Review of cloud polarimetric remote sensing
- Vol. 26, Issue 5, Pages: 852-872(2022)
Published: 07 May 2022
DOI: 10.11834/jrs.20221404
扫 描 看 全 文
浏览全部资源
扫码关注微信
Published: 07 May 2022 ,
扫 描 看 全 文
王宇瑶,麻金继,李婧晗,洪津,李正强.2022.云偏振遥感综述.遥感学报,26(5): 852-872
Wang Y Y,Ma J J,Li J H,Hong J and Li Z Q. 2022. Review of cloud polarimetric remote sensing. National Remote Sensing Bulletin, 26(5):852-872
云是指停留在大气层中的水滴或冰晶胶体的集合体,也是地球上庞大水循环产生的有形结果,在全球气候中扮演着重要的角色。偏振遥感对光的辐射强度、方向、相位以及偏振状态等波谱特性进行描述,丰富了观测信息量,提升了观测信息的维度。为了更好地了解偏振遥感云的优势,本文对国际上发射的POLDER、APS、DPC等标志性的偏振传感器的特征和云反演算法进展进行了总结,涉及到相关偏振载荷参数信息、云参量算法的介绍和产品等相关内容,并就经典偏振云参量算法做了详细的总结和评价。随着国际上后续偏振传感器快速增加,对未来偏振传感器的发展方向和相关算法进行了展望。
Clouds are collections of water droplets or ice crystal colloids suspended in the atmosphere. They are a visible manifestation of the Earth’s massive water cycle
which play an important role in global climate. Since the radiation intensity signal cannot accurately detect the internal physical characteristics of thick clouds
especially convective clouds
high-quality cloud observations cannot be achieved only by using this signal. Polarimetric remote sensing can describe the spectral characteristics of intensity
directions
phase positions
and polarization states of light, so as to expand the volumes and dimensions of the information observed. It can detect the size
shape
and other microphysical parameters
showing unique application advantages in cloud remote sensing.
A wealth of literature on the development of polarimetric sensors can be found
for example
POLDER launched by France
ASP designed by the United States
and DPC developed by China. This paper summarizes the characteristics of internationally developed landmark polarimetric sensors and introduces the polarimetric sensor that will be launched soon. It is found that the development of polarimetric sensors underwent three main periods. During the first period
polarimetric sensors had low spatial resolution
fewer polarization spectrums
fewer angles
and low polarimetric accuracy. During the second period
the four elements mentioned above have been improved. In the third period
the sensors were developed into products with high spatial resolution
more polarization spectrum
large angles
and high polarimetric accuracy. The accessible spatial resolution
polarization data
and polarimetric accuracy were all greatly improved.
In addition
this paper discusses the research on polarization data of cloud detection
physical characteristics
and optical characteristics of clouds. Starting from a series of problems existing in traditional remote sensing observation methods in cloud research
including poor cloud detection of accuracy
physical and optical characteristics
etc.
the advantages of polarization detection are revealed through a detailed introduction to the classical polarization cloud parameter algorithms. Moreover
the development history of cloud polarimetric remote sensing research and the critical role played by the application of polarization data in cloud-related studies are explored.
By reviewing the development of polarimetric sensors and the evolution of cloud remote sensing algorithms in the past three decades
we found that the polarimetric accuracy
and spatial and time resolution were improved as the number of polarimetric sensors increased. However
the acquired polarimetric signal is increasingly complex. Therefore
when designing the algorithm of cloud remote sensing
the factors we should consider will be fewer. In contrast
the algorithm will be more rigorous
and the inversion accuracy of cloud parameters will be higher. Considering that with the accumulation of experience and the development of instruments
it is believed that the polarization data will make significant progress in optimizing cloud parameters.
大气遥感偏振POLDERAPSDPC云矢量辐射传输反演方法
atmospheric remote sensingpolarizationPOLDERAPSDPCcloudvector radiative transferinversion algorithm
Alexandrov M D, Cairns B and Mishchenko M I. 2012. Rainbow Fourier transform. Journal of Quantitative Spectroscopy and Radiative Transfer, 113(18): 2521-2535 [DOI: 10.1016/j.jqsrt.2012.03.025http://dx.doi.org/10.1016/j.jqsrt.2012.03.025]
Alexandrov M D, Cairns B, Sinclair K, Wasilewski A P, Ziemba L, Crosbie E, Moore R, Hair J, Scarino A J, Hu Y X, Stamnes S, Shook M A and Chen G. 2018. Retrievals of cloud droplet size from the research scanning polarimeter data: validation using in situ measurements. Remote Sensing of Environment, 210: 76-95 [DOI: 10.1016/j.rse.2018.03.005http://dx.doi.org/10.1016/j.rse.2018.03.005]
Alexandrov M D, Cairns B, Wasilewski A P, Ackerman A S, Mcgill M J, Yorks J E, Hlavka D L, Platnick S E, Arnold G T, van Diedenhoven B, Chowdhary J, Ottaviani M and Knobelspiesse K D. 2015. Liquid water cloud properties during the Polarimeter Definition Experiment (PODEX). Remote Sensing of Environment, 169: 20-36 [DOI: 10.1016/j.rse.2015.07.029http://dx.doi.org/10.1016/j.rse.2015.07.029]
Alexandrov M D, Miller D J, Rajapakshe C, Fridlind A, van Diedenhoven B, Cairns B, Ackerman A S and Zhang Z B. 2020. Vertical profiles of droplet size distributions derived from cloud-side observations by the research scanning polarimeter: tests on simulated data. Atmospheric Research, 239: 104924 [DOI: 10.1016/j.atmosres.2020.104924http://dx.doi.org/10.1016/j.atmosres.2020.104924]
Andre Y and Li L. 1997. Instrumental concept and performances of the POLDER instrument. (PART 1). Infrared, (11): 1-8
Andre Y, 李玲. 1997. POLDER仪器的原理和性能(上). 红外, (11): 1-8
Baum B A, Frey R A, Mace G G, Harkey M K and Yang P. 2003. Nighttime multilayered cloud detection using MODIS and ARM data. Journal of Applied Meteorology and Climatology, 42(7): 905-919 [DOI: 10.1175/1520-0450(2003)042<0905:NMCDUM>2.0.CO;2http://dx.doi.org/10.1175/1520-0450(2003)042<0905:NMCDUM>2.0.CO;2]
