Research progress on radar remote sensing for rice growth monitoring
- Vol. 27, Issue 10, Pages: 2363-2382(2023)
Published: 07 October 2023
DOI: 10.11834/jrs.20221701
扫 描 看 全 文
浏览全部资源
扫码关注微信
Published: 07 October 2023 ,
扫 描 看 全 文
何泽,李世华.2023.水稻雷达遥感监测研究进展.遥感学报,27(10): 2363-2382
He Z and Li S H. 2023. Research progress on radar remote sensing for rice growth monitoring. National Remote Sensing Bulletin, 27(10):2363-2382
水稻是重要的粮食作物,及时准确地获取水稻种植面积和长势信息,可以为田间耕作管理和农业政策制定提供支撑。星载合成孔径雷达SAR(Synthetic Aperture Radar)成像不受气象干扰,能敏锐地响应水稻植株发育和土壤水分变化,是多云雾地区水稻生长监测的重要数据源。水稻雷达遥感研究的成果丰富但脉络复杂,有必要结合关键问题和主要方法,对水稻雷达遥感的发展历程、现状和前景进行梳理和分析。本文在整理统计国内外(1991年—2021年)相关文献的基础上,将水稻雷达遥感的关键问题概括为种植面积提取、生理参数反演、物候与熟制识别3大焦点,将监测方法提炼为数理分析、机器学习和多源协同3条主线。其中,种植面积提取概括为4种思路:时序变化分析、机器学习、面向对象分类和多源协同,生理参数反演总结为5种算法:经验模型、物理模型、半经验模型、数据同化和多源协同,物候与熟制识别归纳为两种策略:时序检测和机器学习。从数据属性和模型结构的角度,介绍各种方法的工作原理和适用场景,阐述不同方法的优势和局限性。最后,结合SAR成像性能和计算机技术的发展态势,对未来研究进行展望。本文指出水稻雷达遥感监测尚有3大难题亟待解决:(1)破碎地块和复杂地形;(2)稻田栽培条件多样;(3)季候异步和轮作间作。今后研究应重点关注:(1)依赖更少先验信息的种植面积精细识别;(2)顾及建模效率与精度的生理参数动态反演;(3)结合生长机理和时序观测的物候熟制自动识别。上述课题的发展,将有效提升水稻雷达遥感监测的时空精度。
Rice is one of the most productive food crops of Asian countries. Timely and accurate access to rice cultivation information can provide professional support for farming management and agricultural policy-making. Space-borne Synthetic Aperture Radar (SAR) imaging is free from meteorological interference and can sensitively respond to rice plant development and soil moisture changes. Therefore
satellites equipped with various SAR sensors are important data sources for rice growth monitoring in cloudy and foggy areas. The research progress of microwave remote sensing in rice growth monitoring has been made on all fronts
but the technical evolution and relationship of different research topics are complex and relatively confusing.
The development history
current focus
and innovation prospect of rice radar remote sensing should be reviewed and analyzed
considering the key scientific problems and main experimental approaches. Based on the collation and statistics of relevant literature in the recent 30 years
the key problems of rice radar remote sensing are summarized into three study focuses: planting area identification
biophysical parameter retrieval
and phenology and cropping intensity recognition. Then
the technical methods are summarized into three research strategies: mathematical and physical analysis
machine learning
and multisource data synergism.
Specifically
rice planting area identification methods are divided into four schemes: time domain change analysis
machine learning
object-oriented classification
and multisource data synergism. Rice biophysical parameter retrieval methods are divided into five models: empirical model
physical model
semi-empirical model
data assimilation
and multi-source data synergism. Rice phenology and cropping intensity recognition methods are divided into two algorithms: time-series feature detection and multi-temporal machine learning. From the perspective of data attributes and model structure
the theoretical basis and applicable conditions of different methods are introduced
and their advantages and limitations are explained. Finally
in view of the rapid advancement of SAR imaging capability and computer science
the future research issues are discussed.
Therefore
the three difficult points to be solved in rice radar remote sensing monitoring are as follows: (1) fragmented farmlands and fluctuant terrain; (2) diverse cultivation conditions
and (3) asynchronous phenology and complex interplant. The future study should focus on the following: (1) high temporal-spatial resolution of rice planting area identification relying on less prior information; (2) dynamic retrieval of rice biophysical parameters balancing model efficiency and accuracy; (3) automatic recognition of rice phenology and cropping intensity combining plant growth mechanism and time series observation. The improvement of these research topics profoundly promotes the practical application of rice radar remote sensing.
