Monitoring lake level change in La-ang Co from 1992 to 2020 using multi-altimeter data
- Vol. 26, Issue 1, Pages: 126-137(2022)
Published: 07 January 2022
DOI: 10.11834/jrs.20221280
扫 描 看 全 文
浏览全部资源
扫码关注微信
Published: 07 January 2022 ,
扫 描 看 全 文
孙明智,刘新,汪海洪,袁佳佳,李成名,郭金运.2022.多源卫星测高数据监测拉昂错1992年—2020年水位变化.遥感学报,26(1): 126-137
Sun M Z,Liu X,Wang H H,Yuan J J,Li C M and Guo J Y. 2022. Monitoring lake level change in La-ang Co from 1992 to 2020 using multi-altimeter data. National Remote Sensing Bulletin, 26(1):126-137
青藏高原湖泊水位是反映生态环境变化的重要指标,为了使用多源卫星测高数据构建高精度、长时序的湖泊水位时间序列,本文提出了一种基于大气路径延迟校正、波形重定、异常值检测、卫星间偏差调整的高精度湖泊水位序列构建策略。以拉昂错为研究对象,利用本文方法对TOPEX/Poseidon、Jason-1/2/3高度计数据进行处理,构建了拉昂错1992年—2020年的高精度水位时间序列,讨论分析了1992年—2020年湖泊水位、面积和流域内降水、温度、蒸发的关系。结果表明,拉昂错水位在1992年—2020年整体下降约6.00 m,平均变化趋势为-0.21±0.01 m/a,水位变化呈现明显周年性;本文方法构建的湖泊水位序列长、精度高,均方根误差为13.10 cm。
Tibetan Plateau (TP) lakes are located in the high-altitude and rough-terrain region. These lakes are effective indicators and sentinels of climate changes because of the absence of direct anthropogenic influence and their dominant distribution in endorheic basins. Altimetry satellites can be used to monitor the water level changes of inland water bodies. However
satellites cannot easily obtain accurate and continuous observations of Tibetan lakes with steep terrain. This paper presents a robust scheme for constructing accurate and long-term lake level time series using multi-altimeters. We demonstrate the robust scheme over La-ang Co.
A robust strategy is presented to obtain lake levels on the TP using multi-altimeter data. The consistency of atmospheric path delay corrections should be carefully checked to integrate various altimeter products issued in different periods. Apparent biases are found in troposphere corrections from different altimeter products and updated by ERA-5 model. ICE retracker is used to correct the altimeter range. A two-step method is proposed for outlier removal
which has accurate performance without any a prior information. Bias adjustment is an essential step in the fusion of multi-altimeters. Tandem mission data of altimeters are used to estimate inter-satellite bias. Finally
a 28-year-long lake level time series are constructed using TOPEX/Poseidon and Jason-1/2/3 altimeter data from 1992 to 2020. The relationship among lake level
area
precipitation
temperature
and evaporation in the basin from 1992 to 2020 is analyzed.
The mean lake level for each cycle is estimated after outlier removal. As an example
About 38% of the observations are rejected as outliers in Jason-2 period. The T/P-family satellites share the same ground track and have an overlap between two successive satellites for intersatellite calibration. As a result
Jason-1 has a mean lake level bias of 0.15 m with respect to T/P. The bias of Jason-2 with respect to Jason-1 is 0.02 m. The bias of Jason-3 with respect to Jason-2 is -0.23 m after removing an outlier. Biases between different missions are adjusted
and a 28-year monthly lake level time series is generated. Compared to the in situ data and available lake level databases
our result is the most robust time series for La-ang Co
with high accuracy and considerably continuous samples from 1992 to 2020. The mean STD is about 13.10 cm for T/P-family satellites. From 1992 to 2020
the level of La-ang Co decreased by 6.00 m
with an average change trend of -0.21±0.01 m/a.
