Recalibration Model of MWHTS’ historical data onboard FY-3C Satellite
- Vol. 27, Issue 10, Pages: 2283-2294(2023)
Published: 07 October 2023
DOI: 10.11834/jrs.20221446
扫 描 看 全 文
浏览全部资源
扫码关注微信
Published: 07 October 2023 ,
扫 描 看 全 文
王振占,肖雨伟,王可昕,张升伟.2023.FY-3C微波湿度计-Ⅱ数据的再定标模型.遥感学报,27(10): 2283-2294
Wang Z Z,Xiao Y W,Wang K X and Zhang S W. 2023. Recalibration Model of MWHTS’ historical data onboard FY-3C Satellite. National Remote Sensing Bulletin, 27(10):2283-2294
星载微波湿度计观测的地球表面和大气的亮温是数值天气预报和气候研究的重要基础数据源。由于微波湿度计系统响应特性差异、在轨工作条件的变化,以及星上定标基准的差异,不同卫星微波湿度计、同一微波湿度计数据在长时间范围内都存在一定的偏差。如果这些偏差不进行修正,则会对长时间序列应用(如气候研究等)具有较大的影响,甚至可能导致错误的结果。由于微波辐射目前还不存在绝对基准,无法通过地面绝对基准的传递进行星上数据的绝对定标,因此需要利用其他相对定标方法对湿度计的稳定性及其变化特征进行评价。本文基于OMB(模拟和观测数差)定标的思想,结合微波湿度计的系统响应特性和星上定标基本原理,建立了微波湿度计定标偏差的校正模型—再定标模型,从而实现历史数据的一致性定标。初步研究结果表明:使用再定标模型后,FY-3C微波湿度计-II定标结果的时间序列稳定,原始OMB偏差中的各种异常波动现象得到良好修正。由于该模型是基于微波湿度计的系统响应特性建立的,因此这一方法同样适用于其他FY-3系列卫星微波湿度计数据的定标偏差校正,实现FY-3系列卫星微波湿度计数据的一致性定标。
The microwave radiation data of the earth’s surface and atmosphere observed by the spaceborne microwave radiometer are a basic source for numerical weather prediction and climate research. Certain bias exists between the data of different or the same radiometers over a long period of time due to the difference in the response characteristics and calibration absolute reference between each sounder and variation of the on-orbit working conditions. If these biases are not corrected
then they will have significant implications for long time series applications (such as climate studies) and may even lead to erroneous results. In addition
absolute calibration of onboard data cannot be performed because the absolute reference for calibration is unobtainable at present. Therefore
other relative calibration methods should be used to evaluate the stability and variation characteristics of the radiometer. In this paper
a correction model for the calibration biases of the microwave humidity sounder is established
considering the principle of system responses and on-orbit calibration
which is also called re-calibration methods
based on OMB technique (observed brightness temperature (O) minus simulated brightness temperature (B)). Using the re-calibration methods
L1 level observation data of the FY-3C microwave humidity sounder were analyzed and the re-calibration coefficients were calculated. Then
the re-calibration coefficients were verified using two data sets. The residual and validation results show that the time series of the recalibration findings is stable
and some abnormal fluctuations in the original OMB biases have been well corrected after re-calibration
indicating that the re-calibration methods are valid. The method is based on the system responses of microwave humidity sounder. Therefore
it is also applicable to other FY-3 series satellite microwave humidity sounders for calibration bias correction. When using the same Radiative Transfer (RT) model
this re-calibration methods can achieve consistent calibration of FY-3 series satellite microwave humidity sounder data.
FY-3C微波湿度计定标偏差OMB定标系统响应特性星上定标再定标模型卫星数据的一致性
FY-3C microwave humidity soundersre-calibration methodssystem responsesconsistency of satellite data
Bormann N, Geer A and English S J. 2012. Evaluation of the microwave ocean surface emissivity model FASTEM-5 in the IFS. Bracknell: European Centre for Medium Range Weather Forecasts [DOI: 10.21957/l936s9dfhttp://dx.doi.org/10.21957/l936s9df]
Buehler S A, Prange M, Mrziglod J, John V O, Burgdorf M and Lemke O. 2020. Opportunistic constant target matching—a new method for satellite intercalibration. Earth and Space Science, 7(5): e2019EA000856 [DOI: 10.1029/2019EA000856http://dx.doi.org/10.1029/2019EA000856]
Dee D P, Uppala S M, Simmons A J, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda M A, Balsamo G, Bauer P, Bechtold P, Beljaars A C M, Van De Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer A J, Haimberger L, Healy S B, Hersbach H, Hólm E V, Isaksen L, Kållberg P, Köhler M, Matricardi M, Mcnally A P, Monge-Sanz B M, Morcrette J J, Park B K, Peubey C, De Rosnay P, Tavolato C, Thépaut J N and Vitart F. 2011. The ERA-interim reanalysis: configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society, 137(656): 553-597 [DOI: 10.1002/qj.828http://dx.doi.org/10.1002/qj.828]
