111350 [DOI: 10.1016/j.rse.2019.111350http://dx.doi.org/10.1016/j.rse.2019.111350]
Rao Y Z. 1956. Basic Knowledge of Lake Survey. Beijing: Science Press
饶饮止. 1956. 湖泊调查基本知识. 北京: 科学出版社
Shi K, Zhang Y L, Song K S, Liu M L, Zhou Y Q, Zhang Y B, Li Y, Zhu G W and Qin B Q. 2019b. A semi-analytical approach for remote sensing of trophic state in inland waters: bio-optical mechanism and application. Remote Sensing of Environment, 232: 111349 [DOI: 10.1016/j.rse.2019.111349http://dx.doi.org/10.1016/j.rse.2019.111349]
Shi K, Zhang Y L, Zhang Y B, Li N, Qin B Q, Zhu G W and Zhou Y Q. 2019a. Phenology of phytoplankton blooms in a trophic lake observed from long-term MODIS data. Environmental Science and Technology, 53(5): 2324-2331 [DOI: 10.1021/acs.est.8b06887http://dx.doi.org/10.1021/acs.est.8b06887]
Shi K, Zhang Y L, Zhang Y B, Qin B Q and Zhu G W. 2020. Understanding the long-term trend of particulate phosphorus in a cyanobacteria-dominated lake using MODIS-Aqua observations. Science of the Total Environment, 737: 139736 [DOI: 10.1016/j.scitotenv.2020.139736http://dx.doi.org/10.1016/j.scitotenv.2020.139736]
Shi K, Zhang Y L, Zhu G W, Qin B Q and Pan D L. 2018. Deteriorating water clarity in shallow waters: evidence from long term MODIS and in-situ observations. International Journal of Applied Earth Observation and Geoinformation, 68: 287-297 [DOI: 10.1016/j.jag.2017.12.015http://dx.doi.org/10.1016/j.jag.2017.12.015]
Shu J H. 1990. The assessment methodology for eutrophication level of lakes in China. Environmental Pollution and Control, 12(5): 2-7, 47
舒金华. 1990. 我国湖泊富营养化程度评价方法的探讨. 环境污染与防治, 12(5): 2-7, 47 [DOI: 10.15985/j.cnki.1001-3865.1990.05.001http://dx.doi.org/10.15985/j.cnki.1001-3865.1990.05.001]
Sinha E, Michalak A M and Balaji V. 2017. Eutrophication will increase during the 21st century as a result of precipitation changes. Science, 357(6349): 405-408 [DOI: 10.1126/science.aan2409http://dx.doi.org/10.1126/science.aan2409]
Song K S, Liu G, Wang Q, Wen Z D, Lyu L, Du Y X, Sha L W and Fang C. 2020. Quantification of lake clarity in China using Landsat OLI imagery data. Remote Sensing of Environment, 243: 111800 [DOI: 10.1016/j.rse.2020.111800http://dx.doi.org/10.1016/j.rse.2020.111800]
Stevens C J. 2019. Nitrogen in the environment. Science, 363(6427): 578-580 [DOI: 10.1126/science.aav8215http://dx.doi.org/10.1126/science.aav8215]
United States Environmental Protection Agency. 2009. National lakes assessment a collaborative survey of the nation’s lakes chapter 3: the biological condition of the nation’s lakes. Environmental Protection
Wang J Z, Shi T Z, Yu D L, Teng D X, Ge X Y, Zhang Z P, Yang X D, Wang H X and Wu G F. 2020b. Ensemble machine-learning-based framework for estimating total nitrogen concentration in water using drone-borne hyperspectral imagery of emergent plants: a case study in an arid oasis, NW China. Environmental Pollution, 266: 115412 [DOI: 10.1016/j.envpol.2020.115412http://dx.doi.org/10.1016/j.envpol.2020.115412]
Wang M C, Liu X Q and Zhang J H. 2002. Evaluate method and classification standard on lake eutrophication. Environmental Monitoring in China, 18(5): 47-49
王明翠, 刘雪芹, 张建辉. 2002. 湖泊富营养化评价方法及分级标准. 中国环境监测, 18(5): 47-49 [DOI: 10.19316/j.issn.1002-6002.2002.05.023http://dx.doi.org/10.19316/j.issn.1002-6002.2002.05.023]
Wang S L, Li J S, Zhang B, Lee Z, Spyrakos E, Feng L, Liu C, Zhao H L, Wu Y H, Zhu L P, Jia L M, Wan W, Zhang F F, Shen Q, Tyler A N and Zhang X F. 2020a. Changes of water clarity in large lakes and reservoirs across China observed from long-term MODIS. Remote Sensing of Environment, 247: 111949 [DOI: 10.1016/j.rse.2020.111949http://dx.doi.org/10.1016/j.rse.2020.111949]
Wang S L, Li J S, Zhang B, Spyrakos E, Tyler A N, Shen Q, Zhang F F, Kuster T, Lehmann M K, Wu Y H and Peng D L. 2018. Trophic state assessment of global inland waters using a MODIS-derived Forel-Ule index. Remote Sensing of Environment, 217: 444-460 [DOI: 10.1016/j.rse.2018.08.026http://dx.doi.org/10.1016/j.rse.2018.08.026]
Wen Z D, Song K S, Liu G, Shang Y X, Fang C, Du J and Lyu L. 2019. Quantifying the trophic status of lakes using total light absorption of optically active components. Environmental Pollution, 245: 684-693 [DOI: 10.1016/j.envpol.2018.11.058http://dx.doi.org/10.1016/j.envpol.2018.11.058]
