Summertime ozone formation sensitivity and driving factors in Henan Province
- Vol. 26, Issue 5, Pages: 988-1001(2022)
Published: 07 May 2022
DOI: 10.11834/jrs.20221375
扫 描 看 全 文
浏览全部资源
扫码关注微信
Published: 07 May 2022 ,
扫 描 看 全 文
白杨,王盼,赵鹏飞,郭建忠,王家耀.2022.河南省夏季臭氧生成敏感性及其驱动因素分析.遥感学报,26(5): 988-1001
Bai Y,Wang P,Zhao P F,Guo J Z and Wang J Y. 2022. Summertime ozone formation sensitivity and driving factors in Henan Province. National Remote Sensing Bulletin, 26(5):988-1001
明确当地臭氧生成敏感性变化的主控因子是制定有效臭氧污染控制策略的前提。采用卫星观测OMI FNR(Ratio of the tropospheric columns of Formaldehyde to Nitrogen dioxide,HCHO/NO
2
)指示剂将河南省夏季臭氧生成敏感性OFS(Ozone Formation Sensitivity)划分为VOCs控制区、协同控制区和NOx控制区。基于地理探测器,量化气象条件、人为源前体物及其交互作用与OFS的关系。研究揭示:(1)河南省夏季OFS以协同控制区为主,区域内臭氧污染严重,仅次于VOC
S
控制区。2005年—2015年,FNR值波动下降,OFS向协同控制区转变,主要受NO
X
减排的影响。2016年之后,FNR值变大,OFS有向NO
X
控制区转变的趋势。(2)人为源排放是OFS变化的主要驱动因子,平均可解释FNR变化的40.5%(
q
=0.405)。若CO、PM
2.5
、NOx和非甲烷挥发性有机物NMVOC(Non-methane Volatile Organic Compounds)的排放量增加,FNR减小,河南省夏季OFS向VOCs控制区转变,对NOx减排的敏感性降低。(3)地表净太阳辐射SSR(
q
=0.321, Surface net Solar Radiation)和大气柱总水量TCW(
q
=0.302, Total Column Water)是河南省夏季OFS变化的主要气象驱动因素。SSR增加,FNR减小,使臭氧生成对VOCs更加敏感。TCW对OFS变化的影响较为复杂,当TCW
<
40 kg/m
2
时,TCW增加,FNR减小,臭氧生成对VOCs更加敏感;当TCW
>
40 kg/m
2
时,TCW增加,FNR增大,臭氧生成对NOx更加敏感。(4)因子间的交互作用对OFS空间分布的驱动大于单一因子的独立作用,人为源前体物和气象因子的交互作用占主导地位。研究结果可加强对臭氧生成光化学过程的认识,为制定合理的污染减排措施提供依据。
Determining Ozone Formation Sensitivity (OFS) and its driving factors is conducive to formulating effective ozone pollution control strategies. This study characterizes spatial and temporal variations in OFS by calculating the ratio of formaldehyde (HCHO
a maker of VOCs) to nitrogen dioxide (NO
2
) in Henan Province from 2005 to 2016. The relationships of OFS with precursor emissions and meteorological factors are also analyzed.
The Level 3 gridded retrievals from the Ozone Monitoring Instrument (OMI) were adopted to calculate Formaldehyde Nitrogen Ratio (FNR). Then
we took FNR
<
2.3 to indicate VOC-limited regime
FNR
>
4.2 to indicate NO
x
-limited regime
and FNR between 2.3 and 4.2 to indicate transitional regime. Finally
the geographic detector model (GeoDetector) was used to quantify the influence of meteorological factors
anthropogenic emission precursors
and their interactions on OFS.
