XX(XX):1-19
- Pages: 1-19(2022)
DOI: 10.11834/jrs.20221497
Quote
扫 描 看 全 文
扫 描 看 全 文
Quote
黄媛,贺新光,万义良.XXXX.联合超像素降维和后处理优化的高光谱图像分类方法.遥感学报,XX(XX): 1-19
XX(XX):1-19. [J/OL]. National Remote Sensing Bulletin 1-19(2022)
针对高光谱图像样本标签量少且空间-光谱信息利用不充分而导致图像分类精度较低的问题,本文提出一种联合超像素降维和后验概率优化的高光谱图像分类方法。该方法首先基于高光谱图像的空间-光谱信息为每个样本构建局部邻域集合,并从局部邻域集合中提取超像素稀疏混合特征来充分表征图像的空谱信息和相关变化信息,然后将全局稀疏混合特征输入支持向量机分类器中生成像素的类别概率向量,最后采用后验概率模型优化类别概率向量,并依据概率最大值得到分类标签图。在三组常用的小规模数据集Indian Pines、Pavia University和Salinas,以及一组大规模数据集HoustonU上的实验结果表明:所提出的分类方法能够自适应地充分提取高光谱图像的高判别性特征信息,且在少量样本标签情形下,该方法在四组实验数据集上分别获得了98.58%、96.88%、98.54%和91.01%的总体分类精度,并优于目前几种先进的分类方法。
Objective Hyperspectral image (HSI) classification is one of the fundamental tasks in the field of applied remote sensing. As technological advances have increased the spatial and spectral resolutions available for data acquisition, the problem of achieving accurate HSI classification is becoming more challenging, especially for the HSI data with small labeled training samples and the insufficient utilization of spatial-spectral information in the HSI classification models. Aiming at these problems, this paper proposes a new HSI classification method (expressed as SKERW_SVM) by combining the superpixel dimension reduction (SDR) with post-processing optimization.Method First, we develop a superpixel sparse linear discriminant analysis (SSLDA) method by combining regional clustering (RC) with SLDA. In the SSLDA method, the RC is applied to construct a homogeneous local neighbourhood set with high spatial correlation and spectral similarity for each pixel of the HSI, and the SLDA to extract superpixel sparse mixture features that can fully characterize spatial-spectral information and related change information of the HSI based on the constructed homogeneous regions. Then, the extracted sparse mixture features are inputted into the support vector machine to generate the class probabilities of all pixels. Finally, the original class probabilities are optimized in the post-processing step by the extended random walker that can express the spatial relationship among adjacent pixels quantitatively, and the classification map is gotten according to the maximum probability.Result In order to assess the performance of the proposed method, a series of experiments are conducted on three small-scale HSI datasets including Indian Pines, University of Pavia, and Salinas, as well as a large-scale HSI dataset HoustonU. The proposed SKERW_SVM obtains overall accuracy of 98.58%, 96.88%, 98.54%, and 91.01%, respectively, on Indian Pines, University of Pavia, Salinas, and HoustonU. Experimental results demonstrate that our SKERW_SVM can fully mine the joint spatial-spectral features of HSI and achieve higher classification accuracy under the case of a small labeled training samples in comparison to several related advanced methods. Moreover, the operation time consuming by the SKERW_SVM is appropriate compared to other methods.Conclusion Therefore, under the lack of the labeled HSI pixels condition, the proposed HSI classification method by combining the SDR with post-processing optimization can efficiently extract the high discrimination mixture features information of HSI and significantly enhance classification performance. The SDR based on the homogeneous local regions, one of the components of the SKERW_SVM classification model, can greatly reduce the data redundancy and fully extract the information of spatial and spectral signatures in comparison to the pixel-wise dimension reduction methods. Meanwhile, the extended random walker in the post-processing step can fully use spatial information of HSI by constructing relationship graph to optimizing the original class probabilities, which further improves the classification performance.