This result showed that the lake level extraction in this study is more accurate than that of available lake level databases
and the change of lake levels in La-ang Co is similar with the previous studies. Annual and semi-annual variations as well as inter-annual oscillations can be clearly observed in the time series. Evaporation is greater than precipitation
which is the main factor leading to the decrease of lake level. The water level of La-ang Co will continue to decline in the near term due to global warming.
卫星测高TOPEX/PoseidonJason-1/2/3拉昂错湖泊水位青藏高原
satellite altimetryTOPEX/PoseidonJason-1/2/3La-ang Colake levelTibetan Plateau
Bamber J L. 1994. Ice sheet altimeter processing scheme. International Journal of Remote Sensing, 15(4): 925-938 [DOI: 10.1080/01431169408954125http://dx.doi.org/10.1080/01431169408954125]
Chen X D, Guo J Y, Sun M Z, Zhu G B and Chang X T. 2021. Time-varying analysis of backscatter coefficient corresponding to different surface types in the Tibetan Plateau. Geomatics and Information Science of Wuhan University
陈晓东, 郭金运, 孙明智, 朱广彬, 常晓涛. 2021. 青藏高原区域不同地表类型对应后向散射系数的时变分析. 武汉大学学报(信息科学版)) [DOI: 10.13203/j.whugis20200688http://dx.doi.org/10.13203/j.whugis20200688]
Crétaux J F, Calmant S, Romanovski V, Shabunin A, Lyard F, Bergé-Nguyen M, Cazenave A, Hernandez F and Perosanz F. 2009. An absolute calibration site for radar altimeters in the continental domain: Lake Issykkul in Central Asia. Journal of Geodesy, 83(8): 723-735 [DOI: 10.1007/s00190-008-0289-7http://dx.doi.org/10.1007/s00190-008-0289-7]
Du W J, Liu X, Guo J Y, Shen Y, Li W and Chang X T. 2019. Analysis of the melting glaciers in Southeast Tibet by ALOS-PALSAR data. Terrestrial, Atmospheric and Oceanic Sciences, 30(1): 7-19 [DOI: 10.3319/tao.2018.07.09.03http://dx.doi.org/10.3319/tao.2018.07.09.03]
Frappart F, Calmant S, Cauhope M, Seyler F and Cazenave A. 2006. Preliminary results of ENVISAT RA-2-derived water levels validation over the Amazon basin. Remote Sensing of Environment, 100(2): 252-264 [DOI: 10.1016/j.rse.2005.10.027http://dx.doi.org/10.1016/j.rse.2005.10.027]
Gao Y G, Guo J Y and Yun J P. 2008. Lake level variations measurement with satellite altimetry. Science of Surveying and Mapping, 33(6): 73-75, 29
高永刚, 郭金运, 岳建平. 2008. 卫星测高在陆地湖泊水位变化监测中的应用. 测绘科学, 33(6): 73-75, 29 [DOI: 10.3771/j.issn.1009-2307.2008.06.024http://dx.doi.org/10.3771/j.issn.1009-2307.2008.06.024]
Guo J Y, Mu D P, Liu X, Yan H M, Sun Z C and Guo B. 2016. Water storage changes over the Tibetan Plateau revealed by GRACE mission. Acta Geophysica, 64(2): 463-476 [DOI: 10.1515/acgeo-2016-0003http://dx.doi.org/10.1515/acgeo-2016-0003]
Guo J Y, Sun J L, Chang X T, Guo S Y and Liu X. 2010. Water level variation of bosten lake monitored with TOPEX/Poseidon and its correlation with NINO3 SST. Acta Geodaetica et Cartographica Sinica, 39(3): 221-226
郭金运, 孙佳龙, 常晓涛, 郭淑艳, 刘新. 2010. TOPEX/Poseidon卫星监测博斯腾湖水位变化及其与NINO3 SST的相关性分析. 测绘学报, 39(3): 221-226
