Potential Landslides Identification and Development Characteristics Analysis in Hunza valley, along China-Pakistan Economic Corridor based on SBAS-InSAR
- Pages: 1-19(2022)
DOI: 10.11834/jrs.20221536
扫 描 看 全 文
扫 描 看 全 文
Xiaojun SU, Yi ZHANG, Xingmin MENG, et al. Potential Landslides Identification and Development Characteristics Analysis in Hunza valley, along China-Pakistan Economic Corridor based on SBAS-InSAR. [J/OL]. National Remote Sensing Bulletin 1-19(2022)
中巴经济走廊巴基斯坦境内洪扎河谷(Hunza Valley)段地形高差巨大、地质环境复杂、滑坡灾害多发,对河谷内村镇威胁极大,也严重制约中巴经济走廊安全建设与运行。为了加深对Hunza河谷滑坡灾害的认识,非常有必要进行滑坡识别编目和发育特征研究。本研究基于升、降轨获取的87景哨兵一号(Sentinel-1)数据,利用SBAS-InSAR技术获取了洪扎河谷地表形变,计算了地表斜坡向形变速率。并综合利用光学遥感影像解译和野外实地调查验证,成功识别了洪扎河谷53处潜在滑坡,并对滑坡识别效果、典型滑坡变形进行了分析。在此基础上,以11个地质环境因素作为影响滑坡发育的因子,分析了滑坡分布发育特征。结果表明,升轨和降轨数据监测到研究区内斜坡向最大形变速率分别为-311 mm /a和 -490 mm /a,洪扎河谷区不稳定形变阈值为-20 mm/a。识别的潜在滑坡主要集中在河流两岸、公路上下边坡;潜在滑坡主要分布在风化堆积层以及千枚岩、板岩等变质岩区;高差200 - 1000 m、坡度30 - 40°和坡向南、南西向为滑坡发育的优势地形条件;斜坡地表裸露、植被稀疏地段物源充足,滑坡较为发育。研究结果可用于巴基斯坦洪扎河谷防灾减灾工作,保障中巴经济走廊畅通运营,为具有毁路与堵江风险的滑坡重点监测和评价研究提供科学参考和数据支持。
Objective The Hunza Valley along the China-Pakistan Economic Corridor in Northern Pakistan has a high relief and harsh geo-environment, and villages and towns are prone to the development of geo-hazards. There are high risks of geo-hazards to the construction and operation of the China-Pakistan Economic Corridor. In order to enhance the understanding of the landslide hazards in Hunza valley, it is significant to acquire the landslide inventory and analyze landslides development attributions.Method This study applied 45 images and 42 images of the ascending and descending sentinel-1A datasets, respectively, to monitor the surface deformation based on SBAS-InSAR. Furthermore, the deformation information along the slope direction were estimated. Based on the displacement rates derived from SAR data, we conducted the visual interpretation of optical remote sensing images and in-situ surveys and validation.Result Consequently, 53 potential landslides were detected and delineated. The effect of landslide identification in this study and the deformation features of typical landslides were analyzed. Eleven factors related to geomorphology, geology, hydrology, and vegetation were used in the analysis of landslide development. The results show that the maximum displacement velocity of -311 mm/a and -490 mm/a along the slope were detected with the ascending and descending datasets respectively. An annual deformation velocity of 20 mm/a was set as thresholds for the detection and mapping of potential landslides in the area of Hunza River valley.Conclusion The validated potential landslides are distributed on the slopes on both sides of the Hunza river, and sometimes are on the upper and lower slopes of the road. These active landslides are mostly located in the area within metamorphic rocks such as Phyllite and Slate. Landslides prefer to form and experience deformation in the topography where the elevation relief is within 200 – 1000 m, the slope is within 30 – 40 degrees, and the aspect is within south and southwest. Due to the high exposure of slope surface and sparse vegetation, weathered and fragmented slope provides enough provenance and materials for the development of landslides. The outcomes and results potentially facilitate hazards management and risk reduction in the Hunza Valley and thus the uninterrupted operation of the China-Pakistan Economic Corridor, and can provide scientific references and data support for the monitoring and assessments of the major landslide disasters that destroy roads and block rivers leading to secondary disaster events.
