Construction of ageo-location model and verification of GF-7 spaceborne laser altimetry
- Vol. 27, Issue 5, Pages: 1228-1237(2023)
Published: 07 May 2023
DOI: 10.11834/jrs.20221251
扫 描 看 全 文
浏览全部资源
扫码关注微信
Published: 07 May 2023 ,
扫 描 看 全 文
陈新阳,乔志远,龙小祥,李庆鹏,刘啸添,钟慧敏,王小燕,王建华.2023.高分七号星载激光定位模型构建与验证.遥感学报,27(5): 1228-1237
Chen X Y,Qiao Z Y,Long X X,Li Q P,Liu X T,Zhong H M,Wang X Y and Wang J H. 2023. Construction of ageo-location model and verification of GF-7 spaceborne laser altimetry. National Remote Sensing Bulletin, 27(5):1228-1237
高分七号卫星是中国第一颗搭载全波形激光测高仪的对地观测卫星,可满足立体测绘的需求。本文为了实现国内第一颗星载大光斑全波形激光测高仪数据高精度自主处理的要求,提出了高分七号星载激光定位和检校验证方法。首先,构建了高分七号卫星激光测高仪的严密几何定位模型,其次,使用了移动重心和波形分解的峰值提取法,然后实现了基于地形匹配与红外探测器结合的激光测高仪指向角标定,最后,建立了SRTM高程验证、湖面高程验证和野外定标场验证结合的激光测高仪综合高程验证方法。经验证激光测高数据在平地的测高精度优于0.15 m,激光器1指向角误差约为0.15″,激光器2指向角误差约为0.38″。结果表明本文提出的高分七号星载激光定位方法定位精度高,可以满足后续高分七号数据科学研究和大规模业务化应用的要求。
Spaceborne laser altimeter plays an important role in stereo mapping services and in the measurement of ice caps
vegetation height
sea surface
and so on. Spaceborne laser altimetry
an Earth observation technology
has been widely used in America for about 20 years. However
China has used only experimental spaceborne laser altimetry for Earth observation. GF-7 is the first Earth observation laser altimeter of China
and it is equipped with full-waveform lidar. The data of spaceborne laser altimeters can be regarded as control points to realize the requirement of 1∶10000 stereoscopic mapping under the condition of few control points. In this study
a spaceborne laser altimetry geo-location model and an on-orbit geometric calibration and verification method are proposed to meet the high processing precision requirement of the first full-waveform spaceborne laser altimeter of China and realize the localization of geometric positioning and data processing for full-waveform spaceborne laser altimetry.
First
a rigorous geometric model for the GF-7 spaceborne laser altimeter is built. Second
the peak value extraction method of moving the center of gravity and waveform decomposition are used. Third
the calibration method of the GF-7 spaceborne laser beam is established based on terrain matching and infrared detection. Lastly
comprehensive validation methods
including SRTM (Shuttle Radar Topography Mission)elevation verification
lake elevation verification
and calibration site elevation verification
are put forward to verify the positioning accuracy of the spaceborne laser altimeter comprehensively.
The suitable data of the GF-7 spaceborne laser altimeter in Neimenggu Province and Qinghai Lake are selected
and IR detectors are placed in a field in Neimenggu Province. A series of on-orbit geometric calibration and verification experiments are conducted. The experiments show that the corresponding pointing angle error of Laser 1 is about 0.15"
and that of Laser 2 is about 0.38". After correcting the pointing angle error
the height measurement error of the laser altimeter is better than 0.15 m in the flat area. GF-7
the first spaceborne laser altimeter for Earth observation in China
has good performance. It can realize high-precision positioning and data processing for full-waveform spaceborne laser altimetry.
The results also show that the method in this study has high processing accuracy and realizes the first domestic processing of full-waveform spaceborne laser altimetry data. The processed data can satisfy the requirements of scientific research and subsequent large-scale application. Moreover
the geo-location model for GF-7 and the calibration verification method established in this study can be used for domestic spaceborne laser altimetry in the future.