SAR水稻种植面积生理参数物候熟制
SARriceplanting areabiophysical parametersphenologycropping intensity
Alebele Y, Zhang X, Wang W H, Yang G X, Yao X, Zheng H B, Zhu Y, Cao W X and Cheng T. 2020. Estimation of canopy biomass components in paddy rice from combined optical and SAR data using multi-target gaussian regressor stacking. Remote Sensing, 12(16): 2564 [DOI: 10.3390/rs12162564http://dx.doi.org/10.3390/rs12162564]
Attema E P W and Ulaby F T. 1978. Vegetation modeled as a water cloud. Radio Science, 13(2): 357-364 [DOI: 10.1029/RS013i002p00357http://dx.doi.org/10.1029/RS013i002p00357]
Bazzi H, Baghdadi N, El Hajj M, Zribi M, Minh D H T, Ndikumana E, Courault D and Belhouchette H. 2019. Mapping paddy rice using Sentinel-1 SAR time series in Camargue, France. Remote Sensing, 11(7): 887 [DOI: 10.3390/rs11070887http://dx.doi.org/10.3390/rs11070887]
Bouman B A M and van Laar H H. 2006. Description and evaluation of the rice growth model ORYZA2000 under nitrogen-limited conditions. Agricultural Systems, 87(3): 249-273 [DOI: 10.1016/j.agsy.2004.09.011http://dx.doi.org/10.1016/j.agsy.2004.09.011]
Bouvet A and Le Toan T. 2011. Use of ENVISAT/ASAR wide-swath data for timely rice fields mapping in the Mekong River Delta. Remote Sensing of Environment, 115(4): 1090-1101 [DOI10.1016/j.rse.2010.12.014]
Bouvet A, Le Toan T and Lam-Dao N. 2009. Monitoring of the rice cropping system in the Mekong delta using ENVISAT/ASAR dual polarization data. IEEE Transactions on Geoscience and Remote Sensing, 47(2): 517-526 [DOI: 10.1109/Tgrs.2008.2007963http://dx.doi.org/10.1109/Tgrs.2008.2007963]
Brisco B, Li K, Tedford B, Charbonneau F, Yun S and Murnaghan K. 2013. Compact polarimetry assessment for rice and wetland mapping. International Journal of Remote Sensing, 34(6): 1949-1964 [DOI: 10.1080/01431161.2012.730156http://dx.doi.org/10.1080/01431161.2012.730156]
Cai Y T, Lin H and Zhang M. 2019. Mapping paddy rice by the object-based random forest method using time series Sentinel-1/Sentinel-2 data. Advances in Space Research, 64(11): 2233-2244 [DOI: 10.1016/j.asr.2019.08.042http://dx.doi.org/10.1016/j.asr.2019.08.042]
Chakraborty M, Manjunath K R, Panigrahy S, Kundu N and Parihar J S. 2005. Rice crop parameter retrieval using multi-temporal, multi-incidence angle Radarsat SAR data. ISPRS Journal of Photogrammetry and Remote Sensing, 59(5): 310-322 [DOI: 10.1016/j.ISPRSjprs.2005.05.001http://dx.doi.org/10.1016/j.ISPRSjprs.2005.05.001]
Chang L N, Chen Y T, Wang J H and Chang Y L. 2021. Rice-Field mapping with Sentinel-1A SAR time-series data. Remote Sensing, 13(1): 103 [DOI: 10.3390/rs13010103http://dx.doi.org/10.3390/rs13010103]
Chen C and McNairn H. 2006. A neural network integrated approach for rice crop monitoring. International Journal of Remote Sensing, 27(7): 1367-1393 [DOI: 10.1080/01431160500421507http://dx.doi.org/10.1080/01431160500421507]
Chen J S, Lin H, Huang C D and Fang C Y. 2009. The relationship between the leaf area index (LAI) of rice and the C-band SAR vertical/horizontal (VV/HH) polarization ratio. International Journal of Remote Sensing, 30(8): 2149-2154 [DOI: 10.1080/01431160802609700http://dx.doi.org/10.1080/01431160802609700]
Chen J S, Lin H and Pei Z Y. 2007. Application of ENVISAT ASAR data in mapping rice crop growth in southern China. IEEE Geoscience and Remote Sensing Letters, 4(3): 431-435 [DOI: 10.1109/Lgrs.2007.896996http://dx.doi.org/10.1109/Lgrs.2007.896996]
Choudhury I and Chakraborty M. 2006. SAR signature investigation of rice crop using RADARSAT data. International Journal of Remote Sensing, 27(3): 519-534 [DOI: 10.1080/01431160500239172http://dx.doi.org/10.1080/01431160500239172]
Choudhury I, Chakraborty M, Santra S C and Parihar J S. 2012. Methodology to classify rice cultural types based on water regimes using multi-temporal RADARSAT-1 data. International Journal of Remote Sensing, 33(13): 4135-4160 [DOI: 10.1080/01431161.2011.642018http://dx.doi.org/10.1080/01431161.2011.642018]
Clauss K, Ottinger M, Leinenkugel P and Kuenzer C. 2018. Estimating rice production in the Mekong Delta, Vietnam, utilizing time series of Sentinel-1 SAR data. International Journal of Applied Earth Observation and Geoinformation, 73: 574-585 [DOI: 10.1016/j.jag.2018.07.022http://dx.doi.org/10.1016/j.jag.2018.07.022]
Cloude S R and Pottier E. 1997. An entropy based classification scheme for land applications of polarimetric SAR. IEEE Transactions on Geoscience and Remote Sensing, 35(1): 68-78 [DOI: 10.1109/36.551935http://dx.doi.org/10.1109/36.551935]