Bréon F M and Colzy S. 1999. Cloud detection from the spaceborne POLDER instrument and validation against surface synoptic observations. Journal of Applied Meteorology, 38(6): 777-785 [DOI: 10.1175/1520-0450(1999)038<0777:CDFTSP>2.0.CO;2http://dx.doi.org/10.1175/1520-0450(1999)038<0777:CDFTSP>2.0.CO;2]
Bréon F M and Doutriaux-Boucher M. 2005. A comparison of cloud droplet radii measured from space. IEEE Transactions on Geoscience and Remote Sensing, 43(8): 1796-1805 [DOI: 10.1109/TGRS.2005.852838http://dx.doi.org/10.1109/TGRS.2005.852838]
Bréon F M and Goloub P. 1998. Cloud droplet effective radius from spaceborne polarization measurements. Geophysical Research Letters, 25(11): 1879-1882 [DOI: 10.1029/98GL01221http://dx.doi.org/10.1029/98GL01221]
Buriez J C, Vanbauce C, Parol F, Goloub P, Herman M, Bonnel B, Fouquart Y, Couvert P and Seze G. 1997. Cloud detection and derivation of cloud properties from POLDER. International Journal of Remote Sensing, 18(13): 2785-2813 [DOI: 10.1080/014311697217332http://dx.doi.org/10.1080/014311697217332]
Cairns B, Russell E E, LaVeigne J D and Tennant P M W. 2003. Research scanning polarimeter and airborne usage for remote sensing of aerosols//Proceedings Volume 5158, Polarization Science and Remote Sensing. San Diego, California: SPIE: 33-44 [DOI: 10.1117/12.518320http://dx.doi.org/10.1117/12.518320]
Carney T Q and Vincent D G. 1986. Meso-synoptic scale interactions during AVE/SESAME I, 10 11 April 1979. Part I: theoretical development of interaction equations. Monthly Weather Review, 114(2): 344-352 [DOI: 10.1175/1520-0493(1986)114<0344:MSSIDA>2.0.CO;2http://dx.doi.org/10.1175/1520-0493(1986)114<0344:MSSIDA>2.0.CO;2]
Chang Y Y. 2020. Study on the Retrievals of Cloud Properties based on Multi-Directional Polarimetric Data. Hefei: University of Science and Technology of China
常钰阳. 2020. 基于多角度偏振数据的云参数反演研究. 合肥: 中国科学技术大学
Chang Y Y, Sun B, Huang C, Hong J and Qiao Y L. 2020. Cloud detection and parameter inversion using multi-directional polarimetric observations. Acta Optica Sinica, 40(11): 1101002
常钰阳, 孙斌, 黄禅, 洪津, 乔延利. 2020. 多角度偏振云检测及云参数反演. 光学学报, 40(11): 1101002 [DOI: 10.3788/AOS202040.1101002http://dx.doi.org/10.3788/AOS202040.1101002]
Chen F N, Huang C, Hong J, Luo D G, Sun L, Sun X B and Wei W. 2019. In Flight Radiation evaluation and validation of Directional Polarimetric Camera. Aerospace Shanghai, 36(S2): 126-136, 172
陈斐楠, 黄禅, 洪津, 骆冬根, 孙亮, 孙晓兵, 韦玮. 2019. 大气气溶胶多角度偏振探测仪在轨辐射精度与真实性验证研究. 上海航天, 36(S2): 126-136, 172 [DOI: 10.19328/j.cnki.1006-1630.2019.S.020http://dx.doi.org/10.19328/j.cnki.1006-1630.2019.S.020]
Chen L F, Shang H Z, Fan M, Tao J H, Husi L T, Zhang Y, Wang H M, Cheng L X, Zhang X X, Wei L S, Li M Y, Zou M M and Liu D D. 2021. Mission overview of the GF-5 satellite for atmospheric parameter monitoring. National Remote Sensing Bulletin, 25(9): 1917-1931
陈良富, 尚华哲, 范萌, 陶金花, 胡斯勒图, 张莹, 王红梅, 程良晓, 张欣欣, 伟乐斯, 李明阳, 邹铭敏, 刘冬冬. 2021. 高分五号卫星大气参数探测综述. 遥感学报, 25(9): 1917-1931 [DOI: 10.11834/jrs.20210582http://dx.doi.org/10.11834/jrs.20210582]
Chen X, Yang D X, Cai Z N, Liu Y and Spurr R J D. 2017. Aerosol retrieval sensitivity and error analysis for the cloud and aerosol polarimetric imager on board TanSat: the effect of multi-angle measurement. Remote Sensing, 9(2): 183 [DOI: 10.3390/rs9020183http://dx.doi.org/10.3390/rs9020183]
Chen Z T, Sun X B and Qiao Y L. 2018. Cloud detection over ocean from PARASOL/POLDER3 satellite data. Journal of Remote Sensing, 22(6): 996-1004
陈震霆, 孙晓兵, 乔延利. 2018. PARASOL/POLDER3卫星数据的海洋上空云检测. 遥感学报, 22(6): 996-1004 [DOI: 10.11834/jrs.20187366http://dx.doi.org/10.11834/jrs.20187366]
Chowdhary J, Cairns B, Mishchenko M and Travis L. 2001. Retrieval of aerosol properties over the ocean using multispectral and multiangle photopolarimetric measurements from the Research Scanning Polarimeter. Geophysical Research Letters, 28(2): 243-246 [DOI: 10.1029/2000GL011783http://dx.doi.org/10.1029/2000GL011783]
Chowdhary J, Cairns B, Mishchenko M I, Hobbs P V, Cota G F, Redemann J, Rutledge K, Holben B N and Russell E. 2005. Retrieval of aerosol scattering and absorption properties from photopolarimetric observations over the ocean during the CLAMS experiment. Journal of the Atmospheric Sciences, 62(4): 1093-1117 [DOI: 10.1175/JAS3389.1http://dx.doi.org/10.1175/JAS3389.1]
Christodoulou C I, Michaelides S C and Pattichis C S. 2003. Multifeature texture analysis for the classification of clouds in satellite imagery. IEEE Transactions on Geoscience and Remote Sensing, 41(11): 2662-2668 [DOI: 10.1109/TGRS.2003.815404http://dx.doi.org/10.1109/TGRS.2003.815404]
Diner D J, Beckert J C, Reilly T H, Bruegge C J, Conel J E, Kahn R A, Martonchik J V, Ackerman T P, Davies R, Gerstl S A W, Gordon H R, Muller J P, Myneni R B, Sellers P J, Pinty B and Verstraete M M. 1998. Multi-angle Imaging SpectroRadiometer (MISR)-instrument description and experiment overview. IEEE Transactions on Geoscience and Remote Sensing, 36(4): 1072-1087 [DOI: 10.1109/36.700992http://dx.doi.org/10.1109/36.700992]
Diner D J, Boland S W, Brauer M, Bruegge C, Burke K A, Chipman R, Di Girolamo L, Garay M J, Hasheminassab S, Hyer E, Jerrett M, Jovanovic V, Kalashnikova O V, Liu Y, Lyapustin A I, Martin R V, Nastan A, Ostro B D, Ritz B, Schwartz J, Wang J and Xu F. 2018a. Advances in multiangle satellite remote sensing of speciated airborne particulate matter and association with adverse health effects: from MISR to MAIA. Journal of Applied Remote Sensing, 12(4): 042603 [DOI: 10.1117/1.JRS.12.042603http://dx.doi.org/10.1117/1.JRS.12.042603]