Guo J Y, Sun J L, Chang X T, Guo S Y and Liu X. 2011. Correlation analysis of NINO3.4 SST and inland lake level variations monitored with satellite altimetry: case studies of lakes Hongze, Khanka, La-ang, Ulungur, Issyk-kul and Baikal. Terrestrial, Atmospheric and Oceanic Sciences, 22(2): 203-213 [DOI: 10.3319/TAO.2010.09.17.01(TibXShttp://dx.doi.org/10.3319/TAO.2010.09.17.01(TibXS)]
Guo J Y, Wei Z J, Zhu C C, Wu Y L and Ji B. 2021. Bathymetry inversion of South China Sea based on iterative continuation of gravity anomalies. Journal of Shandong University of Science and Technology (Natural Science), 40(4): 1-10
郭金运, 魏志杰, 祝程程, 吴云龙, 纪兵. 2021. 基于重力异常迭代延拓的南海海底地形反演. 山东科技大学学报(自然科学版), 40(4): 1-10 [DOI: 10.16452/j.cnki.sdkjzk.2021.04.001http://dx.doi.org/10.16452/j.cnki.sdkjzk.2021.04.001]
Guo J Y, Yang L, Liu X, Huang J W and Yang H. 2012. On temporal-spatial distribution of backscatter coefficients over China determined by TOPEX/Poseidon mission. Science China Earth Sciences, 55(12): 2068-2083
郭金运, 杨磊, 刘新, 黄金维, 杨红. 2013. 由TOPEX/Poseidon探测的中国区域后向散射系数时空分布. 中国科学: 地球科学, 43(4): 677-692 [DOI: 10.1007/s11430-012-4524-yhttp://dx.doi.org/10.1007/s11430-012-4524-y]
Ho C M, Wilson B D, Mannucci A J, Lindqwister U J and Yuan D N. 1997. A comparative study of ionospheric total electron content measurements using global ionospheric maps of GPS, TOPEX radar, and the Bent model. Radio Science, 32(4): 1499-1512 [DOI: 10.1029/97rs00580http://dx.doi.org/10.1029/97rs00580]
Hwang C, Cheng Y S, Han J C, Kao R, Huang C Y, Wei S H and Wang H H. 2016. Multi-decadal monitoring of lake level changes in the Qinghai-Tibet Plateau by the TOPEX/Poseidon-Family altimeters: climate implication. Remote Sensing, 8(6): 446 [DOI: 10.3390/rs8060446http://dx.doi.org/10.3390/rs8060446]
Hwang C, Peng M F, Ning J S, Luo J and Sui C H. 2005. Lake level variations in China from TOPEX/Poseidon altimetry: data quality assessment and links to precipitation and ENSO. Geophysical Journal International, 161(1): 1-11 [DOI: 10.1111/j.1365-246X.2005.02518.xhttp://dx.doi.org/10.1111/j.1365-246X.2005.02518.x]
Jiang L G, Nielsen K, Andersen O B and Bauer-Gottwein P. 2017. Monitoring recent lake level variations on the Tibetan Plateau using CryoSat-2 SARIn mode data. Journal of Hydrology, 544: 109-124 [DOI: 10.1016/j.jhydrol.2016.11.024http://dx.doi.org/10.1016/j.jhydrol.2016.11.024]
Kleinherenbrink M, Lindenbergh R C and Ditmar P G. 2015. Monitoring of lake level changes on the Tibetan Plateau and Tian Shan by retracking Cryosat SARIn waveforms. Journal of Hydrology, 521: 119-131 [DOI: 10.1016/j.jhydrol.2014.11.063http://dx.doi.org/10.1016/j.jhydrol.2014.11.063]
Li W D, Guo J Y, Chang X T, Zhu G B and Kong Q L. 2017. Terrestrial water storage changes in the Tianshan Mountains of Xinjiang Measured by GRACE during 2003~2013. Geomatics and Information Science of Wuhan University, 42(7): 1021-1026
李武东, 郭金运, 常晓涛, 朱广彬, 孔巧丽. 2017. 利用GRACE重力卫星反演2003~2013年新疆天山地区陆地水储量时空变化. 武汉大学学报(信息科学版), 42(7): 1021-1026 [DOI: 10.13203/j.whugis20150079http://dx.doi.org/10.13203/j.whugis20150079]
Li X D, Long D, Huang Q, Han P F, Zhao F Y and Wada Y. 2019a. High-temporal-resolution water level and storage change data sets for lakes on the Tibetan Plateau during 2000-2017.