Corcione V, Nunziata F, Mascolo L and Migliaccio M. 2016. A study of the use of COSMO-SkyMed SAR PingPong polarimetric mode for rice growth monitoring. International Journal of Remote Sensing, 37(3): 633-647 [DOI: 10.1080/01431161.2015.1131902http://dx.doi.org/10.1080/01431161.2015.1131902]
Davitt A, Winter J M and McDonald K. 2020. Integrated crop growth and radiometric modeling to support Sentinel synthetic aperture radar observations of agricultural fields. Journal of Applied Remote Sensing, 14(4): 044508 [DOI: 10.1117/1.Jrs.14.044508http://dx.doi.org/10.1117/1.Jrs.14.044508]
de Castro Filho H C, de Carvalho Júnior O A, de Carvalho O L F, de Bem P P, dos Santos de Moura R, de Albuquerque A O, Silva C R, Ferreira P H G, Guimaraes R F and Gomes R A T. 2020. Rice crop detection using LSTM, Bi-LSTM, and machine learning models from Sentinel-1 time series. Remote Sensing, 12(16): 2655 [DOI: 10.3390/rs12162655http://dx.doi.org/10.3390/rs12162655]
Du Y, Guo C Q, Wen N, Ge C Q and Huang F. 2014. Application of rice field extraction based on multi-temporal COSMO-SkyMed SAR data. Remote Sensing Information, 29(3): 30-34
杜烨, 郭长青, 文宁, 葛春青, 黄峰. 2014. 基于多时相COSMO-SkyMed SAR数据对水稻信息提取方法的研究与应用. 遥感信息, 29(3): 30-34 [DOI: 10.3969/j.issn.1000-3177.2014.03.006http://dx.doi.org/10.3969/j.issn.1000-3177.2014.03.006]
Erasmi S and Twele A. 2009. Regional land cover mapping in the humid tropics using combined optical and SAR satellite data—a case study from Central Sulawesi, Indonesia. International Journal of Remote Sensing, 30(10): 2465-2478 [DOI: 10.1080/01431160802552728http://dx.doi.org/10.1080/01431160802552728]
Erten E, Lopez-Sanchez J M, Yuzugullu O and Hajnsek I. 2016. Retrieval of agricultural crop height from space: a comparison of SAR techniques. Remote Sensing of Environment, 187: 130-144 [DOI: 10.1016/j.rse.2016.10.007http://dx.doi.org/10.1016/j.rse.2016.10.007]
Erten E, Rossi C and Yuzugullu O. 2015. Polarization impact in TanDEM-X data over vertical-oriented vegetation: the paddy-rice case study. IEEE Geoscience and Remote Sensing Letters, 12(7): 1501-1505 [DOI: 10.1109/Lgrs.2015.2410339http://dx.doi.org/10.1109/Lgrs.2015.2410339]
Freeman A and Durden S L. 1998. A three-component scattering model for polarimetric SAR data. IEEE Transactions on Geoscience and Remote Sensing, 36(3): 963-973 [DOI: 10.1109/36.673687http://dx.doi.org/10.1109/36.673687]
Gandharum L, Mulyani M E, Hartono D M, Karsidi A and Ahmad M. 2021. Remote sensing versus the area sampling frame method in paddy rice acreage estimation in Indramayu regency, West Java province, Indonesia. International Journal of Remote Sensing, 42(5): 1738-1767 [DOI: 10.1080/01431161.2020.1842541http://dx.doi.org/10.1080/01431161.2020.1842541]
Gstaiger V, Huth J, Gebhardt S, Wehrmann T and Kuenzer C. 2012. Multi-sensoral and automated derivation of inundated areas using TerraSAR-X and ENVISAT ASAR data. International Journal of Remote Sensing, 33(22): 7291-7304 [DOI: 10.1080/01431161.2012.700421http://dx.doi.org/10.1080/01431161.2012.700421]
Guo X Y, Li K, Shao Y, Wang Z Y, Li H Y, Yang Z, Liu L and Wang S L. 2018. Inversion of rice biophysical parameters using simulated compact polarimetric SAR C-Band data. Sensors, 18(7): 2271 [DOI: 10.3390/s18072271http://dx.doi.org/10.3390/s18072271]
He Z, Li S H, Wang Y, Dai L Y and Lin S. 2018. Monitoring rice phenology based on backscattering characteristics of multi-temporal RADARSAT-2 datasets. Remote Sensing, 10(2): 340 [DOI: 10.3390/rs10020340http://dx.doi.org/10.3390/rs10020340]
He Z, Li S H, Wang Y, Hu Y M and Chen F X. 2019. Assessment of leaf area index of rice for a growing cycle using multi-temporal C-Band PolSAR datasets. Remote Sensing, 11(22): 2640 [DOI: 10.3390/rs11222640http://dx.doi.org/10.3390/rs11222640]
Hoang H K, Bernier M, Duchesne S and Tran Y M. 2016. Rice mapping using RADARSAT-2 dual- and quad-pol data in a complex land-use watershed: Cau River Basin (Vietnam). IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9(7): 3082-3096 [DOI: 10.1109/Jstars.2016.2586102http://dx.doi.org/10.1109/Jstars.2016.2586102]
Huang C, Xu Z X, Zhang C C, Li H, Liu Q S, Yang Z K and Liu G H. 2020. Extraction of rice planting structure in tropical region based on Sentinel-1 temporal features integration. Transactions of the Chinese Society of Agricultural Engineering, 36(9): 177-184