Diner D J, Boland S W, Brauer M, Bruegge C, Burke K A, Chipman R, Di Girolamo L, Garay M J, Hasheminassab S, Hyer E, Jerrett M, Jovanovic V, Kalashnikova O V, Liu Y, Lyapustin A I, Martin R V, Nastan A, Ostro B D, Ritz B, Schwartz J, Wang J and Xu F. 2018b. Advances in multiangle satellite remote sensing of speciated airborne particulate matter and association with adverse health effects: from MISR to MAIA. Journal of Applied Remote Sensing, 12(4): 042603 [DOI: 10.1117/1.JRS.12.042603http://dx.doi.org/10.1117/1.JRS.12.042603]
Diner D J, Braswell B H, Davies R, Gobron N, Hu J N, Jin Y F, Kahn R A, Knyazikhin Y, Loeb N, Muller J P, Nolin A W, Pinty B, Schaaf C B, Seiz G and Stroeve J. 2005. The value of multiangle measurements for retrieving structurally and radiatively consistent properties of clouds, aerosols, and surfaces. Remote Sensing of Environment, 97(4): 495-518 [DOI: 10.1016/j.rse.2005.06.006http://dx.doi.org/10.1016/j.rse.2005.06.006]
Fougnie B and Bach R. 2009. Monitoring of radiometric sensitivity changes of space sensors using deep convective clouds: operational application to PARASOL. IEEE Transactions on Geoscience and Remote Sensing, 47(3): 851-861 [DOI: 10.1109/TGRS.2008.2005634http://dx.doi.org/10.1109/TGRS.2008.2005634]
Fougnie B, Marbach T, Lacan A, Lang R, Schlüssel P, Poli G, Munro R and Couto A B. 2018b. The multi-viewing multi-channel multi-polarisation imager-overview of the 3MI polarimetric mission for aerosol and cloud characterization. Journal of Quantitative Spectroscopy and Radiative Transfer, 219: 23-32 [DOI: 10.1016/j.jqsrt.2018.07.008http://dx.doi.org/10.1016/j.jqsrt.2018.07.008]
Fougnie B, Marbach T, Lacan A, Schlüssel P, Lang R, Poli G and Munro R. 2018a. The 3MI mission on-board EPS-SG: a multi-spectral multi-polarization multi-directional imager for operational characterization of aerosol and cloud//Proceedings Volume 10764, Earth Observing Systems XXIII. San Diego, California: SPIE [DOI: 10.1117/12.2320254http://dx.doi.org/10.1117/12.2320254]
Frouin R J, Franz B A, Ibrahim A, Knobelspiesse K, Ahmad Z, Cairns B, Chowdhary J, Dierssen H M, Tan J, Dubovik O, Huang X, Davis A B, Kalashnikova O, Thompson D R, Remer L A, Boss E, Coddington O, Deschamps P Y, Gao B C, Gross L, Hasekamp O, Omar A, Pelletier B, Ramon D, Steinmetz F and Zhai P W. 2019. Atmospheric correction of satellite ocean-color imagery during the PACE era. Frontiers in Earth Science, 7: 145 [DOI: 10.3389/feart.2019.00145http://dx.doi.org/10.3389/feart.2019.00145]
Fu G L, Hasekamp O, Rietjens J, Smit M, Di Noia A, Cairns B, Wasilewski A, Diner D, Seidel F, Xu F, Knobelspiesse K, Gao M, Da Silva A, Burton S, Hostetler C, Hair J and Ferrare R. 2020. Aerosol retrievals from different polarimeters during the ACEPOL campaign using a common retrieval algorithm. Atmospheric Measurement Techniques, 13(2): 553-573 [DOI: 10.5194/amt-13-553-2020http://dx.doi.org/10.5194/amt-13-553-2020]
Gao M, Zhai P W, Franz B A, Knobelspiesse K, Ibrahim A, Cairns B, Craig S E, Fu G L, Hasekamp O, Hu Y X and Werdell P J. 2020. Inversion of multiangular polarimetric measurements from the ACEPOL campaign: an application of improving aerosol property and hyperspectral ocean color retrievals. Atmospheric Measurement Techniques, 13(7): 3939-3956 [DOI: 10.5194/amt-13-3939-2020http://dx.doi.org/10.5194/amt-13-3939-2020]
Gao X, Hu X Q, Fang W and Yin D K. 2019. A cloud detection algorithm over land based on the polarized characteristics difference between cloudless and cloud targets. Earth and Space Science, 6(9): 1769-1780 [DOI: 10.1029/2019EA000677http://dx.doi.org/10.1029/2019EA000677]
Goloub P, Deuze J L, Herman M and Fouquart Y. 1994. Analysis of the POLDER polarization measurements performed over cloud covers. IEEE Transactions on Geoscience and Remote Sensing, 32(1): 78-88 [DOI: 10.1109/36.285191http://dx.doi.org/10.1109/36.285191]
Goloub P, Herman M, Chepfer H, Riedi J, Brogniez G, Couvert P and Séze G. 2000. Cloud thermodynamical phase classification from the POLDER spaceborne instrument. Journal of Geophysical Research: Atmospheres, 105(D11): 14747-14759 [DOI: 10.1029/1999JD901183http://dx.doi.org/10.1029/1999JD901183]
Goloub P, Tanre D, Deuze J L, Herman M, Marchand A and Breon F M. 1999. Validation of the first algorithm applied for deriving the aerosol properties over the ocean using the POLDER/ADEOS measurements. IEEE Transactions on Geoscience and Remote Sensing, 37(3): 1586-1596 [DOI: 10.1109/36.763270http://dx.doi.org/10.1109/36.763270]
Gu X F, Chen X F, Cheng T H, Li Z Q, Yu T, Xie H H and Xu H. 2011. In-flight polarization calibration methods of directional polarized remote sensing camera DPC. Acta Physica Sinica, 60(7): 172-179
顾行发, 陈兴峰, 程天海, 李正强, 余涛, 谢东海, 许华. 2011. 多角度偏振遥感相机DPC在轨偏振定标. 物理学报, 60(7): 070702 [DOI: 10.7498/aps.60.070702http://dx.doi.org/10.7498/aps.60.070702]
Guo J J, Yao Z G, Han Z G, Zhao Z L and Yan W. 2019a. TG-2/MAI CCD dark current characteristics and its channel dependence analysis and correction. Chinese Journal of Lasers, 46(1): 0110001
郭俊杰, 姚志刚, 韩志刚, 赵增亮, 严卫. 2019a. TG-2/MAI CCD暗电流特征及其通道依赖性分析与校正. 中国激光, 46(1): 0110001 [DOI: 10.3788/CJL201946.0110001http://dx.doi.org/10.3788/CJL201946.0110001]
Guo J J, Yao Z G, Han Z G, Zhao Z L, Yan W and Jiang J. 2019b. On-Orbit analysis and correction of the inconsistency in the response characteristics of TG-2/MAI CCD pixels. Spectroscopy and Spectral Analysis, 39(12): 3953-3962
郭俊杰, 姚志刚, 韩志刚, 赵增亮, 严卫, 江军. 2019b. TG-2/MAI CCD像元响应特性不一致性的在轨分析及校正. 光谱学与光谱分析, 39(12): 3953-3962 [DOI: 10.3964/j.issn.1000-0593http://dx.doi.org/10.3964/j.issn.1000-0593(201912-3953-10]
Guo J J, Yao Z G, Han Z G, Zhao Z L, Yin D K and Yan W. 2018. Airborne experiment of TG-2 multi-angle polarization imager for cloud phase identification. Remote Sensing Technology and Application, 33(3): 439-448
