An hourly updated WRF-3DVar weather radar data assimilation system and its application for rainfall-runoff prediction in North China
- Vol. 27, Issue 7, Pages: 1590-1604(2023)
Published: 07 July 2023
DOI: 10.11834/jrs.20221419
扫 描 看 全 文
浏览全部资源
扫码关注微信
Published: 07 July 2023 ,
扫 描 看 全 文
刘昱辰,刘佳,李传哲,王维,田济扬.2023.WRF-3DVAR逐小时雷达同化系统在华北地区降雨径流预报中的应用.遥感学报,27(7): 1590-1604
Liu Y C,Liu J,Li C Z,Wang W and Tian J Y. 2023. An hourly updated WRF-3DVar weather radar data assimilation system and its application for rainfall-runoff prediction in North China. National Remote Sensing Bulletin, 27(7):1590-1604
本研究从当前数值大气模式应用于水文预报的现状出发,分析了将数据同化技术融入到陆气耦合水文预报中的重要性,针对时空分辨率较高的天气雷达测雨数据,在WRF模式耦合WRF-Hydro陆面水文模式的基础上,构建了逐小时快速更新的WRF-3DVAR同化系统,并进一步验证了其在华北地区降雨径流预报中的应用效果。结果表明,同化天气雷达结合传统气象监测数据可以有效提高WRF模式的预报降雨精度,特别是针对时空分布均匀型的降雨,同化后预报降雨的CSI/RMSE指标提高了23.24%—50.00%。在径流预报中,经过数据同化后,更准确的预报降雨使径流预报结果也一定程度上得到了改善,洪峰流量和洪量误差均有所降低,
Nash
系数也所提高,整体上数据同化对预报水文过程的改进效果也较为明显。但对于时空分布不均匀型的降雨,洪峰流量和峰现时间的预报结果仍不理想,后续需要从陆面水文参数的精准率定、预报误差的实时校正等方面进行改进。
The frequency of extreme rainfall and flooding in North China has increased because of the influence of climate change and human activities. Convective and strong precipitation processes occur in summer. Under the influence of the mixed flow generation mechanism in semihumid and semiarid areas
the flood burst is strong and difficult to forecast. Based on the Weather Research Forecast (WRF) model
namely
coupled WRF-Hydro
this study uses three-dimensional variational data assimilation (3DVAR) in constructing the WRF-3DVAR assimilation system for a rapid hourly update to assimilate high spatial and temporal resolution radar reflectivity data with the traditional meteorological observed data from the Global Telecommunication System (GTS). The study of rainfall-runoff prediction based on the land-atmosphere coupling is conducted by taking the typical rainfall processes of the north and south branches of the Daqinghe River Basin as the research object. Moreover
the performance of the rainfall-runoff prediction method in North China is further verified. The research results have some theoretical and practical values for constructing the data assimilation system of the atmospheric model and flood forecast practice in northern China.
We employ three nested domains and adopt the GFS data for driving the WRF model. This study evaluates the improvement effect of WRF on forecasting rainfall and WRF-Hydro forecasting runoff by assimilating radar reflectivity and GTS data. The GTS data are released every 6 h. Thus
in the hourly assimilation scheme
GTS is only assimilated at the 6th
12th
18th
and 24th h from the start of the storm. However
radar reflectivity is set to assimilate once every hour. The rainfall evaluation indexes include Root Mean Square Error (RMSE)
Mean Bias Error (MBE)
and Critical Success Index (CSI). CSI/RMSE is a comprehensive index for evaluating rainfall forecast results. RMSE
MBE
and Nash (Nash-Sutcliffe efficiency coefficient) are used to evaluate runoff.