黄翀, 许照鑫, 张晨晨, 李贺, 刘庆生, 杨振坤, 刘高焕. 2020. 基于Sentinel-1数据时序特征的热带地区水稻种植结构提取方法. 农业工程学报, 36(9): 177-184 [DOI: 10.11975/j.issn.1002-6819.2020.09.020http://dx.doi.org/10.11975/j.issn.1002-6819.2020.09.020]
Hütt C, Koppe W, Miao Y X and Bareth G. 2016. Best Accuracy Land Use/Land Cover (LULC) classification to derive crop types using multitemporal, multisensor, and multi-polarization SAR satellite images. Remote Sensing, 8(8): 684 [DOI: 10.3390/rs8080684http://dx.doi.org/10.3390/rs8080684]
Inoue Y and Sakaiya E. 2013. Relationship between X-band backscattering coefficients from high-resolution satellite SAR and biophysical variables in paddy rice. Remote Sensing Letters, 4(3): 288-295 [DOI: 10.1080/2150704x.2012.725482http://dx.doi.org/10.1080/2150704x.2012.725482]
Inoue Y, Sakaiya E and Wang C Z. 2014. Capability of C-band backscattering coefficients from high-resolution satellite SAR sensors to assess biophysical variables in paddy rice. Remote Sensing of Environment, 140: 257-266 [DOI: 10.1016/j.rse.2013.09.001http://dx.doi.org/10.1016/j.rse.2013.09.001]
Jia M Q, Tong L, Chen Y, Wang Y and Zhang Y Z. 2013. Rice biomass retrieval from multitemporal ground-based scatterometer data and RADARSAT-2 images using neural networks. Journal of Applied Remote Sensing, 7(1): 073509 [DOI: 10.1117/1.Jrs.7.073509http://dx.doi.org/10.1117/1.Jrs.7.073509]
Karam M A, Amar F, Fung A K, Mougin E, Lopes A, Le Vine D M and Beaudoin A. 1995. A microwave polarimetric scattering model for forest canopies based on vector radiative transfer theory. Remote Sensing of Environment, 53(1): 16-30 [DOI10.1016/0034-4257(95)00048-6]
Karila K, Nevalainen O, Krooks A, Karjalainen M and Kaasalainen S. 2014. Monitoring changes in rice cultivated area from SAR and optical satellite images in Ben Tre and Tra Vinh provinces in Mekong Delta, Vietnam. Remote Sensing, 6(5): 4090-4108 [DOI: 10.3390/rs6054090http://dx.doi.org/10.3390/rs6054090]
Koay J Y, Tan C P, Lim K S, bin Abu Bakar S B, Ewe H T, Chuah H T and Kong J A. 2007. Paddy fields as electrically dense media: theoretical modeling and measurement comparisons. IEEE Transactions on Geoscience and Remote Sensing, 45(9): 2837-2849 [DOI: 10.1109/Tgrs.2007.902291http://dx.doi.org/10.1109/Tgrs.2007.902291]
Kucuk C, Taskin G and Erten E. 2016. Paddy-rice phenology classification based on machine-learning methods using multitemporal Co-Polar X-Band SAR images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9(6): 2509-2519 [DOI: 10.1109/Jstars.2016.2547843http://dx.doi.org/10.1109/Jstars.2016.2547843]
Lasko K, Vadrevu K P, Tran V T and Justice C. 2018. Mapping double and single crop paddy rice with Sentinel-1A at varying spatial scales and polarizations in Hanoi, Vietnam. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11(2): 498-512 [DOI: 10.1109/Jstars.2017.2784784http://dx.doi.org/10.1109/Jstars.2017.2784784]
Lee K S and Lee S I. 2003. Assessment of post-flooding conditions of rice fields with multi-temporal satellite SAR data. International Journal of Remote Sensing, 24(17): 3457-3465 [DOI: 10.1080/0143116021000021206http://dx.doi.org/10.1080/0143116021000021206]
Le Toan T, Ribbes F, Wang L F, Floury N, Ding K H, Kong J A, Fujita M and Kurosu T. 1997. Rice crop mapping and monitoring using ERS-1 data based on experiment and modeling results. IEEE Transactions on Geoscience and Remote Sensing, 35(1): 41-56 [DOI: 10.1109/36.551933http://dx.doi.org/10.1109/36.551933]
Li H, Fu D J, Huang C, Su F Z, Liu Q S, Liu G H and Wu S R. 2020. An approach to high-resolution rice paddy mapping using time-series Sentinel-1 SAR data in the Mun River Basin, Thailand. Remote Sensing, 12(23): 3959 [DOI: 10.3390/rs12233959http://dx.doi.org/10.3390/rs12233959]
Li Y, Liao Q F, Li X, Liao S D, Chi G B and Peng S L. 2003. Towards an operational system for regional-scale rice yield estimation using a time-series of Radarsat ScanSAR images. International Journal of Remote Sensing, 24(21): 4207-4220 [DOI: 10.1080/0143116031000095970http://dx.doi.org/10.1080/0143116031000095970]
Liu M, Liu X N, Liu M L, Liu F, Jin M and Wu L. 2016a. Root mass ratio: index derived by assimilation of synthetic aperture radar and the improved World Food Study model for heavy metal stress monitoring in rice. Journal of Applied Remote Sensing, 10(2): 026038 [DOI: 10.1117/1.Jrs.10.026038http://dx.doi.org/10.1117/1.Jrs.10.026038]