郭俊杰, 姚志刚, 韩志刚, 赵增亮, 殷德奎, 严卫. 2018. TG-2多角度偏振成像仪云相态识别机载验证试验. 遥感技术与应用, 33(3): 439-448 [DOI: 10.11873/j.issn.1004-0323.2018.3.0439http://dx.doi.org/10.11873/j.issn.1004-0323.2018.3.0439]
Hao Z Z, Pan D L, Sun Z B and Gong F. 2006. Retrieval of the columnar aerosol grain density from SeaWiFS over the China seas. Acta Oceanologica Sinica, 28(6): 32-38
郝增周, 潘德炉, 孙照渤, 龚芳. 2006. 利用SeaWiFS资料反演我国海域气溶胶粒子密度分布. 海洋学报, 28(6): 32-38 [DOI: 10.3321/j.issn:0253-4193.2006.06.005http://dx.doi.org/10.3321/j.issn:0253-4193.2006.06.005]
Hasekamp O P, Fu G L, Rusli S P, Wu L H, Di Noia A, aan de Brugh J, Landgraf J, Smit J M, Rietjens J and van Amerongen A. 2019. Aerosol measurements by SPEXone on the NASA PACE mission: expected retrieval capabilities. Journal of Quantitative Spectroscopy and Radiative Transfer, 227: 170-184 [DOI: 10.1016/j.jqsrt.2019.02.006http://dx.doi.org/10.1016/j.jqsrt.2019.02.006]
Heidinger A, Foster M, Botambekov D, Hiley M, Walther A and Li Y. 2016. Using the NASA EOS a-train to probe the performance of the NOAA PATMOS-x cloud fraction CDR. Remote Sensing, 8(6): 511 [DOI: 10.3390/rs8060511http://dx.doi.org/10.3390/rs8060511]
Herman M, Deuzé J L, Devaux C, Goloub P, Bréon F M and Tanré D. 1997. Remote sensing of aerosols over land surfaces including polarization measurements and application to POLDER measurements. Journal of Geophysical Research: Atmospheres, 102(D14): 17039-17049 [DOI: 10.1029/96JD02109http://dx.doi.org/10.1029/96JD02109]
Herman M, Deuzé J L, Marchand A, Roger B and Lallart P. 2005. Aerosol remote sensing from POLDER/ADEOS over the ocean: improved retrieval using a nonspherical particle model. Journal of Geophysical Research: Atmospheres, 110(D10): D10S02 [DOI: 10.1029/2004JD004798http://dx.doi.org/10.1029/2004JD004798]
Holben B N, Eck T F, Slutsker I, Tanré D, Buis J P, Setzer A, Vermote E, Reagan J A, Kaufman Y J, Nakajima T, Lavenu F, Jankowiak I and Smirnov A. 1998. AERONET-A federated instrument network and data archive for aerosol characterization. Remote Sensing of Environment, 66(1): 1-16 [DOI: 10.1016/S0034-4257(98)00031-5http://dx.doi.org/10.1016/S0034-4257(98)00031-5]
Hollars S, Fu Q, Comstock J and Ackerman T. 2004. Comparison of cloud-top height retrievals from ground-based 35 GHz MMCR and GMS-5 satellite observations at ARM TWP Manus site. Atmospheric Research, 72(1/4): 169-186 [DOI: 10.1016/j.atmosres.2004.03.015http://dx.doi.org/10.1016/j.atmosres.2004.03.015]
Horváth G. 2014. Polarized Light and Polarization Vision in Animal Sciences. 2nd ed. Berlin, Heidelberg: Springer [DOI: 10.1007/978-3-642-54718-8http://dx.doi.org/10.1007/978-3-642-54718-8]
Ilčev S D. 2019. Satellite remote sensing in meteorology//Global Satellite Meteorological Observation (GSMO) Applications. Switzerland: Springer: 129-182 [DOI: 10.1007/978-3-319-67047-8_3http://dx.doi.org/10.1007/978-3-319-67047-8_3]
Imaoka K, Kachi M, Fujii H, Murakami H, Hori M, Ono A, Igarashi T, Nakagawa K, Oki T, Honda Y and Shimoda H. 2010. Global Change Observation Mission (GCOM) for monitoring carbon, water cycles, and climate change. Proceedings of the IEEE, 98(5): 717-734 [DOI: 10.1109/JPROC.2009.2036869http://dx.doi.org/10.1109/JPROC.2009.2036869]
IPCC. 2007. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press
IPCC. 2021. Climate Change 2021: Summary for Policymakers[M/OL]. https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_ AR6_WGI_ Full_Report.pdfhttps://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_Full_Report.pdf
Jing Z H, Hu X Q and Yin D K. 2020. TG-2 multi-angle polarization imager remote sensing image geolocation and error correction. Remote Sensing Technology and Application, 35(2): 345-354
景振华, 胡秀清, 殷德奎. 2020. TG-2多角度偏振成像仪遥感影像地理定位与误差订正. 遥感技术与应用, 35(2): 345-354 [DOI: 10.11873/j.issn.1004-0323.2020.2.0345http://dx.doi.org/10.11873/j.issn.1004-0323.2020.2.0345]
Kang Q, Yuan Y L, Li J J, Zhai W C, Wu H Y, Hong J and Zheng X B. 2018. Effect of divergence angle of polarization calibration source on DPC polarization calibration: analysis and validation. Journal of Remote Sensing, 22(2): 203-210
康晴, 袁银麟, 李健军, 翟文超, 吴浩宇, 洪津, 郑小兵. 2018. 光源发散角对DPC偏振定标的影响分析及验证. 遥感学报, 22(2): 203-210 [DOI: 10.11834/jrs.20187051http://dx.doi.org/10.11834/jrs.20187051]
Knobelspiesse K, Barbosa H M J, Bradley C, Bruegge C, Cairns B, Chen G, Chowdhary J, Cook A, Di Noia A, van Diedenhoven B, Diner D J, Ferrare R, Fu G L, Gao M, Garay M, Hair J, Harper D, van Harten G, Hasekamp O, Helmlinger M, Hostetler C, Kalashnikova O, Kupchock A, De Freitas K L, Maring H, Martins J V, Mcbride B, Mcgill M, Norlin K, Puthukkudy A, Rheingans B, Rietjens J, Seidel F C, Da Silva A, Smit M, Stamnes S, Tan Q, Val S, Wasilewski A, Xu F, Xu X G and Yorks J. 2020. The Aerosol Characterization from Polarimeter and Lidar (ACEPOL) airborne field campaign. Earth System Science Data, 12(3): 2183-2208 [DOI: 10.5194/essd-12-2183-2020http://dx.doi.org/10.5194/essd-12-2183-2020]
Lacagnina C, Hasekamp O P and Torres O. 2017. Direct radiative effect of aerosols based on PARASOL and OMI satellite observations. Journal of Geophysical Research: Atmospheres, 122(4): 2366-2388 [DOI: 10.1002/2016JD025706http://dx.doi.org/10.1002/2016JD025706]
Letu H, Ishimoto H, Riedi J, Nakajima T Y, Labonnote L C, Baran A J, Nagao T M and Sekiguchi M. 2016. Investigation of ice particle habits to be used for ice cloud remote sensing for the GCOM-C satellite mission. Atmospheric Chemistry and Physics, 16(18): 12287-12303 [DOI: 10.5194/acp-16-12287-2016http://dx.doi.org/10.5194/acp-16-12287-2016]
Li C. 2019. Retrieval of Cloud Parameters Based on Imagery from the DPC Onboard GF-5 Satellite. Wuhu: Anhui Normal University: 1-165
李超. 2019. 基于GF-5 DPC数据的云参量反演研究. 芜湖: 安徽师范大学: 1-165