English S J and Hewison T J. 1998. Fast generic millimeter-wave emissivity model//Proceedings of SPIE 3503, Microwave Remote Sensing of the Atmosphere and Environment. Beijing: SPIE [DOI: 10.1117/12.319490http://dx.doi.org/10.1117/12.319490]
Goldberg M D, Crosby D S and Zhou L H. 2001. The limb adjustment of AMSU-A observations: methodology and validation. Journal of Applied Meteorology, 40(1): 70-83 [DOI: 10.1175/1520-0450(2001)040<0070:TLAOAA>2.0.CO;2http://dx.doi.org/10.1175/1520-0450(2001)040<0070:TLAOAA>2.0.CO;2]
Guo Y, Lu N M, Qi C L, Gu S Y and Xu J M. 2015. Calibration and validation of microwave humidity and temperature sounder onboard FY-3C satellite. Chinese Journal of Geophysics, 58(1): 20-31
郭杨, 卢乃锰, 漆成莉, 谷松岩, 许健民. 2015. 风云三号C星微波湿温探测仪的定标和验证. 地球物理学报, 58(1): 20-31 [DOI: 10.6038/cjg20150103http://dx.doi.org/10.6038/cjg20150103]
John V O, Allan R P, Bell W, Buehler S A and Kottayil A. 2013. Assessment of intercalibration methods for satellite microwave humidity sounders. Journal of Geophysical Research: Atmospheres, 118(10): 4906-4918 [DOI: 10.1002/jgrd.50358http://dx.doi.org/10.1002/jgrd.50358]
John V O, Holl G, Buehler S A, Candy B, Saunders R W and Parker D E. 2012. Understanding intersatellite biases of microwave humidity sounders using global simultaneous nadir overpasses. Journal of Geophysical Research: Atmospheres, 117(D2): D02305. [DOI: 10.1029/2011JD016349http://dx.doi.org/10.1029/2011JD016349]
Jones L, Datta S, Santos-Garcia A, Wang J R, Payne V, Viltard N and Wilheit T. 2013. Radiometric intercalibration of the microwave humidity sounder on NOAA-18, MetOp-A, and NOAA-19 using SAPHIR on megha-tropiques//IEEE International Geoscience and Remote Sensing Symposium. Melbourne: IEEE: 1151-1154 [DOI: 10.1109/IGARSS.2013.6721369http://dx.doi.org/10.1109/IGARSS.2013.6721369]
Zhang S W, He J Y, Wang Z Z and Wang X. 2014. In-orbit performance of microwave humidity and temperature sounder (MWHTS) of the Chinese FY-3C meteorological satellite. General Assembly and Scientific Symposium (URSI GASS), Beijing, China. 1-4[doi: 10.1109/URSIGASS.2014.6929598http://dx.doi.org/10.1109/URSIGASS.2014.6929598]
Li J Y, Wang Z Z, Gu S Y and Zhang S W. 2019. Common re-calibration technology for spaceborne microwave atmospheric humidity sounder. Remote Sensing Technology and Application, 34(6): 1212-1220
李娇阳, 王振占, 谷松岩, 张升伟. 2019. 星载微波大气湿度探测仪再定标共性技术分析. 遥感技术与应用, 34(6): 1212-1220 [DOI: 10.11873/j.issn.1004-0323.2019.6.1212http://dx.doi.org/10.11873/j.issn.1004-0323.2019.6.1212]
Liebe H J. 1989. MPM—An atmospheric millimeter-wave propagation model. International Journal of Infrared and Millimeter Waves, 10(6): 631-650 [DOI: 10.1007/BF01009565http://dx.doi.org/10.1007/BF01009565]
Liebe H J, Hufford G A and Cotton M G. 1993. Propagation modeling of moist air and suspended water/ice particles at frequencies below 1000 GHz//AGARD Conference Proceedings. Boulder: National Telecommunications and Information Administration: 542
Liu Q H, Weng F Z and English S J. 2011. An improved fast microwave water emissivity model. IEEE Transactions on Geoscience and Remote Sensing, 49(4): 1238-1250 [DOI: 10.1109/TGRS.2010.2064779http://dx.doi.org/10.1109/TGRS.2010.2064779]
Saunders R W, Blackmore T A, Candy B, Francis P N and Hewison T J. 2013. Monitoring satellite radiance biases using NWP models. IEEE Transactions on Geoscience and Remote Sensing, 51(3): 1124-1138 [DOI: 10.1109/TGRS.2012.2229283http://dx.doi.org/10.1109/TGRS.2012.2229283]
Tian X X, Zou X L and Yang S P. 2018. A limb correction method for the microwave temperature sounder 2 and its applications. Advances in Atmospheric Sciences, 35(12): 1547-1552 [DOI: 10.1007/s00376-018-8092-8http://dx.doi.org/10.1007/s00376-018-8092-8]
Wang Z Z,Xu H W,Duan Y Q,Wang W Y,Ding J,He W M and Zhang S W. 2023. Effect analysis of spectral response function of microwave humidity and temperature sounder onboard the FY-3D satellite. National Remote Sensing Bulletin, 27(2):394-405
王振占,许皓文,段永强,王文煜,丁甲,何文明,张升伟.2023.FY-3D星微波湿温探测仪通道响应函数的影响分析.遥感学报,27(2): 394-405 [DOI: 10.11834/jrs.20220450http://dx.doi.org/10.11834/jrs.20220450]
Weng F Z, Zhao L M, Ferraro R R, Poe G, Li X F and Grody N C. 2003. Advanced microwave sounding unit cloud and precipitation algorithms. Radio Science, 38(4): 8068 [DOI: 10.1029/2002RS002679http://dx.doi.org/10.1029/2002RS002679]
相关文章
相关作者
相关机构