中巴经济走廊洪扎河谷滑坡SBAS-InSAR地表形变早期识别发育特征
China-Pakistan Economic CorridorHunza River valleylandslideSBAS-InSAREarth surface deformationearly identificationdevelopment characteristics
Ahmed M F and Rogers J D. 2014. First-Approximation Landslide Inventory Maps for Northern Pakistan, Using ASTER DEM Data and Geomorphic Indicators. Environmental & Engineering Geoscience, 20(1): 67-83 [10.2113/gseegeosci.20.1.67]
Ahmed M F, Rogers J D and Bakar M Z A. 2016. Hunza River Watershed Landslide and Related Features Inventory Mapping. Environmental Earth Sciences, 75(6): 522-533 [10.1007/s12665-015-5172-2]
Ali S, Biermanns P, Haider R and Reicherter K. 2019. Landslide susceptibility mapping by using a geographic information system (GIS) along the China–Pakistan Economic Corridor (Karakoram Highway), Pakistan. Natural Hazards and Earth System Sciences, 19(5): 999-1022 [10.5194/nhess-19-999-2019]
Ali S, Schneiderwind S and Reicherter K. 2017. Structural and Climatic Control of Mass Movements Along the Karakoram Highway, 4th World Landslide Forum. Springer, Ljubljana Slovenia EU, pp. 509-516.
Ardizzone F, Cardinali M, Carrara A, Guzzetti F and Reichenbach P. 2002. Impact of mapping errors on the reliability of landslide hazard maps. Natural Hazards and Earth System Sciences, 2(1/2): 3-14 [10.5194/nhess-2-3-2002]
Bacha A S, Shafique M and Werff H v d. 2018. Landslide Inventory and Susceptibility Modelling using Geospatial Tools, in Hunza-Nagar Valley, Northern Pakistan. Journal of Mountain Science, 15(6): 1354-1370 [10.1007/s11629-017-4697-0]
Berardino P, Costantini M, Franceschetti G, Iodice A and Rizzo V. 2003. Use of Differential SAR Interferometry in Monitoring and Modeling Large Slope Instability at Maratea (Basilicata, Italy). Engineering Geology, 68(1): 31-51 [10.1016/S0013-7952(02)00197-7 ]
Berardino P, Fornaro G, Lanari R and Sansosti E. 2002. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Transactions on Geoscience and Remote Sensing, 40(11): 2375-2383 [10.1109/tgrs.2002.803792]
Bontemps N, Lacroix P, Larose E, Jara J and Taipe E. 2020. Rain and small earthquakes maintain a slow-moving landslide in a persistent critical state. Nat Commun, 11(1): 780 [10.1038/s41467-020-14445-3]
Costantini M. 1998. A novel phase unwrapping method based on network programming. IEEE Transactions on Geoscience and Remote Sensing, 36(3): 813-821 [10.1109/36.673674]
Derbyshire E, Fort M and Owen L A. 2001. Geomorphological Hazards along the Karakoram Highway: Khunjerab Pass to the Gilgit River, Northernmost Pakistan. Erdkunde, 55(1): 49-71
Fraser J E, Searle M P, Parrish R R and Noble S R. 2001. Chronology of Deformation, Metamorphism, and Magmatism in the Southern Karakoram Mountains. Geological Society of America Bulletin, 113(11): 1443-1455 [10.1130/0016-7606(2001)113<1443:codmam>2.0.co;2]
Froude M J and Petley D N. 2018. Global fatal landslide occurrence from 2004 to 2016. Natural Hazards and Earth System Sciences, 18(8): 2161-2181 [10.5194/nhess-18-2161-2018]
Gabriel A K, Goldstein R M and Zebker H A. 1989. Mapping small elevation changes over large areas - Differential radar interferometry. 94(B7): 9183-9191
Goldstein R, M and Werner C. 1998. Radar interferogram filtering for geophysical applications. Geophysical Research Letters,25: 4035-4038 [10.1029/1998GL900033]
Guzzetti F, Cardinali M, Reichenbach P and Carrara A. 2000. Comparing Landslide Maps: A Case Study in the Upper Tiber River Basin, Central Italy. Environ Manage, 25(3): 247-263 [10.1007/s002679910020]