The results show that the precipitation forecasted by the WRF model is always lower than the observed rainfall. However
assimilation systems can increase rainfall. The improved initial conditions in the WRF-3DVAR system via radar data assimilation and GTS data achieve good short-term and convectively strong precipitation. The high assimilation frequency significantly helps trigger and maintain the convective activities in the 3DVAR framework and the storm case applied. The assimilation weather radar combined with the traditional meteorological observed data can effectively improve the rainfall prediction accuracy of the WRF model
particularly for the rainfall with uniform spatial and temporal distribution. The CSI/RMSE index of the forecast rainfall after assimilation is increased by 23.24%—50.00%. Whether data assimilation is carried out or not
the CSI index results show different degrees of rainfall false alarm frequency. In the runoff forecast
the accurate rainfall forecast after data assimilation also improves the runoff forecast results to a certain extent. The peak flow error is reduced by 15.05%
38.07%
18.53% and 6.99%
the flood volume error is reduced by 25.99%
29.32%
26.02% and 23.95%
and the Nash efficiency coefficient is increased by 0.25
0.25
0.29 and 0.48
respectively. However
the forecast results of flood peak discharge and the peak occurrence time for the rainfall with uneven spatial and temporal distribution
large magnitude
and slow water retreat are still not ideal. Moreover
subsequent improvements should be made in terms of accurate calibration of hydrological parameters and real-time correction of forecast errors. The accuracy of the WRF-Hydro runoff forecast in the mixed runoff generation areas of northern China mainly depends on two aspects. One is the accuracy of the rainfall forecast of WRF model
which is related to the driving data and rainfall distribution type. For the rainfall with uneven spatial-temporal distribution
the poor rainfall forecast indirectly affects the runoff forecast effect. On the contrary
it is related to different runoff characteristics
such as the complexity of the runoff process
the magnitude of runoff
the presence or absence of base flow in the early stage
and the soil water content. Data assimilation improves rainfall forecast. Thus
the runoff forecast results of WRF-Hydro are improved to a certain extent by reasonably using a basic flow module
improving land surface initial conditions
such as soil water content
and combining with effective real-time correction technology.
遥感数据同化天气雷达快速更新WRF-3DVAR降雨径流预报
remote sensingdata assimilationDoppler Weather Radarquick cycle updateWRF-Hydrorainfall-runoff forecasting
Abhilash S, Sahai A K, Mohankumar K, George J P and Das S. 2012. Assimilation of Doppler weather radar radial velocity and reflectivity observations in WRF-3DVAR system for short-range forecasting of convective storms. Pure and Applied Geophysics, 169(11): 2047-2070 [DOI: 10.1007/s00024-012-0462-zhttp://dx.doi.org/10.1007/s00024-012-0462-z]
Arnault J, Wagner S, Rummler T, Fersch B, Bliefernicht J, Andresen S and Kunstmann H. 2016. Role of runoff-infiltration partitioning and resolved overland flow on land-atmosphere feedbacks: a case study with the WRF-Hydro coupled modeling system for West Africa. Journal of Hydrometeorology, 17(5): 1489-1516 [DOI: 10.1175/JHM-D-15-0089.1http://dx.doi.org/10.1175/JHM-D-15-0089.1]
Barker D M, Huang W, Guo Y R, Bourgeois A J and Xiao Q N. 2004. A three-dimensional variational data assimilation system for MM5: implementation and initial results. Monthly Weather Review, 132(4): 897-914 [DOI: 10.1175/1520-0493(2004)132<0897:ATVDAS>2.0.CO;2http://dx.doi.org/10.1175/1520-0493(2004)132<0897:ATVDAS>2.0.CO;2]