National Tibetan Plateau Data Center 李兴东, 龙笛, 黄琦, 韩鹏飞, 赵凡玉, 荣田佳秀. 2019a. 青藏高原高时间分辨率湖泊水位及水量变化数据集2000-2017
年). 国家青藏高原科学数据中心) [DOI: 10.1594/PANGAEA.898411]
Li X D, Long D, Huang Q, Han P F, Zhao F Y and Wada Y. 2019b. High-temporal-resolution water level and storage change data sets for lakes on the Tibetan Plateau during 2000-2017 using multiple altimetric missions and Landsat-derived lake shoreline positions. Earth System Science Data, 11(4): 1603-1627 [DOI: 10.5194/essd-11-1603-2019http://dx.doi.org/10.5194/essd-11-1603-2019]
Li Z, Liu X, Guo J Y, Yuan J J, Niu Y P and Ji B. 2020. A new method of satellite radar altimeter waveform retracking based on waveform derivative. Revista Internacional De Metodos Numericos Numerlcos Para Calculo Y Diseno En Ingenieria, 36 (4) [DOI: 10.23967/j.rimni.2020.10.002]
Liao J J, Xue H and Chen J M. 2020. Monitoring lake level changes on the Tibetan Plateau from 2000 to 2018 using satellite altimetry data. Journal of Remote Sensing (Chinese), 24(12): 1534-1547
廖静娟, 薛辉, 陈嘉明. 2020. 卫星测高数据监测青藏高原湖泊2010年-2018年水位变化. 遥感学报, 24(12): 1534-1547 [DOI: 10.11834/jrs.20209281http://dx.doi.org/10.11834/jrs.20209281]
Liu X, Zhao N, Guo J Y and Guo B. 2020. Prediction of monthly precipitation over the Tibetan Plateau based on LSTM neural network. Journal of Geo-Information Science, 22(8): 1617-1629
刘新, 赵宁, 郭金运, 郭斌. 2020. 基于LSTM神经网络的青藏高原月降水量预测. 地球信息科学学报, 22(8): 1617-1629 [DOI: 10.12082/dqxxkx.2020.190378http://dx.doi.org/10.12082/dqxxkx.2020.190378]
Ma R H, Yang G S, Duan H T, Jiang J H, Wang S M, Feng X Z, Li A N, Kong F X, Xue B, Wu J L and Li S J. 2011. China’s lakes at present: number, area and spatial distribution. Science China Earth Sciences, 54(2): 283-289 [DOI: 10.1007/s11430-010-4052-6http://dx.doi.org/10.1007/s11430-010-4052-6]
Niu Y P, Guo J Y, Yuan J J, Li Z, Wen H J, Liu H L and Ji B. 2019. Accuracy analysis of global mean sea surface height models based on tide gauge records. Journal of Shandong University of Science and Technology(Natural Science), 38(4): 18-26
牛余朋, 郭金运, 袁佳佳, 李真, 文汉江, 刘焕玲, 纪兵. 2019. 基于验潮数据的全球平均海面高模型精度分析. 山东科技大学学报(自然科学版), 2019. 38(4): 18-26 [DOI: 10.16452/j.cnki.sdkjzk.2019.04.003http://dx.doi.org/10.16452/j.cnki.sdkjzk.2019.04.003]
Okeowo M A, Lee H, Hossain F and Getirana A. 2017. Automated generation of lakes and reservoirs water elevation changes from satellite radar altimetry. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10(8): 3465-3481 [DOI: 10.1109/jstars.2017.2684081http://dx.doi.org/10.1109/jstars.2017.2684081]