Li C, Ma J J, Yang P and Li Z Q. 2019. Detection of cloud cover using dynamic thresholds and radiative transfer models from the polarization satellite image. Journal of Quantitative Spectroscopy and Radiative Transfer, 222-223: 196-214 [DOI: 10.1016/j.jqsrt.2018.10.026http://dx.doi.org/10.1016/j.jqsrt.2018.10.026]
Li J, Menzel W P, Zhang W J, Sun F Y, Schmit T J, Gurka J J and Weisz E. 2004. Synergistic use of MODIS and AIRS in a variational retrieval of cloud parameters. Journal of Applied Meteorology and Climatology, 43(11): 1619-1634 [DOI: 10.1175/JAM2166.1http://dx.doi.org/10.1175/JAM2166.1]
Li J H, Ma J J, Li C, Wang Y Y, Li Z Q and Hong J. 2021. Multi-information collaborative cloud identification algorithm in Gaofen-5 Directional Polarimetric Camera imagery. Journal of Quantitative Spectroscopy and Radiative Transfer, 261: 107439 [DOI: 10.1016/j.jqsrt.2020.107439http://dx.doi.org/10.1016/j.jqsrt.2020.107439]
Li J X, Zhao P, Fang W and Song S X. 2020. Cloud detection of multi-angle remote sensing image based on deep learning. Journal of Atmospheric and Environmental Optics, 15(5): 380-392
李佳欣, 赵鹏, 方薇, 宋尚香. 2020. 基于深度学习的多角度遥感影像云检测方法. 大气与环境光学学报, 15(5): 380-392 [DOI: 10.3969/j.issn.1673-6141.2020.05.007http://dx.doi.org/10.3969/j.issn.1673-6141.2020.05.007]
Li L, Li Z Q, Xu H, Lv Y, Li K. 2019. A method for cloud detection using CE318-DP. China, CN 109959978 A
李莉, 李正强, 许华, 吕阳, 李凯. 2019. 一种利用太阳天空辐射计进行云检测的方法. 中国, CN 109959978 A
Li S. 2018. Analysis of Cloud Optical Characteristics and Retrieval of Main Cloud Parameters for Satellite Polarized Remote Sensing. Hefei: University of Science and Technology of China: 49-76
李树. 2018. 卫星偏振遥感的云光学特性分析及主要参数反演研究. 合肥: 中国科学技术大学: 49-76
Li Z Q, Hou W Z, Hong J, Zheng F X, Luo D G, Wang J, Gu X F and Qiao Y L. 2018. Directional Polarimetric Camera (DPC): monitoring aerosol spectral optical properties over land from satellite observation. Journal of Quantitative Spectroscopy and Radiative Transfer, 218: 21-37 [DOI: 10.1016/j.jqsrt.2018.07.003http://dx.doi.org/10.1016/j.jqsrt.2018.07.003]
Li Z Q, Xie Y S, Hong J, Wang Z T, Wang S P, Sun X B, Qiao Y L and Gu X F. 2019. Polarimetric satellite sensors for earth observation and applications in atmospheric remote sensing. Journal of Atmospheric and Environmental Optics, 14(1): 2-17
李正强, 谢一凇, 洪津, 王中挺, 王舒鹏, 孙晓兵, 乔延利, 顾行发. 2019. 星载对地观测偏振传感器及其大气遥感应用. 大气与环境光学学报, 14(1): 2-17 [DOI: 10.3969/j.issn.1673-6141.2019.01.001http://dx.doi.org/10.3969/j.issn.1673-6141.2019.01.001]
Lin L, Huang S X and Du H D. 2006. Retrieval of cloudtop properties from modis data. Scientia Meteorologica Sinica, 26(6): 655-661
林琳, 黄思训, 杜华栋. 2006. 使用MODIS数据对云顶高的反演研究. 气象科学, 26(6): 655-661 [DOI: 10.3969/j.issn.1009-0827.2006.06.011http://dx.doi.org/10.3969/j.issn.1009-0827.2006.06.011]
Liu Y and Diner D J. 2017. Multi-angle imager for aerosols: a satellite investigation to benefit public health. Public Health Reports, 132(1): 14-17 [DOI: 10.1177/0033354916679983http://dx.doi.org/10.1177/0033354916679983]
Luo D G, Zhang M M, Meng B H, Xu S L, Liu Z H, Yang W F and Hong J. 2019. Test method for spaceborne directional polarization camera. Journal of Atmospheric and Environmental Optics, 14(2): 144-153
骆冬根, 张苗苗, 孟炳寰, 许孙龙, 刘振海, 杨伟锋, 洪津. 2019. 星载多角度偏振成像仪检测方法. 大气与环境光学学报, 14(2): 144-153 [DOI: 10.3969/j.issn.1673-6141.2019.02.010http://dx.doi.org/10.3969/j.issn.1673-6141.2019.02.010]
Ma J J, Wang C L, Hong J and Li Z Q. 2021. Cloud Remote Sensing from Satellite Multi-Sensor Data. Beijing: Science Press: 328-337
麻金继, 王春林, 洪津, 李正强. 2021. 多源卫星云遥感. 北京: 科学出版社: 328-337
Mahajan S and Fataniya B. 2020. Cloud detection methodologies: variants and development-a review. Complex and Intelligent Systems, 6(2): 251-261 [DOI: 10.1007/s40747-019-00128-0http://dx.doi.org/10.1007/s40747-019-00128-0]
Marbach T, Riedi J, Lacan A and Schlüssel P. 2015. The 3MI mission: multi-viewing-channel-polarisation imager of the EUMETSAT polar system: second generation (EPS-SG) dedicated to aerosol and cloud monitoring//Proceedings Volume 9613, Polarization Science and Remote Sensing VII. San Diego, California: SPIE [DOI: 10.1117/12.2186978http://dx.doi.org/10.1117/12.2186978]
Martonchik J V, Kahn R A and Diner D J. 2009. Retrieval of aerosol properties over land using MISR observations//Satellite Aerosol Remote Sensing over Land. Berlin, Heidelberg: Springer: 267-293 [DOI: 10.1007/978-3-540-69397-0_9http://dx.doi.org/10.1007/978-3-540-69397-0_9]
Matsui T, Masunaga H, Pielke R A and Tao W K. 2004. Impact of aerosols and atmospheric thermodynamics on cloud properties within the climate system. Geophysical Research Letters, 31(6): L06109 [DOI: 10.1029/2003GL019287http://dx.doi.org/10.1029/2003GL019287]
McBride B A, Martins J V, Barbosa H M J, Birmingham W and Remer L A. 2020. Spatial distribution of cloud droplet size properties from Airborne Hyper-Angular Rainbow Polarimeter (AirHARP) measurements. Atmospheric Measurement Techniques, 13(4): 1777-1796 [DOI: 10.5194/amt-13-1777-2020http://dx.doi.org/10.5194/amt-13-1777-2020]
Milinevsky G, Yatskiv Y, Degtyaryov O, Syniavskyi I, Ivanov Y, Bovchaliuk A, Mishchenko M, Danylevsky V, Sosonkin M and Bovchaliuk V. 2015. Remote sensing of aerosol in the terrestrial atmosphere from space: new missions. Advances in Astronomy and Space Physics, 5(1): 11-16 [DOI: 10.17721/2227-1481.5.11-16http://dx.doi.org/10.17721/2227-1481.5.11-16]
Milinevsky G, Yatskiv Y, Degtyaryov O, Syniavskyi I, Mishchenko M, Rosenbush V, Ivanov Y, Makarov A, Bovchaliuk A, Danylevsky V, Sosonkin M, Moskalov S, Bovchaliuk V, Lukenyuk A, Shymkiv A and Udodov E. 2016. New satellite project Aerosol-UA: remote sensing of aerosols in the terrestrial atmosphere. Acta Astronautica, 123: 292-300 [DOI: 10.1016/j.actaastro.2016.02.027http://dx.doi.org/10.1016/j.actaastro.2016.02.027]