Beusch L, Foresti L, Gabella M and Hamann U. 2018. Satellite-Based rainfall retrieval: from generalized linear models to artificial neural networks. Remote Sensing, 10(6): 939 [DOI: 10.3390/rs10060939http://dx.doi.org/10.3390/rs10060939]
Chen F and Dudhia J. 2001. Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part I: model implementation and sensitivity. Monthly Weather Review, 129(4): 569-585 [DOI: 10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2http://dx.doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2]
Chu Q, Zhou J J and Xu Z X. 2019. Evaluation of the WRF model with different physical parameterization schemes in simulating short-duration heavy rainfall events in Beijing. Journal of Beijing Normal University (Natural Science), 55(5): 617-626
初祁, 周晋军, 徐宗学. 2019. 适用北京地区短历时强降水模拟的WRF模型物理参数化方案研究. 北京师范大学学报(自然科学版), 55(5): 617-626 [DOI: 10.16360/j.cnki.jbnuns.2019.05.010http://dx.doi.org/10.16360/j.cnki.jbnuns.2019.05.010]
Chung K S, Zawadzki I, Yau M K and Fillion L. 2009. Short-term forecasting of a midlatitude convective storm by the assimilation of single-Doppler radar observations. Monthly Weather Review, 137(12): 4115-4135 [DOI: 10.1175/2009MWR2731.1http://dx.doi.org/10.1175/2009MWR2731.1]
Cuo L, Pagano T C and Wang Q J. 2011. A review of quantitative precipitation forecasts and their use in short- to medium-range streamflow forecasting. Journal of Hydrometeorology, 12(5): 713-728 [DOI: 10.1175/2011JHM1347.1http://dx.doi.org/10.1175/2011JHM1347.1]
Dudhia J. 1989. Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. Journal of the Atmospheric Sciences, 46(20): 3077-3107 [DOI: 10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2http://dx.doi.org/10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2]
Fiori E, Comellas A, Molini L, Rebora N, Siccardi F, Gochis D J, Tanelli S and Parodi A. 2014. Analysis and hindcast simulations of an extreme rainfall event in the Mediterranean area: the Genoa 2011 case. Atmospheric Research, 138: 13-29 [DOI: 10.1016/j.atmosres.2013.10.007http://dx.doi.org/10.1016/j.atmosres.2013.10.007]
Fritsch J M and Carbone R E. 2004. Improving quantitative precipitation forecasts in the warm season: a USWRP research and development strategy. Bulletin of the American Meteorological Society, 85(7): 955-966 [DOI: 10.1175/BAMS-85-7-955http://dx.doi.org/10.1175/BAMS-85-7-955]
Fritsch J M, Houze R A, Adler R, Bluestein H, Bosart L, Brown J, Carr F, Davis C, Johnson R H, Junker N, Kuo Y H, Rutledge S, Smith J A, Toth Z, Wilson J W, Zipser E and Zrnic D. 1998. Quantitative precipitation forecasting: report of the eighth prospectus development team, U.S. Weather research program. Bulletin of the American Meteorological Society, 79(2): 285-299 [DOI: 10.1175/1520-0477(1998)079<0285:QPFROT>2.0.CO;2http://dx.doi.org/10.1175/1520-0477(1998)079<0285:QPFROT>2.0.CO;2]
Gao J D, Xue M, Brewster K and Droegemeier K K. 2004. A three-dimensional variational data analysis method with recursive filter for Doppler radars. Journal of Atmospheric and Oceanic Technology, 21(3): 457-469 [DOI: 10.1175/1520-0426(2004)021<0457:ATVDAM>2.0.CO;2http://dx.doi.org/10.1175/1520-0426(2004)021<0457:ATVDAM>2.0.CO;2]
Givati A, Lynn B, Liu Y B and Rimmer A. 2011. Using the WRF model in an operational streamflow forecast system for the Jordan River. Journal of Applied Meteorology and Climatology, 51(2): 285-299 [DOI: 10.1175/JAMC-D-11-082.1http://dx.doi.org/10.1175/JAMC-D-11-082.1]
Gochis D J, Yu W and Yates D N. 2015. The WRF-Hydro Model Technical Description and User's Guide, Version 3.0. NCAR Technical Document. 120
Gochis D J, Yu W, Yates D Net al. The WRF-Hydro model technical description and user's guide, version 3.0. NCAR Technical Document,2015:1-120. http://www.ral.ucar.edu/projects/wrf_hydro/http://www.ral.ucar.edu/projects/wrf_hydro/.