高光谱图像分类超像素降维混合特征提取后处理优化支持向量机
hyperspectral image classificationsuperpixel dimension reductionmixture feature extractionpost-processing optimizationsupport vector machine
Achanta R, Shaji A, Smith K, Lucchi A, Fua P and Süsstrunk S. 2012. SLIC superpixels compared to state-of-the-art superpixel methods. IEEE transactions on pattern analysis and machine intelligence, 34(11): 2274-2282 [DOI: 10.1109/TPAMI.2012.120http://dx.doi.org/10.1109/TPAMI.2012.120]
Blanzieri E and Melgani F. 2008. Nearest neighbor classification of remote sensing images with the maximal margin principle. IEEE Transactions on geoscience and remote sensing, 46(6): 1804-1811 [DOI:10.1109/TGRS.2008.916090http://dx.doi.org/10.1109/TGRS.2008.916090]
Carrino T A, Crósta A P, Toledo C L B and Silva A M . 2018. Hyperspectral remote sensing applied to mineral exploration in southern Peru: A multiple data integration approach in the Chapi Chiara gold prospect. International journal of applied earth observation and geoinformation, 64: 287-300 [DOI:10.1016/j.jag.2017.05.004http://dx.doi.org/10.1016/j.jag.2017.05.004]
Camps-Valls G and Bruzzone L. 2005. Kernel-based methods for hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing, 43(6): 1351-1362 [DOI:10.1109/TGRS.2005.846154http://dx.doi.org/10.1109/TGRS.2005.846154]
Cheng W J and Chen W Q. 2020. Hyperspectral image classification based on MCFFN-Attention. Computer Engineering and Applications, 56(24): 201-206
程文娟, 陈文强. 2020. 基于MCFFN-Attention的高光谱图像分类. 计算机工程与应用, 56(24): 201-206 [DOI: 10.3778/j.issn.1002-8331.1911-0102http://dx.doi.org/10.3778/j.issn.1002-8331.1911-0102]
Dong X F, Gan F P, Li N, Yan B K, Zhang L, Zhao J Q, Yu J C, Liu R Y and Ma Y N. 2020. Fine mineral identification of GF-5 hyperspectral image. Journal of Remote Sensing, 24(4): 454-464
董新丰, 甘甫平, 李娜, 闫柏琨, 张磊, 赵佳琪, 于峻川, 刘镕源, 马燕妮. 2020. 高分五号高光谱影像矿物精细识别. 遥感学报, 24(4): 454-464 [DOI: 10.11834/jrs.20209194http://dx.doi.org/10.11834/jrs.20209194]
Dong A G, Zhang Q, Liu H C and Liang M M. 2019. Hyperspectral image classification based on TSNE and multiscale sparse auto-encoder. Computer Engineering and Applications, 55(21): 177-182+219
董安国, 张倩, 刘洪超, 梁苗苗. 2019. 基于TSNE和多尺度稀疏自编码的高光谱图像分类. 计算机工程与应用, 55(21): 177-182+219 [DOI: 10.3778/j.issn.1002-8331.1903-0155http://dx.doi.org/10.3778/j.issn.1002-8331.1903-0155]
Duan P, Ghamisi P, Kang X, Rasti B, Li S and Gloaguen R. 2020. Fusion of dual spatial information for hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing [DOI: 10.1109/TGRS.2020.3031928http://dx.doi.org/10.1109/TGRS.2020.3031928]
Fu Q, Guo C and Luo W L. 2020. A Hyperspectral image classification method based on spectral-spatial features. Laser & Optoelectronics Progress, 57(20): 380-386
付青, 郭晨, 罗文浪. 2020. 一种利用空谱联合特征的高光谱图像分类方法. 激光与光电子学进展, 57(20): 380-386 [DOI: 10.3788/LOP57.202803http://dx.doi.org/10.3788/LOP57.202803]
Felzenszwalb P F and Huttenlocher D P. 2004. Efficient graph-based image segmentation. International journal of computer vision, 59(2): 167-181 [DOI:10.1023/B:VISI.0000022288.19776.77http://dx.doi.org/10.1023/B:VISI.0000022288.19776.77]
Gao K L, Yu X C, Song Z H, Zhang J, Liu B and Sun Y F. 2021. Deep capsule network combined with spatial-spectral information for hyperspectral image classification. Journal of Remote Sensing, 25(06): 1257-1269
高奎亮, 余旭初, 宋治杭, 张晋, 刘冰, 孙一帆. 2021. 联合空谱信息的高光谱影像深度胶囊网络分类. 遥感学报, 25(06): 1257-1269 [DOI: 10.11834/jrs.20210309http://dx.doi.org/10.11834/jrs.20210309]
Grady L. 2006. Random walks for image segmentation. IEEE transactions on pattern analysis and machine intelligence, 28(11): 1768-1783 [DOI: 10.1109/TPAMI.2006.233http://dx.doi.org/10.1109/TPAMI.2006.233]