Mishchenko M I, Cairns B, Kopp G, Schueler C F, Fafaul B A, Hansen J E, Hooker R J, Itchkawich T, Maring H B and Travis L D. 2007. Accurate monitoring of terrestrial aerosols and total solar irradiance: introducing the glory mission. Bulletin of the American Meteorological Society, 88(5): 677-692 [DOI: 10.1175/BAMS-88-5-677http://dx.doi.org/10.1175/BAMS-88-5-677]
Nadal F and Breon F M. 1999. Parameterization of surface polarized reflectance derived from POLDER spaceborne measurements. IEEE Transactions on Geoscience and Remote Sensing, 37(3): 1709-1718 [DOI: 10.1109/36.763292http://dx.doi.org/10.1109/36.763292]
Nakajima T and King M D. 1990. Determination of the optical thickness and effective particle radius of clouds from reflected solar radiation measurements. Part I: theory. Journal of the Atmospheric Sciences, 47(15): 1878-1893 [DOI: 10.1175/1520-0469(1990)047<1878:DOTOTA>2.0.CO;2http://dx.doi.org/10.1175/1520-0469(1990)047<1878:DOTOTA>2.0.CO;2]
Nakajima T, King M D, Spinhirne J D and Radke L F. 1991. Determination of the optical thickness and effective particle radius of clouds from reflected solar radiation measurements. Part II: marine stratocumulus observations. Journal of the Atmospheric Sciences, 48(5): 728-751 [DOI: 10.1175/1520-0469(1991)048<0728:DOTOTA>2.0.CO;2http://dx.doi.org/10.1175/1520-0469(1991)048<0728:DOTOTA>2.0.CO;2]
Nasiri S L and Kahn B H. 2008. Limitations of bispectral infrared cloud phase determination and potential for improvement. Journal of Applied Meteorology and Climatology, 47(11): 2895-2910 [DOI: 10.1175/2008JAMC1879.1http://dx.doi.org/10.1175/2008JAMC1879.1]
Peralta R J, Nardell C, Cairns B, Russell E E, Travis L D, Mishchenko M I, Fafaul B A and Hooker R J. 2007. Aerosol polarimetry sensor for the Glory Mission//Proceedings Volume 6786, MIPPR 2007: Automatic Target Recognition and Image Analysis; and Multispectral Image Acquisition. Wuhan: SPIE [DOI: 10.1117/12.783307http://dx.doi.org/10.1117/12.783307]
Piters A J M, Bramstedt K, Lambert J C and Kirchhoff B. 2006. Overview of SCIAMACHY validation: 2002-2004. Atmospheric Chemistry and Physics, 6(1): 127-148 [DOI: 10.5194/acp-6-127-2006http://dx.doi.org/10.5194/acp-6-127-2006]
Platnick S, King M D, Ackerman S A, Menzel W P, Baum B A, Riedi J C and Frey R A. 2003. The MODIS cloud products: algorithms and examples from Terra. IEEE Transactions on Geoscience and Remote Sensing, 41(2): 459-473 [DOI: 10.1109/TGRS.2002.808301http://dx.doi.org/10.1109/TGRS.2002.808301]
Platnick S, Meyer K G, King M D, Wind G, Amarasinghe N, Marchant B, Arnold G T, Zhang Z B, Hubanks P A, Holz R E, Yang P, Ridgway W L and Riedi J. 2017. The MODIS cloud optical and microphysical products: collection 6 updates and examples from terra and aqua. IEEE Transactions on Geoscience and Remote Sensing, 55(1): 502-525 [DOI: 10.1109/TGRS.2016.2610522http://dx.doi.org/10.1109/TGRS.2016.2610522]
Puthukkudy A, Martins J V, Remer L A, Xu X G, Dubovik O, Litvinov P, McBride B, Burton S and Barbosa H M J. 2020. Retrieval of aerosol properties from Airborne Hyper-Angular Rainbow Polarimeter (AirHARP) observations during ACEPOL 2017. Atmospheric Measurement Techniques, 13(10): 5207-5236 [DOI: 10.5194/amt-13-5207-2020http://dx.doi.org/10.5194/amt-13-5207-2020]
Qiao R, Qie L L, Xu H, Li Z Q, Zhu S F, Xie Y S, Hong J, Dai H S and Ma J J. 2021. Retrieval of cloud top pressure in oxygen a-band based on data from DPC onboard GF-5 satellite. Journal of Atmospheric and Environmental Optics, 16(3): 256-268
乔瑞, 伽丽丽, 许华, 李正强, 朱思峰, 谢一凇, 洪津, 代海山, 麻金继. 2021. 基于高分五号DPC氧气A吸收波段的云顶压强反演. 大气与环境光学学报, 16(3): 256-268 [DOI: 10.3969/j.issn.1673-6141.2021.03.011http://dx.doi.org/10.3969/j.issn.1673-6141.2021.03.011]
Ren J Q, Yan W, Ye J and Han D. 2010. Advances in the study of cloud phase discrimination using satellite remote sensing data. Advances in Earth Science, 25(10): 1051-1060
任建奇, 严卫, 叶晶, 韩丁. 2010. 云相态的卫星遥感研究进展. 地球科学进展, 25(10): 1051-1060 [DOI: 10.11867/j.issn.1001-8166.2010.10.1051http://dx.doi.org/10.11867/j.issn.1001-8166.2010.10.1051]
Riedi J, Goloub P and Marchand R T. 2001. Comparison of POLDER cloud phase retrievals to active remote sensors measurements at the ARM SGP site. Geophysical Research Letters, 28(11): 2185-2188 [DOI: 10.1029/2000GL012758http://dx.doi.org/10.1029/2000GL012758]
Riedi J, Marchant B, Platnick S, Baum B A, Thieuleux F, Oudard C, Parol F, Nicolas J M and Dubuisson P. 2010. Cloud thermodynamic phase inferred from merged POLDER and MODIS data. Atmospheric Chemistry and Physics, 10(23): 11851-11865 [DOI: 10.5194/acp-10-11851-2010http://dx.doi.org/10.5194/acp-10-11851-2010]
Riedi J, Merlin G, Labonnote L, Cornet C, Ferlay N, Desmons M, Dubuisson P, Parol F, Davis A B and Marbach T. 2014. Information Content Analysis for the Multi-Viewing, Multi-Channel, Multi-Polarization Imaging (3MI) Instrument: Toward Retrieval of Vertically Resolved Cloud Properties from Passive Only Measurements. Washington, DC: American Geophysical Union
Rietjens J, Campo J, Chanumolu A, Smit M, Nalla R, Fernandez C, Dingjan J, van Amerongen A and Hasekamp O. 2019. Expected performance and error analysis for SPEXone, a multi-angle channeled spectropolarimeter for the NASA PACE mission//Proceedings Volume 11132, Polarization Science and Remote Sensing IX. San Diego, CA: SPIE: 11-15 [DOI: 10.1117/12.2530729http://dx.doi.org/10.1117/12.2530729]
Rossow W B and Schiffer R A. 1999. Advances in understanding clouds from ISCCP. Bulletin of the American Meteorological Society, 80(11): 2261-2288 [DOI: 10.1175/1520-0477(1999)080<2261:AIUCFI>2.0.CO;2http://dx.doi.org/10.1175/1520-0477(1999)080<2261:AIUCFI>2.0.CO;2]
Schmunk R B. 2018. Glory APS Science[EB/OL]. https://glory.giss.nasa.gov/aps/https://glory.giss.nasa.gov/aps/