He G B, Zhang L H and Tu N N. 2014. Analyses on a heavy rainfall process prediction of regional numerical models. Plateau and Mountain Meteorology Research, 34(2): 1-7
何光碧, 张利红, 屠妮妮. 2014. 区域中尺度模式对西南地区一次强降水过程的预报分析. 高原山地气象研究, 34(2): 1-7 [DOI: 10.3969/j.issn.1674-2184http://dx.doi.org/10.3969/j.issn.1674-2184·2014.02.001]
Hong S Y and Lim J O J. 2006. The WRF Single-Moment 6-Class microphysics scheme (WSM6). Journal of the Korean Meteorological Society, 42(2): 129-151
Ide K, Courtier P, Ghil M and Lorenc A C. 1997. Unified notation for data assimilation: operational, sequential and variational (gtSpecial IssueltData assimilation in meteology and oceanography: theory and practice). Journal of the Meteorological Society of Japan, 75(1B): 181-189 [DOI: 10.2151/jmsj1965.75.1B_181http://dx.doi.org/10.2151/jmsj1965.75.1B_181]
Jain S K and Sudheer K P. 2008. Fitting of hydrologic models: a close look at the Nash-Sutcliffe index. Journal of Hydrologic Engineering, 13(10): 981-986
Janić Z I. 2001. Nonsingular Implementation of the Mellor-Yamada Level 2.5 Scheme in the NCEP Meso model. NCEP Office Note 437
Kain J S. 2004. The Kain-Fritsch convective parameterization: an update. Journal of Applied Meteorology, 43(1): 170-181 [DOI: 10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2http://dx.doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2]
Kalman R E. 1960. A new approach to linear filtering and prediction problems. Journal of Basic Engineering, 82(1): 35-45 [DOI: 10.1115/1.3662552http://dx.doi.org/10.1115/1.3662552]
Kawabata T, Seko H, Saito K, Kuroda T, Tamiya K, Tsuyuki T, Honda Y and Wakazuki Y. 2007. An assimilation and forecasting experiment of the Nerima heavy rainfall with a cloud-resolving nonhydrostatic 4-Dimensional variational data assimilation system. Journal of the Meteorological Society of Japan, 85(3): 255-276 [DOI: 10.2151/jmsj.85.255http://dx.doi.org/10.2151/jmsj.85.255]
Kim S, Shen H J, Noh S, Seo D J, Welles E, Pelgrim E, Weerts A, Lyons E and Philips B. 2021. High-resolution modeling and prediction of urban floods using WRF-Hydro and data assimilation. Journal of Hydrology, 598: 126236 [DOI: 10.1016/j.jhydrol.2021.126236http://dx.doi.org/10.1016/j.jhydrol.2021.126236]
Kryza M, Werner M, Wałszek K and Dore A J. 2013. Application and evaluation of the WRF model for high-resolution forecasting of rainfall - a case study of SW Poland. Meteorologische Zeitschrift, 22(5): 595-601 [DOI: 10.1127/0941-2948/2013/0444http://dx.doi.org/10.1127/0941-2948/2013/0444]
Kusaka H, Crook A, Dudhia J and Wada K. 2005. Comparison of the WRF and MM5 models for simulation of heavy rainfall along the baiu front. SOLA, 1: 197-200 [DOI: 10.2151/sola.2005-051http://dx.doi.org/10.2151/sola.2005-051]
Lahmers T M, Gupta H, Castro C L, Gochis D J, Yates D, Dugger A, Goodrich D and Hazenberg P. 2019. Enhancing the structure of the WRF-Hydro hydrologic model for semiarid environments. Journal of Hydrometeorology, 20(4): 691-714 [DOI: 10.1175/JHM-D-18-0064.1http://dx.doi.org/10.1175/JHM-D-18-0064.1]
Le Dimet F X and Talagrand O. 1986. Variational algorithms for analysis and assimilation of meteorological observations: theoretical aspects. Tellus A, 38(2): 97-110 [DOI: 10.1111/j.1600-0870.1986.tb00459.xhttp://dx.doi.org/10.1111/j.1600-0870.1986.tb00459.x]