The OFS in Henan Province changes in time and space. Most cities are transitional regimes in summer
where the O
3
concentrations are relatively higher. The drastic change in tropospheric NO
2
concentration determines the increase or decrease in VOC-limited regime. From 2005 to 2015
the FNR values decreased due to NO
x
emission reduction
and OFS tended to be a transitional regime. After 2016
the FNR values increased
and OFS tended to be NO
x
-limited. Anthropogenic emissions are the main driving factor of OFS in summer
which explains 40.5% of FNR variation on average. With the increase in CO (
q
= 0.46)
PM
2.5
(
q
= 0.41)
NO
x
(
q
= 0.38)
and NMVOC (
q
= 0.37) emissions
the FNR value decreases
which makes OFS more sensitive to VOC emissions in summer. Its sensitivity to NO
x
emission reduction decreases. Surface net solar radiation (SSR
q
= 0.321) and total column water (TCW
q
= 0.302) are the top two meteorological factors influencing OFS in summer in Henan Province. As SSR increases
FNR decreases
which makes ozone formation more sensitive to VOCs. TCW has a complex effect on OFS. When TCW is less than 40 kg/m
2
FNR decreases with the increase in TCW
and ozone formation becomes more sensitive to VOCs. When TCW is larger than 40 kg/m
2
FNR increases with the rise in TCW
and ozone formation becomes more sensitive to NO
x
. Interaction among factors enhances the ability to explain the change in OFS. In other words
each pair of factors has a greater influence on OFS than either. The interactions between precursors and meteorological factors have the most significant influence on OFS.
Research results can enhance understanding of the photochemical process of ozone formation and provide a basis for formulating reasonable pollution reduction measures. However
the applicability of the OMI FNR indicator for the classification of ground-level ozone sensitivity in various regions still needs to be strengthened. Understanding the influence of driving factors and their interactions on changes in ozone sensitivity remains a challenge due to the nonlinear relationship between ozone sensitivity and its precursors and the complex reactions between meteorological conditions and precursors.
大气污染臭氧生成敏感性地理探测器气象条件人为源排放交互作用
air pollutionozone formation sensitivityGeoDetector modelmeteorological factorsanthropogenic emissionsinteractive effects
Baek K H, Kim J H, Park R J, Chance K and Kurosu T P. 2014. Validation of OMI HCHO data and its analysis over Asia. Science of the Total Environment, 490: 93-105 [DOI: 10.1016/j.scitotenv.2014.04.108http://dx.doi.org/10.1016/j.scitotenv.2014.04.108]
Cardelino C A and Chameides W L. 2000. The application of data from photochemical assessment monitoring stations to the observation-based model. Atmospheric Environment, 34(12/14): 2325-2332 [DOI: 10.1016/S1352-2310(99)00469-0http://dx.doi.org/10.1016/S1352-2310(99)00469-0]
Chen L F, Shang H Z, Fan M, Tao J H, Husi L T, Zhang Y, Wang H M, Cheng L X, Zhang X X, Wei L S, Li M Y, Zou M M and Liu D D. 2021. Mission overview of the GF-5 satellite for atmospheric parameter monitoring. National Remote Sensing Bulletin, 25(9): 1917-1931
陈良富, 尚华哲, 范萌, 陶金花, 胡斯勒图, 张莹, 王红梅,程良晓, 张欣欣, 伟乐斯, 李明阳, 邹铭敏, 刘冬冬. 2021. 高分五号卫星大气参数探测综述.遥感学报, 25(9): 1917-1931 [DOI: 10.11834/jrs.20210582http://dx.doi.org/10.11834/jrs.20210582]
Chen Y P, Yan H, Yao Y J, Zeng C L, Gao P, Zhuang L Y, Fan L Y and Ye D Q. 2020. Relationships of ozone formation sensitivity with precursors emissions, meteorology and land use types, in Guangdong-Hong Kong-Macao Greater Bay Area, China. Journal of Environmental Sciences, 94: 1-13 [DOI: 10.1016/j.jes.2020.04.005http://dx.doi.org/10.1016/j.jes.2020.04.005]