高分七号激光测高仪严密几何模型几何检校精度验证
GF-7 satellitelaser altimeterrigorous geometric modelgeometric calibrationaccuracy verification
Adriani A, Massoli P, Di Donfrancesco G, Cairo F, Moriconi M L and Snels M. 2004. Climatology of polar stratospheric clouds based on lidar observations from 1993 to 2001 over McMurdo Station, Antarctica. Journal of Geophysical Research: Atmospheres, 109(D24): D24211 [DOI: 10.1029/2004JD004800http://dx.doi.org/10.1029/2004JD004800]
Anita C B, Jay Z H, Charles R B, Bea M C, David J H, Michelle A H, Jean-Bernard M, LeeAnne R, Jack L, Robert H T and Donghui Y. 2000. Derivation of range and range distributions from laser pulse waveform analysis for surface elevations, roughness, slope, and vegetation heights. Algorithm Theoretical Basis Document Version 3. 0, 1-93.
Chen X Y. 2019. Waveform Processing and Accuracy Verification of Airborne Large-Footprint LiDAR System. Wuhan: Wuhan University: 16-25
陈新阳. 2019. 机载大光斑激光雷达波形数据处理及精度验证. 武汉: 武汉大学: 16-25
Guo A Y, Dai J, Zhao C G and Zhang X W. 2020. Design and on-orbit validation of GF-7 satellite laser altimeter. Spacecraft Engineering, 29(3): 43-48
国爱燕, 戴君, 赵晨光, 张新伟. 2020. 高分七号卫星激光测高仪总体设计与在轨验证. 航天器工程, 29(3): 43-48 [DOI: 10.3969/j.issn.1673-8748.2020.03.007http://dx.doi.org/10.3969/j.issn.1673-8748.2020.03.007]
Huang G H, Ding Y X, Wu J C, Shu R, Wang X and Jiang Z Q. 2020. Design and implementation of key technology of GF-7 satellite laser altimeter subsystem. Spacecraft Engineering, 29(3): 68-73
黄庚华, 丁宇星, 吴金才, 舒嵘, 王欣, 姜紫庆. 2020. 高分七号卫星激光测高仪分系统关键技术设计与实现. 航天器工程, 29(3): 68-73 [DOI: 10.3969/j.issn.1673-8748.2020.03.011http://dx.doi.org/10.3969/j.issn.1673-8748.2020.03.011]
Jiang Y H, Zhang G, Tang X M, Zhu X Y, Qin Q Q, Li D R and Fu X K. 2013. High accuracy geometric calibration of ZY-3 three-line image. Acta Geodaetica et Cartographica Sinica, 42(4): 523-529, 553
蒋永华, 张过, 唐新明, 祝小勇, 秦前清, 李德仁, 付兴科. 2013. 资源三号测绘卫星三线阵影像高精度几何检校. 测绘学报, 42(4): 523-529, 553
Knapp N, Fischer R and Huth A. 2018. Linking lidar and forest modeling to assess biomass estimation across scales and disturbance states. Remote Sensing of Environment, 205: 199-209 [DOI: 10.1016/j.rse.2017.11.018http://dx.doi.org/10.1016/j.rse.2017.11.018]
Li G Y. 2017. Earth Observing Satellite Laser Altimeter Data Processing Method and Engineer Practice. Wuhan: Wuhan University: 33-39
李国元. 2017. 对地观测卫星激光测高数据处理方法与工程实践. 武汉: 武汉大学: 33-39
Li P C, Xu Q, Xing S, Liu Z Q, Geng X and Hou X F. 2015. Step progressive decomposition of full waveform data using Levenberg Marquardt. Journal of Geomatics Science and Technology, 32(3): 256-260, 265
李鹏程, 徐青, 邢帅, 刘志青, 耿迅, 侯晓芬. 2015. 采用Levenberg Marquardt的逐步递进波形分解方法. 测绘科学技术学报, 32(3): 256-260, 265 [DOI: 10.3969/j.issn.1673-6338.2015.03.009http://dx.doi.org/10.3969/j.issn.1673-6338.2015.03.009]