Lewis J M and Derber J C. 1985. The use of adjoint equations to solve a variational adjustment problem with advective constraints. Tellus A, 37(4): 309-322 [DOI: 10.3402/tellusa.v37i4.11675http://dx.doi.org/10.3402/tellusa.v37i4.11675]
Liu J, Bray M and Han D. 2012. A study on weather radar data assimilation for numerical rainfall prediction. Hydrology and Earth System Sciences Discussions, 9: 10323-10364 [DOI: 10.5194/hessd-9-10323-2012http://dx.doi.org/10.5194/hessd-9-10323-2012]
Liu J, Bray M and Han D W. 2013. Exploring the effect of data assimilation by WRF-3DVar for numerical rainfall prediction with different types of storm events. Hydrological Processes, 27(25): 3627-3640 [DOI: 10.1002/hyp.9488http://dx.doi.org/10.1002/hyp.9488]
Liu J, Tian J Y, Yan D H, Li C Z, Yu F L and Shen F F. 2018. Evaluation of Doppler radar and GTS data assimilation for NWP rainfall prediction of an extreme summer storm in northern China: from the hydrological perspective. Hydrology and Earth System Sciences, 22(8): 4329-4348 [DOI: 10.5194/hess-22-4329-2018http://dx.doi.org/10.5194/hess-22-4329-2018]
Liu Y, Li C Z, Liu Z H, Deng X Y and Zhu J H. 2016. Analysis on the numerical simulation of heavy rainfall based on WRF model in Bayanbuluk Basin. Arid Zone Research, 33(1): 28-37
刘洋, 李诚志, 刘志辉, 邓兴耀, 朱金焕. 2016. 基于WRF模式的新疆巴音布鲁克盆地强降雨天气数值模拟效果分析. 干旱区研究, 33(1): 28-37 [DOI: 10.13866/j.azr.2016.01.03http://dx.doi.org/10.13866/j.azr.2016.01.03]
Liu Y C, Liu J, Li C Z, Yu F L and Wang W. 2021a. Effect of the assimilation frequency of radar reflectivity on rain storm prediction by using WRF-3DVAR. Remote Sensing, 13(11): 2103 [DOI: 10.3390/rs13112103http://dx.doi.org/10.3390/rs13112103]
Liu Y C, Liu J, Li C Z, Yu F L, Wang W and Qiu Q T. 2021b. Parameter sensitivity analysis of the WRF-Hydro modeling system for streamflow simulation: a case study in semi-humid and semi-arid catchments of northern China. Asia-Pacific Journal of Atmospheric Sciences, 57(3): 451-466 [DOI: 10.1007/s13143-020-00205-2http://dx.doi.org/10.1007/s13143-020-00205-2]
Lorenc A C. 1986. Analysis methods for numerical weather prediction. Quarterly Journal of the Royal Meteorological Society, 112(474): 1177-1194 [DOI: 10.1002/qj.49711247414http://dx.doi.org/10.1002/qj.49711247414]
McCuen R H, Knight Z and Cutter A G. 2006. Evaluation of the Nash-Sutcliffe efficiency index. Journal of Hydrologic Engineering, 11(6): 597-602 [DOI: 10.1061/(ASCE)1084-0699(2006)11:6(597http://dx.doi.org/10.1061/(ASCE)1084-0699(2006)11:6(597)]
Mlawer E J, Taubman S J, Brown P D, Iacono M J and Clough S A. 1997. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. Journal of Geophysical Research: Atmospheres, 102(D14): 16663-16682 [DOI: 10.1029/97JD00237http://dx.doi.org/10.1029/97JD00237]
Naabil E, Lamptey B L, Arnault J, Olufayo A and Kunstmann H. 2017. Water resources management using the WRF-Hydro modelling system: case-study of the Tono dam in West Africa. Journal of Hydrology: Regional Studies, 12: 196-209 [DOI: 10.1016/j.ejrh.2017.05.010http://dx.doi.org/10.1016/j.ejrh.2017.05.010]
Rennie S J, Dance S L, Illingworth A J, Ballard S P and Simonin D. 2011. 3D-Var assimilation of Insect-Derived Doppler radar radial winds in convective cases using a high-resolution model. Monthly Weather Review, 139(4): 1148-1163 [DOI: 10.1175/2010MWR3482.1http://dx.doi.org/10.1175/2010MWR3482.1]