Liu Y, Chen K S, Xu P and Li Z L. 2016b. Modeling and characteristics of microwave backscattering from rice canopy over growth stages. IEEE Transactions on Geoscience and Remote Sensing, 54(11): 6757-6770 [DOI: 10.1109/Tgrs.2016.2590439http://dx.doi.org/10.1109/Tgrs.2016.2590439]
Lopez-Sanchez J M, Cloude S R and Ballester-Berman J D. 2012. Rice phenology monitoring by means of SAR polarimetry at X-band. IEEE Transactions on Geoscience and Remote Sensing, 50(7): 2695-2709 [DOI: 10.1109/Tgrs.2011.2176740http://dx.doi.org/10.1109/Tgrs.2011.2176740]
Lopez-Sanchez J M, Vicente-Guijalba F, Ballester-Berman J D and Cloude S R. 2014. Polarimetric response of rice fields at C-Band: analysis and phenology retrieval. IEEE Transactions on Geoscience and Remote Sensing, 52(5): 2977-2993 [DOI: 10.1109/Tgrs.2013.2268319http://dx.doi.org/10.1109/Tgrs.2013.2268319]
Lopez-Sanchez J M, Vicente-Guijalba F, Erten E, Campos-Taberner M and Garcia-Haro F J. 2017. Retrieval of vegetation height in rice fields using polarimetric SAR interferometry with TanDEM-X data. Remote Sensing of Environment, 192: 30-44 [DOI: 10.1016/j.rse.2017.02.004http://dx.doi.org/10.1016/j.rse.2017.02.004]
Mandal D, Kumar V, Bhattacharya A, Rao Y S, Siqueira P and Bera S. 2018. Sen4Rice: a processing chain for differentiating early and late transplanted rice using time-series Sentinel-1 SAR data with Google earth engine. IEEE Geoscience and Remote Sensing Letters, 15(12): 1947-1951 [DOI: 10.1109/Lgrs.2018.2865816http://dx.doi.org/10.1109/Lgrs.2018.2865816]
Mansaray L R, Huang W J, Zhang D D, Huang J F and Li J. 2017. Mapping rice fields in Urban Shanghai, Southeast China, using Sentinel-1A and Landsat 8 datasets. Remote Sensing, 9(3): 257 [DOI: 10.3390/rs9030257http://dx.doi.org/10.3390/rs9030257]
McDonald K C and Ulaby F T. 1993. Radiative transfer modelling of discontinuous tree canopies at microwave frequencies. International Journal of Remote Sensing, 14(11): 2097-2128 [DOI: 10.1080/01431169308954024http://dx.doi.org/10.1080/01431169308954024]
Minh H V T, Avtar R, Mohan G, Misra P and Kurasaki M. 2019. Monitoring and mapping of rice cropping pattern in flooding area in the Vietnamese Mekong Delta using Sentinel-1A data: a case of an Giang Province. ISPRS International Journal of Geo-Information, 8(5): 211 [DOI: 10.3390/ijgi8050211http://dx.doi.org/10.3390/ijgi8050211]
Miyaoka K, Maki M, Susaki J, Homma K, Noda K and Oki K. 2013. Rice-planted area mapping using small sets of multi-temporal SAR data. IEEE Geoscience and Remote Sensing Letters, 10(6): 1507-1511 [DOI: 10.1109/Lgrs.2013.2261049http://dx.doi.org/10.1109/Lgrs.2013.2261049]
Ndikumana E, Minh D H T, Baghdadi N, Courault D and Hossard L. 2018a. Deep recurrent neural network for agricultural classification using multitemporal SAR Sentinel-1 for Camargue, France. Remote Sensing, 10(8): 1217 [DOI: 10.3390/rs10081217http://dx.doi.org/10.3390/rs10081217]
Ndikumana E, Minh D H T, Nguyen H T D, Baghdadi N, Courault D, Hossard L and El Moussawi I. 2018b. Estimation of rice height and biomass using multitemporal SAR Sentinel-1 for Camargue, Southern France. Remote Sensing, 10(9): 1394 [DOI: 10.3390/rs10091394http://dx.doi.org/10.3390/rs10091394]
Nelson A, Setiyono T, Rala A B, Quicho E D, Raviz J V, Abonete P J, Maunahan A A, Garcia C A, Bhatti H Z M, Villano L S, Thongbai P, Holecz F, Barbieri M, Collivignarelli F, Gatti L, Quilang E J P, Mabalay M R O, Mabalot P E, Barroga M I, Bacong A P, Detoito N T, Berja G B, Varquez F, Wahyunto, Kuntjoro D, Murdiyati S R, Pazhanivelan S, Kannan P, Mary P C N, Subramanian E, Rakwatin P, Intrman A, Setapayak T, Lertna S, Minh V Q, Tuan V Q, Duong T H, Quyen N H, Van Kham D, Hin S, Veasna T, Yadav M, Chin C and Ninh N H. 2014. Towards an operational SAR-based rice monitoring system in Asia: examples from 13 demonstration sites across Asia in the RIICE Project. Remote Sensing, 6(11): 10773-10812 [DOI: 10.3390/rs61110773http://dx.doi.org/10.3390/rs61110773]
Nguyen D B, Clauss K, Cao S M, Naeimi V, Kuenzer C and Wagner W. 2015. Mapping rice seasonality in the Mekong delta with multi-year Envisat ASAR WSM data. Remote Sensing, 7(12): 15868-15893 [DOI: 10.3390/rs71215808http://dx.doi.org/10.3390/rs71215808]
Nguyen D B, Gruber A and Wagner W. 2016. Mapping rice extent and cropping scheme in the Mekong Delta using Sentinel-1A data. Remote Sensing Letters, 7(12): 1209-1218 [DOI: 10.1080/2150704x.2016.1225172http://dx.doi.org/10.1080/2150704x.2016.1225172]