Haque U, Blum P, Silva P F d, Andersen P, Pilz J, Chalov S R, Malet J-P, Auflič M J, Andres N, Poyiadji E, Lamas P C, Zhang W, Peshevski I, Pétursson H G, Kurt T, Dobrev N, García-Davalillo J C, Halkia M, Ferri S, Gaprindashvili G, Engström J and Keellings D. 2016. Fatal Landslides in Europe. Landslides, 13(6): 1545-1554 [10.1007/s10346-016-0689-3]
Hooper A. 2008. A multi-temporal InSAR method incorporating both persistent scatterer and small baseline approaches. Geophysical Research Letters, 35(16) [10.1029/2008gl034654http://dx.doi.org/10.1029/2008gl034654]
Hussain M L, Shafique M, Bacha A S, Chen X-q and Chen H-y. 2021. Landslide inventory and susceptibility assessment using multiple statistical approaches along the Karakoram highway, northern Pakistan. Journal of Mountain Science, 18(3): 583-598 [10.1007/s11629-020-6145-9]
Intrieri E, Carlà T and Gigli G. 2019. Forecasting the Time of Failure of Landslides at Slope-scale: A Literature Review. Earth-Science Reviews,193: 333-349 [10.1016/j.earscirev.2019.03.019]
Kamp U, Owen L A, Growley B J and Khattak G A. 2009. Back analysis of landslide susceptibility zonation mapping for the 2005 Kashmir earthquake: an assessment of the reliability of susceptibility zoning maps. Natural Hazards, 54(1): 1-25 [10.1007/s11069-009-9451-7]
Kang Y, Lu Z, Zhao C Y, Xu Y K, Kim J-w and Gallegos A J. 2021. InSAR monitoring of creeping landslides in mountainous regions: A case study in Eldorado National Forest, California. Remote Sensing of Environment, 258: 112400 [10.1016/j.rse.2021.112400]
Kang Y, Zhao C Y, Zhang Q, Lu Z and Li B. 2017. Application of InSAR Techniques to an Analysis of the Guanling Landslide. Remote Sensing, 9(10): 1046 [10.3390/rs9101046]
Keefer D K, 2002. Investigating Landslides Caused by Earthquakes – A Historical Review. Surveys in Geophysics 23(6): 473–510
Lanari R, Zeni G, Manunta M, Guarino S, Berardino P and Sansosti E. 2004. An integrated SAR/GIS approach for investigating urban deformation phenomena: a case study of the city of Naples, Italy. International Journal of Remote Sensing, 25(14): 2855-2867
Li X, Zhou L, Su F, and Wu W. 2021. Application of InSAR technology in landslide hazard:Progress and prospects. National Remote Sensing Bulletin,25(2):614-629
李晓恩, 周亮, 苏奋振,吴文周, 2021. InSAR技术在滑坡灾害中的应用研究进展. 遥感学报, 25(2): 614-629[DOI10.11834/jrs.20209297]
Liao M S, Dong J, Li M H, Ao M, Zhang L and Shi X G. 2021. Radar remote sensing for potential landslides detection and deformation monitoring. National Remote Sensing Bulletin. 25(1): 332-341
廖明生,董杰,李梦华,敖萌,张路,史绪国. 2021. 雷达遥感滑坡隐患识别与形变监测.遥感学报,25(1): 332-341 [DOI:10.11834/jrs.20210162http://dx.doi.org/10.11834/jrs.20210162]
Liu X J, Zhao C Y, Zhang Q, Lu Z, Li Z H, Yang C S, Zhu W, Liu-Zeng J, Chen L Q and Liu C J. 2021. Integration of Sentinel-1 and ALOS/PALSAR-2 SAR datasets for mapping active landslides along the Jinsha River corridor, China. Engineering Geology, 284: 106033 [10.1016/j.enggeo.2021.106033]
Martha T R, van Westen C J, Kerle N, Jetten V and Vinod Kumar K. 2013. Landslide hazard and risk assessment using semi-automatically created landslide inventories. Geomorphology,184: 139-150 [10.1016/j.geomorph.2012.12.001]
Meusburger K and Alewell C. 2009. On the influence of temporal change on the validity of landslide susceptibility maps. Natural Hazards and Earth System Sciences, 9(4): 1495-1507 [10.5194/nhess-9-1495-2009]
Qing F, Zhao Y, Meng X M, Su X J, Qi T J and Yue D X. 2020. Application of Machine Learning to Debris Flow Susceptibility Mapping along the China–Pakistan Karakoram Highway. Remote Sensing, 12(18): 2933 [10.3390/rs12182933]