Ryu Y, Lim Y J, Ji H S, Park H H, Chang E C and Kim B J. 2017. Applying a coupled hydrometeorological simulation system to flash flood forecasting over the Korean Peninsula. Asia-Pacific Journal of Atmospheric Sciences, 53(4): 421-430 [DOI: 10.1007/s13143-017-0045-0http://dx.doi.org/10.1007/s13143-017-0045-0]
Senatore A, Mendicino G, Gochis D J, Yu W, Yates D N and Kunstmann H. 2015. Fully coupled atmosphere-hydrology simulations for the central Mediterranean: impact of enhanced hydrological parameterization for short and long time scales. Journal of Advances in Modeling Earth Systems, 7(4): 1693-1715 [DOI: 10.1002/2015MS000510http://dx.doi.org/10.1002/2015MS000510]
Silver M, Karnieli A, Ginat H, Meiri E and Fredj E. 2017. An innovative method for determining hydrological calibration parameters for the WRF-Hydro model in arid regions. Environmental Modelling and Software, 91: 47-69 [DOI: 10.1016/j.envsoft.2017.01.010http://dx.doi.org/10.1016/j.envsoft.2017.01.010]
Skamarock W C and Klemp J B. 2008. A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. Journal of Computational Physics, 227(7): 3465-3485 [DOI: 10.1016/j.jcp.2007.01.037http://dx.doi.org/10.1016/j.jcp.2007.01.037]
Sokol Z. 2011. Assimilation of extrapolated radar reflectivity into a NWP model and its impact on a precipitation forecast at high resolution. Atmospheric Research, 100(2/3): 201-212 [DOI: 10.1016/j.atmosres.2010.09.008http://dx.doi.org/10.1016/j.atmosres.2010.09.008]
Strobach E and Bel G. 2015. Improvement of climate predictions and reduction of their uncertainties using learning algorithms. Atmospheric Chemistry and Physics, 15(15): 8631-8641 [DOI: 10.5194/acp-15-8631-2015http://dx.doi.org/10.5194/acp-15-8631-2015]
Sugimoto S, Crook N A, Sun J Z, Xiao Q N and Barker D M. 2009. An examination of WRF 3DVAR radar data assimilation on its capability in retrieving unobserved variables and forecasting precipitation through observing system simulation experiments. Monthly Weather Review, 137(11): 4011-4029 [DOI: 10.1175/2009MWR2839.1http://dx.doi.org/10.1175/2009MWR2839.1]
Sun J Z, Xue M, Wilson J W, Zawadzki I, Ballard S P, Onvlee-Hooimeyer J, Joe P, Barker D M, Li P W, Golding B, Xu M and Pinto J. 2014. Use of NWP for nowcasting convective precipitation: recent progress and challenges. Bulletin of the American Meteorological Society, 95(3): 409-426 [DOI: 10.1175/BAMS-D-11-00263.1http://dx.doi.org/10.1175/BAMS-D-11-00263.1]
Tai S L, Liou Y C, Sun J Z, Chang S F and Kuo M C. 2011. Precipitation forecasting using Doppler radar data, a cloud model with adjoint, and the weather research and forecasting model: real case studies during SoWMEX in Taiwan. Weather and Forecasting, 26(6): 975-992 [DOI: 10.1175/WAF-D-11-00019.1http://dx.doi.org/10.1175/WAF-D-11-00019.1]
Tian J Y, Liu J, Wang Y, Wang W, Li C Z and Hu C Q. 2020. A coupled atmospheric-hydrologic modeling system with variable grid sizes for rainfall-runoff simulation in semi-humid and semi-arid watersheds: how does the coupling scale affects the results?. Hydrology and Earth System Sciences, 24(8): 3933-3949 [DOI: 10.5194/hess-24-3933-2020http://dx.doi.org/10.5194/hess-24-3933-2020]