Phan V H, Lindenbergh R and Menenti M. 2012. ICESat derived elevation changes of Tibetan lakes between 2003 and 2009. International Journal of Applied Earth Observation and Geoinformation, 17: 12-22 [DOI: 10.1016/j.jag.2011.09.015http://dx.doi.org/10.1016/j.jag.2011.09.015]
Schwatke C, Dettmering D, Bosch W and Seitz F. 2015. DAHITI – an innovative approach for estimating water level time series over inland waters using multi-mission satellite altimetry. Hydrology and Earth System Sciences, 19(10): 4345-4364 [DOI: 10.5194/hess-19-4345-2015http://dx.doi.org/10.5194/hess-19-4345-2015]
Song C Q, Huang B, Ke L H and Richards K S. 2014. Seasonal and abrupt changes in the water level of closed lakes on the Tibetan Plateau and implications for climate impacts. Journal of Hydrology, 514: 131-144 [DOI: 10.1016/j.jhydrol.2014.04.018http://dx.doi.org/10.1016/j.jhydrol.2014.04.018]
Stammer D and Cazenave A. 2017. Satellite Altimetry over Oceans and Land Surfaces. Boca, Raton: CRC Press
Sun M Z, Guo J Y, Yuan J J, Liu X, Wang H H and Li C M. 2021. Detecting lake level change from 1992 to 2019 of Zhari Namco in Tibet using altimetry data of TOPEX/Poseidon and Jason-1/2/3 Missions. Frontiers in Earth Science, 9: 640553 [DOI: 10.3389/feart.2021.640553http://dx.doi.org/10.3389/feart.2021.640553]
Vu P L, Frappart F, Darrozes J, Marieu V, Blarel F, Ramillien G, Bonnefond P and Birol F. 2018. Multi-satellite altimeter validation along the french atlantic coast in the southern bay of biscay from ERS-2 to SARAL. Remote Sensing, 10(1): 93 [DOI: 10.3390/rs10010093http://dx.doi.org/10.3390/rs10010093]
Wang H H, Chu Y H, Huang Z K, Hwang C and Chao N F. 2019. Robust, long-term lake level change from multiple satellite altimeters in Tibet: observing the rapid rise of Ngangzi Co over a New Wetland. Remote Sensing, 11(5): 558 [DOI: 10.3390/rs11050558http://dx.doi.org/10.3390/rs11050558]
Wang J B, Peng P, Ma Q F and Zhu L P. 2013. Investigation of water depth, water quality and modern sedimentation rate in Mapam Yumco and La’ang Co, Tibet. Journal of Lake Sciences, 25(4): 609-616
王君波, 彭萍, 马庆峰, 朱立平. 2013. 西藏玛旁雍错和拉昂错水深、水质特征及现代沉积速率. 湖泊科学, 25(4): 609-616 [DOI: 10.18307/2013.0420http://dx.doi.org/10.18307/2013.0420]
Wen J C, Zhao H L, Jiang Y Z, Chen D Q and Ji G. 2018. Research on the quality screening method for satellite altimetry data—take Jason-3 data and Hongze Lake as an example. South-to-North Water Transfers and Water Science and Technology, 16(3): 194-200, 208
文京川, 赵红莉, 蒋云钟, 陈德清, 纪刚. 2018. 卫星测高数据筛选方法研究——以Jason-3数据和洪泽湖为例. 南水北调与水利科技, 16(3): 194-200, 208 [DOI: 10.13476/j.cnki.nsbdqk.2018.0088http://dx.doi.org/10.13476/j.cnki.nsbdqk.2018.0088]
Wingham D J, Rapley C G and Griffiths H. 1986. New techniques in satellite altimeter tracking systems//Proceedings of IGARss’ 86 Symposium. Zurich: ESA Publications Divison: 1339-1344