Nguyen D B and Wagner W. 2017. European rice cropland mapping with Sentinel-1 data: the mediterranean region case study. Water, 9(6): 392 [DOI: 10.3390/w9060392http://dx.doi.org/10.3390/w9060392]
Onojeghuo A O, Blackburn G A, Wang Q M, Atkinson P M, Kindred D and Miao Y X. 2018. Mapping paddy rice fields by applying machine learning algorithms to multi-temporal Sentinel-1A and Landsat data. International Journal of Remote Sensing, 39(4): 1042-1067 [DOI: 10.1080/01431161.2017.1395969http://dx.doi.org/10.1080/01431161.2017.1395969]
Panigrahy S, Chakraborty M, Sharma S A, Kundu N, Ghose S C and Pal M. 1997. Early estimation of rice area using temporal ERS-1 synthetic aperture radar data - A case study for the Howrah and Hughly districts of West Bengal, India. International Journal of Remote Sensing, 18(8): 1827-1833 [DOI: 10.1080/014311697218133http://dx.doi.org/10.1080/014311697218133]
Park S, Im J, Park S, Yoo C, Han H and Rhee J. 2018. Classification and mapping of paddy rice by combining Landsat and SAR time series data. Remote Sensing, 10(3): 447 [DOI: 10.3390/rs10030447http://dx.doi.org/10.3390/rs10030447]
Phan H, Le Toan T, Bouvet A, Nguyen L D, Duy T P and Zribi M. 2018. Mapping of rice varieties and sowing date using X-Band SAR data. Sensors, 18(2): 316 [DOI: 10.3390/s18010316http://dx.doi.org/10.3390/s18010316]
Pierdicca N, Pulvirenti L, Boni G, Squicciarino G and Chini M. 2017. Mapping flooded vegetation using COSMO-SkyMed: comparison with polarimetric and optical data over rice fields. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10(6): 2650-2662 [DOI: 10.1109/Jstars.2017.2711960http://dx.doi.org/10.1109/Jstars.2017.2711960]
Ribbes F. 1999. Rice field mapping and monitoring with RADARSAT data. International Journal of Remote Sensing, 20(4): 745-765 [DOI: 10.1080/014311699213172http://dx.doi.org/10.1080/014311699213172]
Rossi C and Erten E. 2015. Paddy-rice monitoring using TanDEM-X. IEEE Transactions on Geoscience and Remote Sensing, 53(2): 900-910 [DOI: 10.1109/Tgrs.2014.2330377http://dx.doi.org/10.1109/Tgrs.2014.2330377]
Rudiyanto, Minasny B, Shah R M, Soh N C, Arif C and Setiawan B I. 2019. Automated near-real-time mapping and monitoring of rice extent, cropping patterns, and growth stages in Southeast Asia using Sentinel-1 time series on a Google Earth Engine Platform. Remote Sensing, 11(14): 1666 [DOI: 10.3390/rs11141666http://dx.doi.org/10.3390/rs11141666.
Savin I Y, Ovechkin S V and Aleksandrova E V. 1997. The WOFOST simulation model of crop growth and its application for the analysis of land resources. Eurasian Soil Science, 30(7): 758-765
Setiyono T D, Quicho E D, Gatti L, Campos-Taberner M, Busetto L, Collivignarelli F, García-Haro F J, Boschetti M, Khan N I and Holecz F. 2018. Spatial rice yield estimation based on MODIS and Sentinel-1 SAR data and ORYZA crop growth model. Remote Sensing, 10(2): 293 [DOI: 10.3390/rs10020293http://dx.doi.org/10.3390/rs10020293]
Shao Y, Liao J J and Wang C Z. 2002. Analysis of temporal radar backscatter of rice: a comparison of SAR observations with modeling results. Canadian Journal of Remote Sensing, 28(2): 128-138 [DOI: 10.5589/m02-019http://dx.doi.org/10.5589/m02-019]
Shen S H, Yang S B, Li B B, Tan B X, Li Z Y and Le Toan T. 2009. A scheme for regional rice yield estimation using ENVISAT ASAR data. Science in China Series D: Earth Sciences, 52(8): 1183-1194 [DOI: 10.1007/s11430-009-0094-zhttp://dx.doi.org/10.1007/s11430-009-0094-z]
Singha M, Dong J W, Zhang G L and Xiao X M. 2019. High resolution paddy rice maps in cloud-prone Bangladesh and Northeast India using Sentinel-1 data. Scientific Data, 6: 26 [DOI: 10.1038/s41597-019-0036-3http://dx.doi.org/10.1038/s41597-019-0036-3]
Song L J, Ye W J, Lu Z J, Fu B, Xin R, Huang N, Wang M X and Bi H W. 2020. Review on data assimilation of remote sensing and crop growth models in rice. China Rice, 26(5): 84-89
宋丽娟, 叶万军, 陆忠军, 付斌, 辛蕊, 黄楠, 王美璇, 毕洪文. 2020. 遥感与作物生长模型数据同化在水稻上的应用进展. 中国稻米, 26(5): 84-89 [DOI: 10.3969/j.issn.1006-8082.2020.05.019http://dx.doi.org/10.3969/j.issn.1006-8082.2020.05.019]
Suga Y and Konishi T. 2008. Rice crop monitoring using X, C and L band SAR data//Proceedings Volume 7104, Remote Sensing for Agriculture, Ecosystems, and Hydrology X. Cardiff: SPIE: 305-314 [DOI: 10.1117/12.800051http://dx.doi.org/10.1117/12.800051]