Segal-Rozenhaimer M, Miller D J, Knobelspiesse K, Redemann J, Cairns B and Alexandrov M D. 2018. Development of neural network retrievals of liquid cloud properties from multi-angle polarimetric observations. Journal of Quantitative Spectroscopy and Radiative Transfer, 220: 39-51 [DOI: 10.1016/j.jqsrt.2018.08.030http://dx.doi.org/10.1016/j.jqsrt.2018.08.030]
Shang H, Chen L, Bréon F M, Letu H, Li S, Wang Z and Su L. 2015. Impact of cloud horizontal inhomogeneity and directional sampling on the retrieval of cloud droplet size by the POLDER instrument. Atmospheric Measurement Techniques, 8(11): 4931-4945 [DOI: 10.5194/amt-8-4931-2015http://dx.doi.org/10.5194/amt-8-4931-2015]
Shang H Z, Letu H, Bréon F M, Riedi J, Ma R, Wang Z M, Nakajima T Y, Wang Z T and Chen L F. 2019. An improved algorithm of cloud droplet size distribution from POLDER polarized measurements. Remote Sensing of Environment, 228: 61-74 [DOI: 10.1016/j.rse.2019.04.013http://dx.doi.org/10.1016/j.rse.2019.04.013]
Shang H Z, Letu H, Chen L F, Riedi J, Ma R, Wei L S, Labonnote L C, Hioki S, Liu C, Wang Z T and Wang J J. 2020. Cloud thermodynamic phase detection using a directional polarimetric camera (DPC). Journal of Quantitative Spectroscopy and Radiative Transfer, 253: 107179 [DOI: 10.1016/j.jqsrt.2020.107179http://dx.doi.org/10.1016/j.jqsrt.2020.107179]
Shen F, Zhang Q Y, Ma J J, Li Z Q and Hong J. 2021. Identification of polluted clouds and composition analysis based on GF-5 DPC data. Journal of Quantitative Spectroscopy and Radiative Transfer, 269: 107659 [DOI: 10.1016/j.jqsrt.2021.107659http://dx.doi.org/10.1016/j.jqsrt.2021.107659]
Shi G M, Li C C and Ren T. 2014. Sensitivity analysis of single-angle polarization reflectance observed by satellite. Chinese Science Bulletin, 59(14): 1519-1528
石光明, 李成才, 任通. 2014. 卫星观测的单角度偏振反射率敏感性分析. 科学通报, 59(20): 2016 [DOI: 10.1007/s11434-014-0213-xhttp://dx.doi.org/10.1007/s11434-014-0213-x]
Sinclair K, van Diedenhoven B, Cairns B, Alexandrov M, Moore R, Crosbie E and Ziemba L. 2019. Polarimetric retrievals of cloud droplet number concentrations. Remote Sensing of Environment, 228: 227-240 [DOI: 10.1016/j.rse.2019.04.008http://dx.doi.org/10.1016/j.rse.2019.04.008]
Stamnes S, Hostetler C, Ferrare R, Burton S, Liu X, Hair J, Hu Y, Wasilewski A, Martin W, van Diedenhoven B, Chowdhary J, Cetinić I, Berg L K, Stamnes K and Cairns B. 2018. Simultaneous polarimeter retrievals of microphysical aerosol and ocean color parameters from the "MAPP" algorithm with comparison to high-spectral-resolution lidar aerosol and ocean products. Applied Optics, 57(10): 2394-2413 [DOI: 10.1364/AO.57.002394http://dx.doi.org/10.1364/AO.57.002394]
Stephens G L, Tsay S C, Stackhouse P W Jr and Flatau P J. 1990. The relevance of the microphysical and radiative properties of cirrus clouds to climate and climatic feedback. Journal of the Atmospheric Sciences, 47(14): 1742-1754 [DOI: 10.1175/1520-0469(1990)047<1742:TROTMA>2.0.CO;2http://dx.doi.org/10.1175/1520-0469(1990)047<1742:TROTMA>2.0.CO;2]
Suhai B and Horváth G. 2004. How well does the Rayleigh model describe the E-vector distribution of skylight in clear and cloudy conditions? A full-sky polarimetric study. Journal of the Optical Society of America A-Optics Image Science and Vision, 21(9): 1669-1676 [DOI: 10.1364/JOSAA.21.001669http://dx.doi.org/10.1364/JOSAA.21.001669]
Syniavskyi I I, Milinevsky G P, Ivanov Y S, Sosonkin M G, Danylevsky V O, Rosenbush V K, Bovchaliuk A P, Lukenyuk A A, Shymkiv A P and Mishchenko M I. 2015. Methodology, hardware implementation, and validation of satellite remote sensing of atmospheric aerosols: first results of the aerosol-UA space experiment development. Kosmìčna Nauka Ì Tehnologìâ, 21(3): 9-17 [DOI: 10.15407/knit2015.03.009http://dx.doi.org/10.15407/knit2015.03.009]
Tanré D, Bréon F M, Deuzé J L, Dubovik O, Ducos F, François P, Goloub P, Herman M, Lifermann A and Waquet F. 2011. Remote sensing of aerosols by using polarized, directional and spectral measurements within the A-Train: the PARASOL mission. Atmospheric Measurement Techniques, 4(7): 1383-1395 [DOI: 10.5194/amt-4-1383-2011http://dx.doi.org/10.5194/amt-4-1383-2011]
Trenberth K E, Fasullo J T and Kiehl J. 2009. Earth's global energy budget. Bulletin of the American Meteorological Society, 90(3): 311-324 [DOI: 10.1175/2008BAMS2634.1http://dx.doi.org/10.1175/2008BAMS2634.1]
Tu B H, Hong J, Yao P P, Meng B H, Yuan Y L, Zhang M M and Weng J W. 2020. Polarization detection performance of directional polarimetric camera. Acta Optica Sinica, 40(7): 0712003
涂碧海, 洪津, 姚萍萍, 孟炳寰, 袁银麟, 张苗苗, 翁建文. 2020. 多角度偏振成像仪偏振探测性能与检测. 光学学报, 40(7): 0712003 [DOI: 10.3788/AOS202040.0712003http://dx.doi.org/10.3788/AOS202040.0712003]
Van Amerongen A, Rietjens J, Campo J, Dogan E, Dingjan J, Nalla R, Caron J and Haseka O. 2018. SPEXone: a compact multi-angle polarimeter//Proceedings Volume 11180, International Conference on Space Optics. Chania: SPIE [DOI: 10.1117/12.2535940http://dx.doi.org/10.1117/12.2535940]
Vanbauce C, Buriez J C, Parol F, Bonnel B, Sèze G and Couvert P. 1998. Apparent pressure derived from ADEOS-POLDER observations in the oxygen A-band over ocean. Geophysical Research Letters, 25(16): 3159-3162 [DOI: 10.1029/98GL02324http://dx.doi.org/10.1029/98GL02324]
Wang J J, Liu S H, Li S, Ye S, Wang X Q and Wang F Y. 2021. Optimization algorithm for polarization remote sensing cloud detection based on machine learning. Acta Photonica Sinica, 50(2): 0228001
汪杰君, 刘少晖, 李树, 叶松, 王新强, 王方原. 2021. 基于机器学习的偏振遥感云检测优化算法. 光子学报, 50(2): 0228001 [DOI: 10.3788/gzxb20215002.0228001http://dx.doi.org/10.3788/gzxb20215002.0228001]
Wang J J, Sun X B, Ti R F and Yu H X. 2021. Multi-Angle polarization radiation threshold detection method of cloud cover over ocean. Journal of Atmospheric and Environmental Optics, 16(3): 247-255