Dang R J, Liao H and Fu Y. 2021. Quantifying the anthropogenic and meteorological influences on summertime surface ozone in China over 2012-2017. Science of the Total Environment, 754: 142394 [DOI: 10.1016/j.scitotenv.2020.142394http://dx.doi.org/10.1016/j.scitotenv.2020.142394]
Duncan B N, Yoshida Y, Olson J R, Sillman S, Martin R V, Lamsal L, Hu Y T, Pickering K E, Retscher C, Allen D J and Crawford J H. 2010. Application of OMI observations to a space-based indicator of NOx and VOC controls on surface ozone formation. Atmospheric Environment, 44(18): 2213-2223 [DOI: 10.1016/j.atmosenv.2010.03.010http://dx.doi.org/10.1016/j.atmosenv.2010.03.010]
He Z R, Wang X M, Ling Z H, Zhao J, Guo H, Shao M and Wang Z. 2019. Contributions of different anthropogenic volatile organic compound sources to ozone formation at a receptor site in the Pearl River Delta region and its policy implications. Atmospheric Chemistry and Physics, 19(13): 8801-8816 [DOI: 10.5194/acp-19-8801-2019http://dx.doi.org/10.5194/acp-19-8801-2019]
Jin X M and Holloway T. 2015. Spatial and temporal variability of ozone sensitivity over China observed from the Ozone Monitoring Instrument. Journal of Geophysical Research: Atmospheres, 120(14): 7229-7246 [DOI: 10.1002/2015JD023250http://dx.doi.org/10.1002/2015JD023250]
Lamsal, L N, Krotkov N A, Vasilkov A, Marchenko S, Qin W H, Yang E S, Fasnacht Z, Joanna J, Choi S, Haffner D, Swartz W H, Fisher B and Bucsela E. 2021. Ozone Monitoring Instrument (OMI) Aura nitrogen dioxide standard product version 4.0 with improved surface and cloud treatments. Atmospheric Measurement Techniques, 14(1): 455-479 [DOI: 10.5194/amt-14-455-2021http://dx.doi.org/10.5194/amt-14-455-2021]
Li K, Jacob D J, Liao H, Zhu J, Shah V, Shen L, Bates K H, Zhang Q and Zhai S X. 2019. A two-pollutant strategy for improving ozone and particulate air quality in China. Nature Geoscience, 12(11): 906-910 [DOI: 10.1038/s41561-019-0464-xhttp://dx.doi.org/10.1038/s41561-019-0464-x]
Li K, Jacob D J, Liao H, Qiu Y L, Shen L, Zhai S X, Bates K H, Sulprizio M P, Song S J, Lu X, Zhang Q, Zheng B, Zhang Y L, Zhang J Q, Lee H C and Kuk S K. 2021a. Ozone pollution in the North China Plain spreading into the late-winter haze season. Proceedings of the National Academy of Sciences of the United States of America, 118(10): e2015797118 [DOI: 10.1073/pnas.2015797118http://dx.doi.org/10.1073/pnas.2015797118]
Li M, Liu H, Geng G N, Hong C P, Liu F, Song Y, Tong D, Zheng B, Cui H Y, Man H Y, Zhang Q and He K B. 2017. Anthropogenic emission inventories in China: a review. National Science Review, 4(6): 834-866 [DOI: 10.1093/nsr/nwx150http://dx.doi.org/10.1093/nsr/nwx150]
Li Y S, Yin S S, Yu S J, Bai L, Wang X D, Lu X and Ma S L. 2021b. Characteristics of ozone pollution and the sensitivity to precursors during early summer in central plain, China. Journal of Environmental Sciences, 99: 354-368 [DOI: 10.1016/j.jes.2020.06.021http://dx.doi.org/10.1016/j.jes.2020.06.021]
Liu P F, Song H Q, Wang T H, Wang F, Li X Y, Miao C H and Zhao H P. 2020. Effects of meteorological conditions and anthropogenic precursors on ground-level ozone concentrations in Chinese cities. Environmental Pollution, 262: 114366 [DOI: 10.1016/j.envpol.2020.114366http://dx.doi.org/10.1016/j.envpol.2020.114366]