Sun G Q, Simonett D S and Strahler A H. 1991. A radar backscatter model for discontinuous coniferous forests. IEEE Transactions on Geoscience and Remote Sensing, 29(4): 639-650 [DOI: 10.1109/36.135826http://dx.doi.org/10.1109/36.135826]
Tan C P, Koay J Y, Lim K S, Ewe H T and Chuah H T. 2007. Classification of multi-temporal SAR images for rice crops using combined Entropy Decomposition and Support Vector Machine technique. Progress in Electromagnetics Research, 71: 19-39 [DOI: 10.2528/Pier07012903http://dx.doi.org/10.2528/Pier07012903]
Tang P Q, Yao Y M and Wei N. 2009. The advance of rice recognition and monitoring by SAR. Chinese Agricultural Science Bulletin, 25(14): 291-295
唐鹏钦, 姚艳敏, 魏娜. 2009. 合成孔径雷达水稻识别和监测研究进展. 中国农学通报, 25(14): 291-295 [DOI: 10.11924/j.issn.1000-6850.2009-0397http://dx.doi.org/10.11924/j.issn.1000-6850.2009-0397]
Tian H F, Wu M Q, Wang L and Niu Z. 2018. Mapping early, middle and late rice extent using Sentinel-1A and Landsat-8 data in the Poyang Lake Plain, China. Sensors, 18(1): 185 [DOI: 10.3390/s18010185http://dx.doi.org/10.3390/s18010185]
Torbick N, Chowdhury D, Salas W and Qi J G. 2017. Monitoring rice agriculture across Myanmar using time series Sentinel-1 assisted by Landsat-8 and PALSAR-2. Remote Sensing, 9(2): 119 [DOI: 10.3390/rs9020119http://dx.doi.org/10.3390/rs9020119]
Torbick N, Salas W, Xiao X M, Ingraham P, Fearon M, Biradar C, Zhao D L, Liu Y, Li P and Zhao Y L. 2011. Integrating SAR and optical imagery for regional mapping of paddy rice attributes in the Poyang Lake Watershed, China. Canadian Journal of Remote Sensing, 37(1): 17-26 [DOI: 10.5589/m11-020http://dx.doi.org/10.5589/m11-020]
Villa P, Stroppiana D, Fontanelli G, Azar R and Brivio P A. 2015. In-season mapping of crop type with optical and X-Band SAR data: a classification tree approach using synoptic seasonal features. Remote Sensing, 7(10): 12859-12886 [DOI: 10.3390/rs71012859http://dx.doi.org/10.3390/rs71012859]
Wang C Z, Wu J P, Zhang Y, Pan G D, Qi J G and Salas W A. 2009. Characterizing L-band scattering of paddy rice in Southeast China with radiative transfer model and multitemporal ALOS/PALSAR imagery. IEEE Transactions on Geoscience and Remote Sensing, 47(4): 988-998 [DOI: 10.1109/Tgrs.2008.2008309http://dx.doi.org/10.1109/Tgrs.2008.2008309]
Wang M, Wang J and Chen L. 2020. Mapping paddy rice using weakly supervised long short-term memory network with time series sentinel optical and SAR images. Agriculture, 10(10): 483 [DOI: 10.3390/agriculture10100483http://dx.doi.org/10.3390/agriculture10100483]
Wang X Q, Wang Q M, Shi X M, Ling F L and Zhu X L. 2008. Rice field mapping and monitoring using ASAR data based on principal component analysis. Transactions of the Chinese Society of Agricultural Engineering, 24(10): 122-126
汪小钦, 王钦敏, 史晓明, 凌飞龙, 朱晓铃. 2008. 基于主成分变换的ASAR数据水稻种植面积提取. 农业工程学报, 24(10): 122-126 [DOI: 10.3321/j.issn:1002-6819.2008.10.025http://dx.doi.org/10.3321/j.issn:1002-6819.2008.10.025]
Wei P L, Chai D F, Lin T, Tang C, Du M Q and Huang J F. 2021. Large-scale rice mapping under different years based on time-series Sentinel-1 images using deep semantic segmentation model. ISPRS Journal of Photogrammetry and Remote Sensing, 174: 198-214 [DOI: 10.1016/j.ISPRSjprs.2021.02.011http://dx.doi.org/10.1016/j.ISPRSjprs.2021.02.011]
Wu F, Wang C, Zhang H, Zhang B and Tang Y X. 2011. Rice crop monitoring in South China with RADARSAT-2 quad-polarization SAR data. IEEE Geoscience and Remote Sensing Letters, 8(2): 196-200 [DOI: 10.1109/Lgrs.2010.2055830http://dx.doi.org/10.1109/Lgrs.2010.2055830]
Xie L, Zhang H, Wu F, Wang C and Zhang B. 2015. Capability of rice mapping using hybrid polarimetric SAR data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(8): 3812-3822 [DOI: 10.1109/Jstars.2014.2387214http://dx.doi.org/10.1109/Jstars.2014.2387214]
Yang H J, Pan B, Wu W F and Tai J H. 2018. Field-based rice classification in Wuhua County through integration of multi-temporal Sentinel-1A and Landsat-8 OLI data. International Journal of Applied Earth Observation and Geoinformation, 69: 226-236 [DOI: 10.1016/j.jag.2018.02.019http://dx.doi.org/10.1016/j.jag.2018.02.019]
Yang S B, Zhao X Y, Li B B and Hua G Q. 2012. Interpreting RADARSAT-2 quad-polarization SAR signatures from rice paddy based on experiments. IEEE Geoscience and Remote Sensing Letters, 9(1): 65-69 [DOI: 10.1109/Lgrs.2011.2160613http://dx.doi.org/10.1109/Lgrs.2011.2160613]