Hua Y, Zhang T, Xi H W, Wang Y F and Huang X L. 2012. Research on method of hyperspectral remote sensing image classification based on decision tree. Computer Technology and Development, 22(06): 198-202
华晔, 张涛, 奚后玮, 王玉斐, 黄秀丽. 2012. 基于决策树的高光谱遥感影像分类方法研究. 计算机技术与发展, 22(06): 198-202 [DOI: 10.3969/j.issn.1673-629X.2012.06.051http://dx.doi.org/10.3969/j.issn.1673-629X.2012.06.051]
Jiang J, Ma J, Chen C, Wang Z, Cai Z and Wang L. 2018. SuperPCA: A superpixelwise PCA approach for unsupervised feature extraction of hyperspectral imagery. IEEE Transactions on Geoscience and Remote Sensing, 56(8): 4581-4593 [DOI: 10.1109/TGRS.2018.2828029http://dx.doi.org/10.1109/TGRS.2018.2828029]
Kang X D, Li S T, Fang L Y, Li M X and Benediktsson J A. 2014. Extended random walker-based classification of hyperspectral images. IEEE Transactions on Geoscience and Remote Sensing, 53(1): 144-153 [DOI:10.1109/TGRS.2014.2319373http://dx.doi.org/10.1109/TGRS.2014.2319373]
Liang L, Di L, Zhang L, Deng M, Qin Z, Zhao S and Lin H. 2015. Estimation of crop LAI using hyperspectral vegetation indices and a hybrid inversion method. Remote Sensing of Environment, 165: 123-134 [DOI: 10.1016/j.rse.2015.04.032http://dx.doi.org/10.1016/j.rse.2015.04.032]
Li F Y, Huo H T, Li J and Bai J. 2019. Hyperspectral image classification via multiple-feature-based improved sparse representation. Acta Optica Sinica, 39(05): 351-359
李非燕, 霍宏涛, 李静, 白杰. 2019. 基于多特征和改进稀疏表示的高光谱图像分类. 光学学报, 39(05): 351-359 [DOI: 10.3788/AOS201939.0528004http://dx.doi.org/10.3788/AOS201939.0528004]
Li D, Kong F Q and Zhu D Y. 2021. Hyperspectral image classification based on local Gaussian mixture feature extraction. Acta Optica Sinica, 41(06): 78-89
李丹, 孔繁锵, 朱德燕. 2021. 基于局部高斯混合特征提取的高光谱图像分类. 光学学报, 41(06): 78-89 [DOI: 10.3788/AOS202141.0610001http://dx.doi.org/10.3788/AOS202141.0610001]
Li W, Chen C, Su H J and Du Q. 2015. Local binary patterns and extreme learning machine for hyperspectral imagery classification. IEEE Transactions on Geoscience and Remote Sensing, 53(7): 3681-3693 [DOI:10.1109/TGRS.2014.2381602http://dx.doi.org/10.1109/TGRS.2014.2381602]
Li C N, Shao Y H, Yin W and Liu M Z. 2019. Robust and sparse linear discriminant analysis via an alternating direction method of multipliers. IEEE transactions on neural networks and learning systems, 31(3): 915-926 [DOI: 10.1109/TNNLS.2019.2910991http://dx.doi.org/10.1109/TNNLS.2019.2910991]
Mou L, Lu X, Li X and Zhu X X. 2020. Nonlocal graph convolutional networks for hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing, 58(12): 8246-8257 [DOI: 10.1109/TGRS.2020.2973363http://dx.doi.org/10.1109/TGRS.2020.2973363]
Melgani F and Bruzzone L. 2004. Classification of hyperspectral remote sensing images with support vector machines. IEEE Transactions on geoscience and remote sensing, 42(8): 1778-1790 [DOI: 10.1109/TGRS.2004.831865http://dx.doi.org/10.1109/TGRS.2004.831865]
Prasad S and Bruce L M. 2008. Limitations of principal components analysis for hyperspectral target recognition. IEEE Geoscience and Remote Sensing Letters, 5(4): 625-629 [DOI: 10.1109/LGRS.2008.2001282http://dx.doi.org/10.1109/LGRS.2008.2001282]
Song X Y, Zhou L L, Li Z G, Chen J, Zeng L and Yan B. 2015. Review on superpixel methods in image segmentation. Journal of Image and Graphics, 20(05): 599-608
宋熙煜, 周利莉, 李中国, 陈健, 曾磊, 闫镔. 2015. 图像分割中的超像素方法研究综述. 中国图象图形学报, 20(05): 599-608 [DOI: 10.11834/jig.20150502http://dx.doi.org/10.11834/jig.20150502]
Shi J and Malik J. 2000. Normalized cuts and image segmentation. IEEE Transactions on pattern analysis and machine intelligence, 22(8): 888-905 [DOI: 10.1109/34.868688http://dx.doi.org/10.1109/34.868688]
Schölkopf B, Smola A and Müller K R. 1997, October. Kernel principal component analysis. In International conference on artificial neural networks (pp. 583-588). Springer, , HeidelbergBerlin.