Rehman M U, Zhang Y, Meng X M, Su X J, Catani F, Rehman G, Yue D X, Khalid Z, Ahmad S and Ahmad I. 2020. Analysis of Landslide Movements Using Interferometric Synthetic Aperture Radar: A Case Study in Hunza-Nagar Valley, Pakistan. Remote Sensing, 12(12): 2054 [10.3390/rs12122054]
Schlögel R, Doubre C, Malet J-P and Masson F. 2015. Landslide Deformation Monitoring with ALOS/PALSAR Imagery: A D-InSAR Geomorphological Interpretation Method. Geomorphology,231: 314-330 [10.1016/j.geomorph.2014.11.031]
Schmidt D A and Bürgmann R. 2003. Time-dependent land uplift and subsidence in the Santa Clara valley, California, from a large interferometric synthetic aperture radar data set. Journal of Geophysical Research: Solid Earth, 108(B9) [10.1029/2002jb002267http://dx.doi.org/10.1029/2002jb002267]
Searle M P, Khan M A, Fraser J E, Gough S J and Jan M Q. 1999. The tectonic evolution of the Kohistan-Karakoram collision belt along the Karakoram Highway transect, north Pakistan. Tectonics, 18(6): 929-949 [10.1029/1999tc900042]
Shafique M, Van der Meijde M and Khan M A. 2016. A review of the 2005 Kashmir earthquake-induced landslides; from a remote sensing prospective. Journal of Asian Earth Sciences, 118(2016): 68-80 [10.1016/j.jseaes.2016.01.002]
Su, X J, Zhang, Y, Meng, X M, Yue D X, Ma J H, Guo F Y, Zhou Z Q, Rehman M U, Khalid Z, Chen G, Zeng R Q and Zhao F M. 2021. Landslide mapping and analysis along the China-Pakistan Karakoram Highway based on SBAS-InSAR detection in 2017. J. Mt. Sci. 18: 2540–25642021. [https://doi.org/10.1007/s11629-021-6686-6https://doi.org/10.1007/s11629-021-6686-6]
SU X J,Zhang Y,Jia J,Liang Y W,Li Y X,and Meng X M. 2021. InSAR-based monitoring and identification of potential landslides in Lueyang County,the Southern Qinling Mountains, China. Mountain Research, 39(1) : 59-70
苏晓军, 张毅, 贾俊, 梁懿文, 李媛茜,孟兴民. 2021. 基于InSAR技术的秦岭南部略阳县潜在滑坡灾害识别研究. 山地学报, 39(01): 59-70 [10.16089/j.cnki.1008-2786.000576]
Yang Z Q, Zhu Y Y, Qian S G and Hou K P. 2016. Types and space distribution characteristics of debris flow disasters along China-Pakistan highway. EJGE, 21: 191-200
Yang Z Q, Zhu Y Y, Zou D H S and Liao L P. 2011. Activity Degree Evaluation of Glacial Debris Flow along International Karakorum Highway (KKH) Based on Fuzzy Theory. Advanced Materials Research, 261-263: 1167-1171 [10.4028/www.scientific.net/AMR.261-263.1167]
Zhao C, Zhang Q, He Y, Peng J, Yang C and Kang Y. 2016. Small-scale loess landslide monitoring with small baseline subsets interferometric synthetic aperture radar technique—case study of Xingyuan landslide, Shaanxi, China. Journal of Applied Remote Sensing, 10(2): 026030 [10.1117/1.jrs.10.026030]
Zhao F M, Meng X M, Zhang Y, Chen G, Su X J and Yue D X. 2019. Landslide Susceptibility Mapping of Karakorum Highway Combined with the Application of SBAS-InSAR Technology. Sensors, 19(12): 2685-2702 [10.3390/s19122685]
Zhao F M, Zhang Y, Meng X M, Su X J and Shi W. 2020. Early identification of geological hazards in the Gaizi valley near the Karakoran Highway based on SBAS-InSAR technology. Hydrogeology & Engineering Geology, 47(1): 142-152
赵富萌, 张毅, 孟兴民, 苏晓军, 石伟. 2020. 基于小基线集雷达干涉测量的中巴公路盖孜河谷地质灾害早期识别. 水文地质工程地质, 47(1): 142-152 [10.16030/j.cnki.issn.1000-3665.201902020]
Zhang Y D, Li Y D, Dong J, Fan Q, Che B, Zhang L, Zhou Y and Liao M S. 2019. Landslide hazard detection in Markam with time-series InSAR analyses. Journal of Remote Sensing, 23(5): 987–996
张亚迪, 李煜东, 董杰, 范强, 车彬, 张路, 周杨, 廖明生. 2019. 时序InSAR技术探测芒康地区滑坡灾害隐患. 遥感学报, 23(5): 987–996 [DOI:10.11834/jrs.20198025http://dx.doi.org/10.11834/jrs.20198025]
相关作者
相关机构