Yang Z, Li K, Liu L, Shao Y, Brisco B and Li W G. 2014. Rice growth monitoring using simulated compact polarimetric C band SAR. Radio Science, 49(12): 1300-1315 [DOI: 10.1002/2014rs005498http://dx.doi.org/10.1002/2014rs005498]
Yang Z, Li K, Shao Y, Brisco B and Liu L. 2016. Estimation of paddy rice variables with a modified water cloud model and improved polarimetric decomposition using multi-temporal RADARSAT-2 images. Remote Sensing, 8(10): 878 [DOI: 10.3390/rs8100878http://dx.doi.org/10.3390/rs8100878]
Yang Z, Shao Y, Li K, Liu Q B, Liu L and Brisco B. 2017. An improved scheme for rice phenology estimation based on time-series multispectral HJ-1A/B and polarimetric RADARSAT-2 data. Remote Sensing of Environment, 195: 184-201 [DOI: 10.1016/j.rse.2017.04.016http://dx.doi.org/10.1016/j.rse.2017.04.016]
Yao F and He L H. 2016. Review on mapping rice area using multi-temporal remote sensing. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 45(6): 617-624
姚飞, 何隆华. 2016. 多时相遥感提取水稻种植区研究进展. 福建农林大学学报(自然科学版), 45(6): 617-624 [DOI: 10.13323/j.cnki.j.fafu(nat.sci.).2016.06.001http://dx.doi.org/10.13323/j.cnki.j.fafu(nat.sci.).2016.06.001]
Yonezawa C, Negishi M, Azuma K, Watanabe M, Ishitsuka N, Ogawa S and Saito G. 2012. Growth monitoring and classification of rice fields using multitemporal RADARSAT-2 full-polarimetric data. International Journal of Remote Sensing, 33(18): 5696-5711 [DOI: 10.1080/01431161.2012.665194http://dx.doi.org/10.1080/01431161.2012.665194]
Yuzugullu O, Erten E and Hajnsek I. 2015. Rice growth monitoring by means of X-Band Co-polar SAR: feature clustering and BBCH scale. IEEE Geoscience and Remote Sensing Letters, 12(6): 1218-1222 [DOI: 10.1109/Lgrs.2015.2388953http://dx.doi.org/10.1109/Lgrs.2015.2388953]
Yuzugullu O, Erten E and Hajnsek I. 2017. A multi-year study on rice morphological parameter estimation with X-band polsar data. Applied Sciences, 7(6): 602 [DOI: 10.3390/app7060602http://dx.doi.org/10.3390/app7060602]
Zhai P F, Li S H and Hu Y M. 2021. Object-oriented land cover change detection combining optical and radar remote sensing data. Transactions of the Chinese Society of Agricultural Engineering, 37(23): 216-224
翟鹏飞, 李世华, 胡月明. 2021. 协同光学与雷达遥感数据的面向对象土地覆盖变化检测. 农业工程学报, 37(23): 216-224 [DOI: 10.11975/j.issn.1002-6819.2021.23.026http://dx.doi.org/10.11975/j.issn.1002-6819.2021.23.026]
Zhang X, Wu B F, Ponce-Campos G E, Zhang M, Chang S and Tian F Y. 2018. Mapping up-to-date paddy rice extent at 10 M resolution in China through the integration of optical and synthetic aperture radar images. Remote Sensing, 10(8): 1200 [DOI: 10.3390/rs10081200http://dx.doi.org/10.3390/rs10081200]
Zhang X Q, Guo L, Ma S J, Zhao Z Y and Pei Z Y. 2014. Monitoring rice leaf area index using time-series SAR data. Transactions of the Chinese Society of Agricultural Engineering, 30(13): 185-193
张晓倩, 郭琳, 马尚杰, 赵占营, 裴志远. 2014. 利用时序合成孔径雷达数据监测水稻叶面积指数. 农业工程学报, 30(13): 185-193 [DOI: 10.3969/j.issn.1002-6819.2014.13.023http://dx.doi.org/10.3969/j.issn.1002-6819.2014.13.023]
Zhang X Q, Zhang P B, Shen K J and Pei Z Y. 2016. Rice identification at the early stage of the rice growth season with single Fine quad Radarsat-2 data//Proceedings Volume 9998, Remote Sensing for Agriculture, Ecosystems, and Hydrology XVIII. Edinburgh: SPIE: 494-502 [DOI: 10.1117/12.2240154http://dx.doi.org/10.1117/12.2240154]
Zhang Y. 2019. Synergistic Inversion of Rice FPAR based on Optical and Radar Remote Sensing Data. Chengdu: University of Electronic Science and Technology of China: 30-50
张宇. 2019. 基于光学和雷达遥感的水稻FPAR协同反演. 成都: 电子科技大学: 30-50
Zhang Y, Wang C Z, Wu J P, Qi J G and Salas W A. 2009. Mapping paddy rice with multitemporal ALOS/PALSAR imagery in southeast China. International Journal of Remote Sensing, 30(23): 6301-6315 [DOI: 10.1080/01431160902842391http://dx.doi.org/10.1080/01431160902842391]
Zhao R K, Li Y C and Ma M G. 2021. Mapping paddy rice with satellite remote sensing: a review. Sustainability, 13(2): 503 [DOI: 10.3390/su13020503http://dx.doi.org/10.3390/su13020503]
Zhou Y N, Luo J C, Feng L, Yang Y P, Chen Y H and Wu W. 2019. Long-short-term-memory-based crop classification using high-resolution optical images and multi-temporal SAR data. GIScience and Remote Sensing, 56(8): 1170-1191 [DOI: 10.1080/15481603.2019.1628412http://dx.doi.org/10.1080/15481603.2019.1628412]
相关作者
相关机构