Tian J Y, Liu J, Yan D H, Li C Z, Chu Z G and Yu F L. 2017. An assimilation test of Doppler radar reflectivity and radial velocity from different height layers in improving the WRF rainfall forecasts. Atmospheric Research, 198: 132-144 [DOI: 10.1016/j.atmosres.2017.08.004http://dx.doi.org/10.1016/j.atmosres.2017.08.004]
Tian J Y, Liu J, Yan D H, Zhang G J, Ding L Q, Li C Z and Wang Q. 2019. Flood forecast in using a coupled atmospheric-hydrologic modeling system with dual correction models in Daqinghe Basin. Journal of China Hydrology, 39(3): 1-7, 57
田济扬, 刘佳, 严登华, 张国娟, 丁留谦, 李传哲, 王琼. 2019. 双校正模式下的大清河流域陆气耦合洪水预报研究. 水文, 39(3): 1-7, 57 [DOI: 10.3969/j.issn.1000-0852.2019.03.001http://dx.doi.org/10.3969/j.issn.1000-0852.2019.03.001]
Tian J Y. Coupled atmospheric-hydrological modeling for hydrological forecast based on multi-source data assimilation containing radar data. China Institute of Water Resources and Hydropower Research, 2017
田济扬. 2017. 天气雷达多源数据同化支持下的陆气耦合水文预报. 中国水利水电科学研究院, 2017
Tong W X, Li G, Sun J Z, Tang X W and Zhang Y. 2016. Design strategies of an hourly update 3DVAR data assimilation system for improved convective forecasting. Weather and Forecasting, 31(5): 1673-1695 [DOI: 10.1175/WAF-D-16-0041.1http://dx.doi.org/10.1175/WAF-D-16-0041.1]
Vendrasco E P, Sun J Z, Herdies D L and de Angelis C F. 2016. Constraining a 3DVAR radar data assimilation system with large-scale analysis to improve short-range precipitation forecasts. Journal of Applied Meteorology and Climatology, 55(3): 673-690 [DOI: 10.1175/JAMC-D-15-0010.1http://dx.doi.org/10.1175/JAMC-D-15-0010.1]
Wang W, Liu J, Li C Z, Liu Y C and Yu F L. 2021. Data assimilation for rainfall-runoff prediction based on coupled atmospheric-hydrologic systems with variable complexity. Remote Sensing, 13(4): 595 [DOI: 10.3390/rs13040595http://dx.doi.org/10.3390/rs13040595]
Wang Y. 2018. Research on Coupled Atmospheric-Hydrologic Modeling for Hydrologic Simulation in Watersheds Based on Different Grid Sizes. Beijing: China Institute of Water Resources and Hydropower Research (王洋. 2018. 基于不同网格尺度的流域陆气耦合水文模拟研究. 北京: 中国水利水电科学研究院)
Yang B, Zhang Y C and Qian Y. 2012. Simulation of urban climate with high-resolution WRF model: a case study in Nanjing, China. Asia-Pacific Journal of Atmospheric Sciences, 48(3): 227-241 [DOI: 10.1007/s13143-012-0023-5http://dx.doi.org/10.1007/s13143-012-0023-5]
Yucel I, Onen A, Yilmaz K K and Gochis D J. 2015. Calibration and evaluation of a flood forecasting system: utility of numerical weather prediction model, data assimilation and satellite-based rainfall. Journal of Hydrology, 523: 49-66 [DOI: 10.1016/j.jhydrol.2015.01.042http://dx.doi.org/10.1016/j.jhydrol.2015.01.042]
Zhang F H, Ma X L and Yang K M. 2004. Numerical simulation and diagnostic analysis of a heavy rainfall in Jiangnan Area during 24~25 June 2003. Meteorological Monthly, 30(1): 28-33
张芳华, 马旭林, 杨克明. 2004. 2003年6月24~25日江南特大暴雨数值模拟和诊断分析. 气象, 30(1): 28-33 [DOI: 10.3969/j.issn.1000-0526.2004.01.006http://dx.doi.org/10.3969/j.issn.1000-0526.2004.01.006]
Zhang P Y, Yang H P and Hu S P. 2008. Applications of new generation weather radar to nowcasting and warning of severe weather. Meteorological Monthly, 34(1): 3-11
张沛源, 杨洪平, 胡绍萍. 2008. 新一代天气雷达在临近预报和灾害性天气警报中的应用. 气象, 34(1): 3-11
相关文章
相关作者
相关机构