Liu Z Y, Qi Z L, Ni X F, Dong M T, Ma M Y, Xue W B, Zhang Q Y and Wang J N. 2021. How to apply O3 and PM2.5 collaborative control to practical management in China: a study based on meta-analysis and machine learning. Science of the Total Environment, 772: 145392 [DOI: 10.1016/j.scitotenv.2021.145392http://dx.doi.org/10.1016/j.scitotenv.2021.145392]
Lu K D, Zhang Y H, Su H, Shao M, Zeng L M, Zhong L J, Xiang Y R, Chang C C, Chou C K C and Wahner A. 2010. Regional ozone pollution and key controlling factors of photochemical ozone production in Pearl River Delta during summer time. Science China Chemistry, 53(3): 651-663
陆克定, 张远航, 苏杭, 邵敏, 曾立民, 钟流举, 向运荣, 张志忠, 周崇光, Wahner A. 2010. 珠江三角洲夏季臭氧区域污染及其控制因素分析. 中国科学: 化学, 40(4): 407-420 [DOI: 10.1360/zb2010-40-4-407http://dx.doi.org/10.1360/zb2010-40-4-407]
Martin R V, Fiore A M and Van Donkelaar A. 2004. Space-based diagnosis of surface ozone sensitivity to anthropogenic emissions. Geophysical Research Letters, 31(6): L06120 [DOI: 10.1029/2004GL019416http://dx.doi.org/10.1029/2004GL019416]
Schroeder J R, Crawford J H, Fried A, Walega J, Weinheimer A, Wisthaler A, Müller M, Mikoviny T, Chen G, Shook M, Blake D R and Tonnesen G S. 2017. New insights into the column CH2O/NO2 ratio as an indicator of near-surface ozone sensitivity. Journal of Geophysical Research: Atmospheres, 122(16): 8885-8907 [DOI: 10.1002/2017JD026781http://dx.doi.org/10.1002/2017JD026781]
Sillman S. 1995. The use of NOy, H2O2, and HNO3 as indicators for ozone-NOx-hydrocarbon sensitivity in urban locations. Journal of Geophysical Research: Atmospheres, 100(D7): 14175-14188 [DOI: 10.1029/94JD02953http://dx.doi.org/10.1029/94JD02953]
Sillman S. 2003. Tropospheric ozone and photochemical smog//Treatise on Geochemistry. Oxford: Pergamon: 407-431 [DOI: 10.1016/B0-08-043751-6/09053-8http://dx.doi.org/10.1016/B0-08-043751-6/09053-8]
Sillman S and He D Y. 2002. Some theoretical results concerning O3-NOx-VOC chemistry and NOx-VOC indicators. Journal of Geophysical Research: Atmospheres, 107(D22): ACH 26-1-ACH 26-15 [DOI: 10.1029/2001JD001123http://dx.doi.org/10.1029/2001JD001123]
Sillman S, Vautard R, Menut L and Kley D. 2003. O3-NOx-VOC sensitivity and NOx-VOC indicators in Paris: results from models and atmospheric pollution over the Paris Area (ESQUIF) measurements. Journal of Geophysical Research: Atmospheres, 108(D17): 8563 [DOI: 10.1029/2002JD001561http://dx.doi.org/10.1029/2002JD001561]
Souri A H, Nowlan C R, González Abad G, Zhu L, Blake D R, Fried A, Weinheimer A J, Wisthaler A, Woo J H, Zhang Q, Chan Miller C E, Liu X and Chance K. 2020. An inversion of NOx and non-methane volatile organic compound (NMVOC) emissions using satellite observations during the KORUS-AQ campaign and implications for surface ozone over East Asia. Atmospheric Chemistry and Physics, 20(16): 9837-9854 [DOI: 10.5194/acp-20-9837-2020http://dx.doi.org/10.5194/acp-20-9837-2020]
Su R, Lu K D, Yu J Y, Tan Z F, Jiang M Q, Li J, Xie S D, Wu Y S, Zeng L M, Zhai C Z and Zhang Y H. 2018. Exploration of the formation mechanism and source attribution of ambient ozone in Chongqing with an observation-based model. Science China Earth Sciences, 61(1): 1-10 [DOI: 10.1007/s11430-017-9104-9http://dx.doi.org/10.1007/s11430-017-9104-9]
Sun J, Shen Z X, Wang R N, Li G H, Zhang Y, Zhang B, He K, Tang Z Y, Xu H M, Qu L L, Ho S S H, Liu S X and Cao J J. 2021. A comprehensive study on ozone pollution in a megacity in North China Plain during summertime: observations, source attributions and ozone sensitivity. Environment International, 146: 106279 [DOI: 10.1016/j.envint.2020.106279http://dx.doi.org/10.1016/j.envint.2020.106279]