Xie Y G, Guo J Y, Zhu J S, Kong Q L and Li G W. 2016. Simulation and analysis of significant wave height over seas of Dongsha Island based on SWAN model. Journal of Shandong University of Science and Technology (Natural Science), 35(3): 17-24
谢友鸽, 郭金运, 朱金山, 孔巧丽, 李国伟. 2016. 基于SWAN模型的东沙岛海域有效波高模拟与分析. 山东科技大学学报(自然科学版), 35(3): 17-24 [DOI: 10.16452/j.cnki.sdkjzk.2016.03.015http://dx.doi.org/10.16452/j.cnki.sdkjzk.2016.03.015]
Zhang G Q. 2019. The lakes larger than 1 km2 in Tibetan Plateau (V2.0) (1970s-2018
). National Tibetan Plateau Data Center 张国庆. 2019. 青藏高原大于1平方公里湖泊数据集(V2.0) (1970s-2018
). 国家青藏高原科学数据中心) [DOI: 10.11888/Hydro.tpdc.270303http://dx.doi.org/10.11888/Hydro.tpdc.270303]
Zhang G Q, Luo W, Chen W F and Zheng G X. 2019. A robust but variable lake expansion on the Tibetan Plateau. Science Bulletin, 64(18): 1306-1309 [DOI: 10.1016/j.scib.2019.07.018http://dx.doi.org/10.1016/j.scib.2019.07.018]
Zhang G Q, Xie H J, Kang S C, Yi D H and Ackley S F. 2011. Monitoring lake level changes on the Tibetan Plateau using ICESat altimetry data (2003-2009). Remote Sensing of Environment, 115(7): 1733-1742 [DOI: 10.1016/j.rse.2011.03.005http://dx.doi.org/10.1016/j.rse.2011.03.005]
Zhang G Q, Yao T D, Xie H J, Kang S C and Lei Y B. 2013. Increased mass over the Tibetan Plateau: From lakes or glaciers?. Geophysical Research Letters, 40(10): 2125-2130 [DOI: 10.1002/grl.50462http://dx.doi.org/10.1002/grl.50462]
Zhang G Q, Yao T D, Xie H J, Yang K, Zhu L P, Shum C K, Bolch T, Yi S, Allen S, Jiang L G, Chen W F and Ke C Q. 2020. Response of Tibetan Plateau lakes to climate change: trends, patterns, and mechanisms. Earth-Science Reviews, 208: 103269 [DOI: 10.1016/j.earscirev.2020.103269http://dx.doi.org/10.1016/j.earscirev.2020.103269]
Zhang G Q, Yao T D, Xie H J, Zhang K X and Zhu F J. 2014. Lakes’ state and abundance across the Tibetan Plateau. Chinese Science Bulletin, 59(24): 3010-3021 [DOI: 10.1007/s11434-014-0258-xhttp://dx.doi.org/10.1007/s11434-014-0258-x]
Zhang X, Wu Y H and Zhang X. 2015. Zhari Namco water level change detection using multi-satellite altimetric data during 1992-2012. Journal of Natural Resources, 30(7): 1153-1162
张鑫, 吴艳红, 张鑫. 2015. 基于多源卫星测高数据的扎日南木错水位动态变化(1992-2012年). 自然资源学报, 30(7): 1153-1162 [DOI: 10.11849/zrzyxb.2015.07.008http://dx.doi.org/10.11849/zrzyxb.2015.07.008]
Zingerle P, Pail R, Gruber T and Oikonomidou X. 2020. The combined global gravity field model XGM2019e. Journal of Geodesy, 94(7): 66 [DOI: 10.1007/s00190-020-01398-0http://dx.doi.org/10.1007/s00190-020-01398-0]
相关文章
相关作者
相关机构