王佳佳, 孙晓兵, 提汝芳, 余海啸. 2021. 海洋上空云多角度偏振辐射阈值检测方法研究. 大气与环境光学学报, 16(3): 247-255 [DOI: 10.3969/j.issn.1673-6141.2021.03.010http://dx.doi.org/10.3969/j.issn.1673-6141.2021.03.010]
Wang T, Fetzer E J, Wong S, Kahn B H and Yue Q. 2016. Validation of MODIS cloud mask and multilayer flag using CloudSat-CALIPSO cloud profiles and a cross-reference of their cloud classifications. Journal of Geophysical Research: Atmospheres, 121(19): 11620-11635 [DOI: 10.1002/2016JD025239http://dx.doi.org/10.1002/2016JD025239]
Wang X, Guo Z, Huang Y P, Fan H J and Li W B. 2017. A cloud detection scheme for the Chinese Carbon Dioxide Observation Satellite (TANSAT). Advances in Atmospheric Sciences, 34(1): 16-25 [DOI: 10.1007/s00376-016-6033-yhttp://dx.doi.org/10.1007/s00376-016-6033-y]
Wei L S. 2020. Research on Cloud Detection Algorithm Based on Gaofen-5 -DPC Data. Hohhot: Inner Mongolia Normal University
伟乐斯. 2020. 基于高分五号-DPC数据的云识别算法研究. 呼和浩特: 内蒙古师范大学
Wei L S, Shang H Z, Husi L T, Ma R, Hu D H, Chao K F, Si F Q and Shi J C. 2021. Cloud detection algorithm based on GF-5 DPC data. National Remote Sensing Bulletin, 25(10): 2053-2066
伟乐斯, 尚华哲, 胡斯勒图, 马润, 胡大海, 朝克夫, 司福祺, 施建成. 2021. GF-5 DPC数据的云检测方法研究. 遥感学报, 25(10): 2053-2066 [DOI: 10.11834/jrs.20210226http://dx.doi.org/10.11834/jrs.20210226]
Wu H. 2016. Polarization Imaging and Cloud Polarization Characteristics Research. Wuhu: Anhui Normal University: 1-45
吴浩. 2016. 偏振成像及云偏振特性研究. 芜湖: 安徽师范大学: 1-45
Xie Y S, Li Z Q, Hou W Z, Zhang Y, Qie L L, Li L, Li K T and Xu H. 2019. Retrieval of fine-mode aerosol optical depth based on remote sensing measurements of directional polarimetric camera onboard GF-5 satellite. Aerospace Shanghai, 36(S2): 219-226
谢一凇, 李正强, 侯伟真, 张洋, 伽丽丽, 李莉, 李凯涛, 许华. 2019. 高分五号卫星多角度偏振成像仪细粒子气溶胶光学厚度遥感反演. 上海航天, 36(S2): 219-226 [DOI: 10.19328/j.cnki.1006-1630.2019.S.033http://dx.doi.org/10.19328/j.cnki.1006-1630.2019.S.033]
Xu F F. 2018. Research on Pollution Cloud Recognition Algorithm Based on POLDER Data. Wuhu: Anhui Normal University: 15-67
徐飞飞. 2018. 基于POLDER数据的污染云识别算法研究. 芜湖: 安徽师范大学: 15-67
Xu F F, Ma J J, Wu S C and Li Z Q. 2019. Identification of smoke and polluted clouds based on polarized satellite images. Journal of Quantitative Spectroscopy and Radiative Transfer, 224: 343-354 [DOI: 10.1016/j.jqsrt.2018.11.019http://dx.doi.org/10.1016/j.jqsrt.2018.11.019]
Yan W, Yang H L and Zhou X W. 2008. A-Train satellite formation and its application to cloud research. Remote Sensing Information, (2): 93-96
严卫, 杨汉乐, 周兴旺. 2008. A-Train卫星编队及其在云研究领域中的应用. 遥感信息, (2): 93-96 [DOI: 10.3969/j.issn.1000-3177.2008.02.020http://dx.doi.org/10.3969/j.issn.1000-3177.2008.02.020]
Yang H C. 2019. On-Orbit Calibration of Particulate Matter Polarimetry Suits. Hefei: University of Science and Technology of China
杨洪春. 2019. 大气颗粒物监测仪在轨定标研究. 合肥: 中国科学技术大学
Yang Z W, Gao S G and Wang P G. 2005. Polarization of reflected light by earth objects. Acta Optica Sinica, 25(2): 241-245
杨之文, 高胜钢, 王培纲. 2005. 几种地物反射光的偏振特性. 光学学报, 25(2): 241-245 [DOI: 10.3321/j.issn:0253-2239.2005.02.022http://dx.doi.org/10.3321/j.issn:0253-2239.2005.02.022]
Yao Z G, Han Z G, Zhao Z L, Lin L F and Fan X H. 2010. Synergetic use of POLDER and MODIS for multilayered cloud identification. Remote Sensing of Environment, 114(9): 1910-1923 [DOI: 10.1016/j.rse.2010.03.014http://dx.doi.org/10.1016/j.rse.2010.03.014]
Yasumoto M, Sano I and Mukai S. 2002. Combined use of OCTS and POLDER for cloud retrieval. Advances in Space Research, 29(1): 39-44 [DOI: 10.1016/S0273-1177(01)00625-1http://dx.doi.org/10.1016/S0273-1177(01)00625-1]
Yin D K. 2019. Multi-Angle polarization detection technology. Infrared, 40(1): 1-6, 23
殷德奎. 2019. 多角度偏振探测技术. 红外, 40(1): 1-6, 23 [DOI: 10.3969/j.issn.1672-8785.2019.01.001http://dx.doi.org/10.3969/j.issn.1672-8785.2019.01.001]
Yu H X, Ma J J, Ahmad S, Sun E C, Li C, Li Z Q and Hong J. 2019. Three-dimensional cloud structure reconstruction from the directional polarimetric camera. Remote Sensing, 11(24): 2894 [DOI: 10.3390/rs11242894http://dx.doi.org/10.3390/rs11242894]
Zhang M M, Meng B H, Luo D G, Yang B Y, Ti R F and Hong J. 2018. Measurement precision verification and deviation analysis of spaceborne directional polarimetric camera. Acta Optica Sinica, 38(8): 0812004
张苗苗, 孟炳寰, 骆冬根, 杨本永, 提汝芳, 洪津. 2018. 星载多角度偏振成像仪测量精度验证与偏差分析. 光学学报, 38(8): 0812004 [DOI: 10.3788/AOS201838.0812004http://dx.doi.org/10.3788/AOS201838.0812004]
Zhang W. 2016. Progress of Tiangong-2 space science and application mission. Aerospace China, (12): 18-23
张伟. 2016. 天宫-2空间科学与应用任务及进展. 国际太空, (12): 18-23 [DOI: 10.3969/j.issn.1009-2366.2016.12.004http://dx.doi.org/10.3969/j.issn.1009-2366.2016.12.004]
Zhang Y, Lv D R and Duan M Z. 2011. Two kinds of cloud top height retrieval methods with oxygen A-Band comparison by simulated data and verification with experimental results in China. Remote Sensing Technology and Application, 26(1): 18-32
张岩, 吕达仁, 段民征. 2011. 两种氧气A吸收带云顶高度反演算法的理论比较与实测结果验证. 遥感技术与应用, 26(1): 18-32 [DOI: 10.11873/j.issn.1004-0323.2011.1.18http://dx.doi.org/10.11873/j.issn.1004-0323.2011.1.18]
Zhang Y P, Hu X Q, Yin D K and Gu M J. 2020a. Full image on-orbit polarization calibration method of multi-angle polarization imager. Acta Optica Sinica, 40(19): 1911001
张一鹏, 胡秀清, 殷德奎, 顾明剑. 2020a. 多角度偏振成像仪全像面在轨偏振定标方法. 光学学报, 40(19): 1911001 [DOI: 10.3788/AOS202040.1911001http://dx.doi.org/10.3788/AOS202040.1911001]
Zhang Y P, Hu X Q, Yin D K and Gu M J. 2020b. Onboard polarization calibration technique of multi-angle polarization imager based on sun glint from ocean. Acta Optica Sinica, 40(15): 1528002
张一鹏, 胡秀清, 殷德奎, 顾明剑. 2020b. 基于海洋耀斑的多角度偏振成像仪在轨偏振定标技术. 光学学报, 40(15): 1528002 [DOI: 10.3788/AOS202040.1528002http://dx.doi.org/10.3788/AOS202040.1528002]
相关文章
相关作者
相关机构