Vincent L and Soille P. 1991. Watersheds in digital spaces: an efficient algorithm based on immersion simulations. IEEE Transactions on Pattern Analysis & Machine Intelligence, 13(06): 583-598 [DOI: 10.1109/34.87344http://dx.doi.org/10.1109/34.87344]
Wei X P, Yu X C, Zhang P Q, Zhi L and Yang F. 2020. CNN with local binary patterns for hyperspectral images classification. Journal of Remote Sensing, 24(08): 1000-1009
魏祥坡, 余旭初, 张鹏强, 职露, 杨帆. 2020. 联合局部二值模式的CNN高光谱图像分类. 遥感学报, 24(08): 1000-1009 [DOI: 10.11834/jrs.20208333http://dx.doi.org/10.11834/jrs.20208333]
Xu D, Yang M, Miao Y H, Yan J and Sun M. 2020. Research and application of accurate extraction method of island shoreline based on hyperspectral remote sensing of unmanned aerial vehicle. Marine Sciences, 44(12): 54-60
徐栋, 杨敏, 苗宇宏, 严晋, 孙苗. 2020. 基于无人机高光谱遥感的海岛岸线精准提取方法研究与应用. 海洋科学, 44(12): 54-60 [DOI: 10.11759/hykx20200529002http://dx.doi.org/10.11759/hykx20200529002]
Xu X, Li J, Wu C and Plaza A. 2018. Regional clustering-based spatial preprocessing for hyperspectral unmixing. Remote Sensing of Environment, 204: 333-346 [DOI: 10.1016/j.rse.2017.10.020http://dx.doi.org/10.1016/j.rse.2017.10.020]
Yan J W, Guo H D and Liu L. 2019. Overview of hyperspectral image classification. Optics and Precision Engineering, 27(03): 680-693
闫敬文, 陈宏达, 刘蕾. 2019. 高光谱图像分类的研究进展. 光学精密工程, 27(03): 680-693 [DOI: 10.3788/OPE.20192703.0680http://dx.doi.org/10.3788/OPE.20192703.0680]
Yu H, Xu Z, Wang Y, Jiao T and Guo Q. 2021. The use of KPCA over subspaces for cross-scale superpixel based hyperspectral image classification. Remote Sensing Letters, 12(5): 470-477 [DOI: 10.1080/2150704X.2021.1897180http://dx.doi.org/10.1080/2150704X.2021.1897180]
Zhang X D, Wang T J, Zhu S X and Yang Y. 2021. Hyperspectral image classification based on dilated convolutional attention neural network. Acta Optica Sinica, 41(03): 49-59
张祥东, 王腾军, 朱劭俊, 杨耘. 2021. 基于扩张卷积注意力神经网络的高光谱图像分类. 光学学报, 41(03): 49-59 [DOI: 10.3788/AOS202141.0310001http://dx.doi.org/10.3788/AOS202141.0310001]
Zheng C, Wang N and Cui J. 2019. Hyperspectral image classification with small training sample size using superpixel-guided training sample enlargement. IEEE Transactions on Geoscience and Remote Sensing, 57(10): 7307-7316 [DOI:10.1109/TGRS.2019.2912330http://dx.doi.org/10.1109/TGRS.2019.2912330]Hyperspectral image classification method combining superpixel dimension reduction with post-processing optimization
HUANG Yuan1, 2 , HE Xinguang1, 2* ,WAN Yiliang1, 2
1College of Geographic Sciences, Hunan Normal University, Changsha 410081, China;
2Key Laboratory of Geospatial Big Data Mining and Application, Hunan Province, Changsha 410081, China
相关文章
相关作者
相关机构