Wetzel R G. 1983. Limnology. 2nd ed. Philadelphia: Sounders College Publishing
Woźniak S B and Meler J. 2020. Modelling water colour characteristics in an optically complex nearshore environment in the Baltic Sea; quantitative interpretation of the forel-ule scale and algorithms for the remote estimation of seawater composition. Remote Sensing, 12(17): 2852 [DOI: 10.3390/rs12172852http://dx.doi.org/10.3390/rs12172852]
Wu C Q, Gai J X, Wang Q, Chen J and Wang Y. 2011. Establishing a remote sensing assessing method of lacustrine eutrophication. Environmental Monitoring in China, 27(5): 77-82
吴传庆, 盖嘉翔, 王桥, 陈静, 王颖. 2011. 湖泊富营养化遥感评价模型的建立方法. 中国环境监测, 27(5): 77-82 [DOI: 10.19316/j.issn.1002-6002.2011.05.021http://dx.doi.org/10.19316/j.issn.1002-6002.2011.05.021]
Xiang B, Song J W, Wang X Y and Zhen J. 2015. Improving the accuracy of estimation of eutrophication state index using a remote sensing data-driven method: a case study of Chaohu Lake, China. Water SA, 41(5): 753-761 [DOI: 10.4314/wsa.v41i5.18http://dx.doi.org/10.4314/wsa.v41i5.18]
Xu Y F, Shi Y and Li Y M. 2014. Eutrophication evaluation model of Lake Taihu using hyperspectral data of HJ-1 Satellite. Resources and Environment in the Yangtze Basin, 23(8): 1111-1118
徐祎凡, 施勇, 李云梅. 2014. 基于环境一号卫星高光谱数据的太湖富营养化遥感评价模型. 长江流域资源与环境, 23(8): 1111-1118 [DOI: 10.11870/cjlyzyyhj201408010http://dx.doi.org/10.11870/cjlyzyyhj201408010]
Yang G S, Ma R H, Zhang L, Jiang J H, Yao S C, Zhang M and Zeng H A. 2010. Lake status, major problems and protection strategy in China. Journal of Lake Sciences, 22(6): 799-810
杨桂山, 马荣华, 张路, 姜加虎, 姚书春, 张民, 曾海鳌. 2010. 中国湖泊现状及面临的重大问题与保护策略. 湖泊科学, 22(6): 799-810 [DOI: 10.18307/2010.0601http://dx.doi.org/10.18307/2010.0601]
Yin S J, Wu C Q, Wang C, Feng A P, Dong H, Gao R and Ma W D. 2018. Eutrophication assessment of Chaohu Lake using remote sensing and in-situ data. Environmental Monitoring in China, 34(1): 157-164
殷守敬, 吴传庆, 王晨, 冯爱萍, 董昊, 高芮, 马万栋. 2018. 综合遥感与地面观测的巢湖水体富营养化评价. 中国环境监测, 34(1): 157-164 [DOI: 10.19316/j.issn.1002-6002.2018.01.22http://dx.doi.org/10.19316/j.issn.1002-6002.2018.01.22]
Zhang B. 2018. Remotely sensed big data era and intelligent information extraction. Geomatics and Information Science of Wuhan University, 43(12): 1861-1871
张兵. 2018. 遥感大数据时代与智能信息提取. 武汉大学学报·信息科学版, 43(12): 1861-1871 [DOI: 10.13203/j.whugis20180172http://dx.doi.org/10.13203/j.whugis20180172]
Zhang K X. 1992. On the artificial eutrophication of lakes. Transactions of Oceanology and Limnology, (1): 88-98
张开翔. 1992. 湖泊人为富营养化. 海洋湖沼通报, (1): 88-98 [DOI: 10.13984/j.cnki.cn37-1141.1992.01.013]
Zhang X D, Huang Z J, Xu H and Liu Q S. 2007. Model of assessing lake and reservoir eutrophication based on RBF network. Environmental Engineering, 25(2): 80-82
张晓丹, 黄朝君, 徐菡, 刘钦圣. 2007. 基于RBF神经网络的湖库水质富营养化程度评价模型. 环境工程, 25(2): 80-82 [DOI: 10.13205/j.hjgc.2007.02.026http://dx.doi.org/10.13205/j.hjgc.2007.02.026]
Zhang Y B, Zhang Y L, Shi K, Zhou Y Q and Li N. 2021. Remote sensing estimation of water clarity for various lakes in China. Water Research, 192: 116844 [DOI: 10.1016/j.watres.2021.116844http://dx.doi.org/10.1016/j.watres.2021.116844]
Zhang Y L, Jeppesen E, Liu X H, Qin B Q, Shi K, Zhou Y Q, Thomaz S M and Deng J M. 2017. Global loss of aquatic vegetation in lakes. Earth-Science Reviews, 173: 259-265 [DOI: 10.1016/j.earscirev.2017.08.013http://dx.doi.org/10.1016/j.earscirev.2017.08.013]
Zhou B T, Shang M S, Wang G Y, Zhang S, Feng L, Liu X N, Wu L and Shan K. 2018. Distinguishing two phenotypes of blooms using the normalised difference peak-valley index (NDPI) and Cyano-Chlorophyta index (CCI). Science of the Total Environment, 628-629: 848-857 [DOI: 10.1016/j.scitotenv.2018.02.097http://dx.doi.org/10.1016/j.scitotenv.2018.02.097]
Zhou Y D, He B Y, Xiao F, Feng Q, Kou J F and Liu H. 2019. Retrieving the lake trophic level index with Landsat-8 image by atmospheric parameter and RBF: a case study of lakes in Wuhan, China. Remote Sensing, 11(4): 457 [DOI: 10.3390/rs11040457http://dx.doi.org/10.3390/rs11040457]
相关文章
相关作者
相关机构