Li S N. 2017. Research on Geometric Calibration of Earth Observation Satellite Laser Altimeter. Wuhan: Wuhan University: 32-47
李少宁. 2017. 星载激光对地测高系统在轨几何定标研究. 武汉: 武汉大学: 32-47
Lian W Q, Li S N, Zhang G, Wang Y N, Chen X Y and Cui H. 2020. Accuracy verification of airborne large-footprint lidar based on terrain features. Remote Sensing, 12(5): 879 [DOI: 10.3390/rs12050879http://dx.doi.org/10.3390/rs12050879]
Ma Y, Yang F L, Wang M W, Li S and Weng Y K. 2015. Calculation of elevation changing of Greenlandˊs ice sheet using GLAS laser altimeter. Infrared and Laser Engineering, 44(12): 3565-3569
马跃, 阳凡林, 王明伟, 李松, 翁寅侃. 2015. 利用GLAS激光测高仪计算格陵兰冰盖高程变化. 红外与激光工程, 44(12): 3565-3569 [DOI: 10.3969/j.issn.1007-2276.2015.12.011http://dx.doi.org/10.3969/j.issn.1007-2276.2015.12.011]
Simard M, Pinto N, Fisher J B and Baccini A. 2011. Mapping forest canopy height globally with spaceborne lidar. Journal of Geophysical Research: Biogeosciences, 116(G4): G04021 [DOI: 10.1029/2011JG001708http://dx.doi.org/10.1029/2011JG001708]
Spang R, Hoffmann L, Müller R, Grooß J U, Tritscher I, Höpfner M, Pitts M, Orr A and Riese M. 2018. A climatology of polar stratospheric cloud composition between 2002 and 2012 based on MIPAS/Envisat observations. Atmospheric Chemistry and Physics, 18(7): 5089-5113 [DOI: 10.5194/acp-18-5089-2018http://dx.doi.org/10.5194/acp-18-5089-2018]
Tang X M, Li S J, Li T, Gao Y D, Zhang S B, Chen Q F and Zhang X. 2021. Review on global digital elevation products. National Remote Sensing Bulletin, 25(1): 167-181
唐新明, 李世金, 李涛, 高延东, 张书毕, 陈乾福, 张祥. 2021. 全球数字高程产品概述. 遥感学报, 25(1): 167-181 [DOI: 10.11834/jrs.20210210http://dx.doi.org/10.11834/jrs.20210210]
Wen H J, Liu H L, Chang X T and Cheng P F. 2011. Accuracy assessment of ICESAT laser altimeter data using GPS measurements. Geomatics and Information Science of Wuhan University, 36(3): 262-266
文汉江, 刘焕玲, 常晓涛, 程鹏飞. 2011. 利用GPS测量检核ICESAT卫星激光测高数据精度. 武汉大学学报(信息科学版), 36(3): 262-266 [DOI: 10.13203/j.whugis2011.03.002http://dx.doi.org/10.13203/j.whugis2011.03.002]
Xu W, Long X X, Yu W Y and Li Q P. 2012. Geometric quality analysis of three-line array CCD imagery of ZY-3 satellite. Spacecraft Recovery and Remote Sensing, 33(3): 55-64
徐文, 龙小祥, 喻文勇, 李庆鹏. 2012. “资源三号”卫星三线阵影像几何质量分析. 航天返回与遥感, 33(3): 55-64 [DOI: 10.3969/j.issn.1009-8518.2012.03.011http://dx.doi.org/10.3969/j.issn.1009-8518.2012.03.011]
Zhang G, Li S N, Huang W C and Li D R. 2017. Geometric calibration and validation of ZY3-02 satellite laser altimeter system. Geomatics and Information Science of Wuhan University, 42(11): 1589-1596
张过, 李少宁, 黄文超, 李德仁. 2017. 资源三号02星对地激光测高系统几何检校及验证. 武汉大学学报(信息科学版), 42(11): 1589-1596 [DOI: 10.13203/j.whugis20160514http://dx.doi.org/10.13203/j.whugis20160514]
Zhang J Q, Pan L and Wang S G. 2003. Geo-Spatial Information Science. Wuhan: Wuhan University
张剑清, 潘励, 王树根. 2003. 摄影测量学. 武汉: 武汉大学出版社
相关作者
相关机构