Wang J F and Xu C D. 2017. Geodetector: principle and prospective. Acta Geographica Sinica, 72(1): 116-134
王劲峰, 徐成东. 2017. 地理探测器: 原理与展望. 地理学报, 72(1): 116-134 [DOI: 10.11821/dlxb201701010http://dx.doi.org/10.11821/dlxb201701010]
Wang N, Lyu X P, Deng X J, Huang X, Jiang F and Ding A J. 2019. Aggravating O3 pollution due to NOx emission control in eastern China. Science of the Total Environment, 677: 732-744 [DOI: 10.1016/j.scitotenv.2019.04.388http://dx.doi.org/10.1016/j.scitotenv.2019.04.388]
Wang T, Xue L K, Brimblecombe P, Lam Y F, Li L and Zhang L. 2017. Ozone pollution in China: a review of concentrations, meteorological influences, chemical precursors, and effects. Science of the Total Environment, 575: 1582-1596 [DOI: 10.1016/j.scitotenv.2016.10.081http://dx.doi.org/10.1016/j.scitotenv.2016.10.081]
Wang W N, van der A R, Ding J Y, van Weele M and Cheng T H. 2021a. Spatial and temporal changes of the ozone sensitivity in China based on satellite and ground-based observations. Atmospheric Chemistry and Physics, 21(9): 7253-7269 [DOI: 10.5194/acp-21-7253-2021http://dx.doi.org/10.5194/acp-21-7253-2021]
Wang X Q, Zhang T S, Xiang Y, Lv L H, Fan G Q and Ou J P. 2021b. Investigation of atmospheric ozone during summer and autumn in Guangdong Province with a lidar network. Science of the Total Environment, 751: 141740 [DOI: 10.1016/j.scitotenv.2020.141740http://dx.doi.org/10.1016/j.scitotenv.2020.141740]
Wu W L, Xue W B, Lei Y and Wang J N. 2018. Sensitivity analysis of ozone in Beijing-Tianjin-Hebei (BTH) and its surrounding area using OMI satellite remote sensing data. China Environmental Science, 38(4): 1201-1208
武卫玲, 薛文博, 雷宇, 王金南. 2018. 基于OMI数据的京津冀及周边地区O3生成敏感性. 中国环境科学, 38(4): 1201-1208 [DOI: 10.3969/j.issn.1000-6923.2018.04.001http://dx.doi.org/10.3969/j.issn.1000-6923.2018.04.001]
Yang P L, Zhang Y, Wang K, Doraiswamy P and Cho S H. 2019. Health impacts and cost-benefit analyses of surface O3 and PM2.5 over the U.S. under future climate and emission scenarios. Environmental Research, 178: 108687 [DOI: 10.1016/j.envres.2019.108687http://dx.doi.org/10.1016/j.envres.2019.108687]
Yue X, Unger N, Harper K, Xia X G, Liao H, Zhu T, Xiao J F, Feng Z Z and Li J. 2017. Ozone and haze pollution weakens net primary productivity in China. Atmospheric Chemistry and Physics, 17(9): 6073-6089 [DOI: 10.5194/acp-17-6073-2017http://dx.doi.org/10.5194/acp-17-6073-2017]
Zhao H, Zheng Y F, Zhang Y X and Li T. 2020. Evaluating the effects of surface O3 on three main food crops across China during 2015-2018. Environmental Pollution, 258: 113794 [DOI: 10.1016/j.envpol.2019.113794http://dx.doi.org/10.1016/j.envpol.2019.113794]
Zhu S Y, Li X Y, Cheng T H, Yu C, Wang X H, Miao J and Hou C. 2019. Comparative analysis of long-term (2005—2016) spatiotemporal variations in high-level tropospheric formaldehyde (HCHO) in Guangdong and Jiangsu Provinces in China. Journal of Remote Sensing, 23(1): 137-154
朱松岩, 李小英, 程天海, 余超, 王新辉, 苗晶, 侯灿. 2019. 广东省和江苏省大气甲醛时空变化对比分析. 遥感学报, 23(1): 137-154 [DOI: 10.11834/jrs.20197528http://dx.doi.org/10.11834/jrs.20197528]
Zhuang L Y, Chen Y P, Fan L Y and Ye D Q. 2019. Study on the ozone formation sensitivity in the Pearl River Delta based on OMI satellite data and MODIS land cover type products. Acta Scientiae Circumstantiae, 39(11): 3581-3592
庄立跃, 陈瑜萍, 范丽雅, 叶代启. 2019. 基于OMI卫星数据和MODIS土地覆盖类型数据研究珠江三角洲臭氧敏感性. 环境科学学报, 39(11): 3581-3592 [DOI: 10.13671 /j.hjkxxb.2019.0218http://dx.doi.org/10.13671/j.hjkxxb.2019.0218]
相关文章
相关作者
相关机构