A dynamic selection algorithm for collaborative representation of hyperspectral remote sensing based on joint spatial information
- Pages: 1-16(2022)
DOI: 10.11834/jrs.20221704
Quote
扫 描 看 全 文
扫 描 看 全 文
Quote
虞瑶,苏红军,陶旸.XXXX.联合空间信息的高光谱遥感协同表示动态集成分类算法.遥感学报,XX(XX): 1-16
Yu Yao,Su Hongjun,Tao Yang. XXXX. A dynamic selection algorithm for collaborative representation of hyperspectral remote sensing based on joint spatial information. National Remote Sensing Bulletin, XX(XX):1-16
近年来,集成学习成为高光谱遥感影像分类的研究热点,尤其是动态集成算法根据测试样本的特征自适应地选择最佳分类器,其分类性能显著提升。然而现有的动态集成方法仅考虑测试样本与验证样本的光谱信息,忽略了高度规则化的高光谱遥感影像包含的丰富空间信息。为进一步提升高光谱遥感影像动态集成算法分类的准确性和可靠性,提出了联合空间信息的可变K邻域动态集成算法(Variable K-neighborhood and Spatial Information,VKS)和联合自适应邻域空间信息的可变K邻域动态集成算法(Variable K-neighborhood with Shape-Adaptive,VKSA)。两种算法第一阶段综合考虑分类器精度与相似度自适应地改变测试样本的K邻域,第二阶段分别设计固定窗口和自适应窗口的嵌入方式增加地物的局部空间近邻关系,充分利用高光谱遥感影像地物复杂的空间形态结构信息。实验部分采用三组通用的高光谱遥感影像数据对所提出算法的性能进行综合评价。结果表明相比于传统的动态集成算法,本文提出的联合空间信息的动态集成模型能显著提升分类精度,其中基于自适应窗口方式的VKSA算法明显优于基于固定窗口的VKS算法。
Recently, ensemble learning has attracted much attention for hyperspectral image analysis. It is the model of integrating multiple base classifiers to jointly make decisions, which are deemed to be better than a base classifier. Ensemble learning includes static classifier ensemble and dynamic classifier ensemble. In the static ensemble method, the same classifier combination scheme is selected for the classification of testing sample. However, this method ignores the difference of classifier performance for each testing sample. Considering the features of testing sample, the best classifier is selected adaptively in dynamic ensemble methods. So it generally can achieve better performance than static ensemble methods for hyperspectral image classification. However, a lot of dynamic ensemble methods only consider the spectral information of validation and training sample, ignoring the fact that hyperspectral image also contains rich spatial information.In order to further improve the accuracy and reliability of hyperspectral image classification, a variable K-neighborhood and spatial information algorithm (VKS) is proposed in this paper. Firstly, the VKS algorithm considers the accuracy and similarity of classifier comprehensively to adaptively adjust the K neighborhood of testing sample, which makes the setting of Region of Competence (RoC) more reliably and flexibly. Thus, the testing sample with good spectral discrimination performance are classified preferentially. For the testing samples with poor spectral discrimination performance, the label information of spatial neighborhood samples is used for prediction. A fixed window is designed to provide local spatial information of hyperspectral image. However, fixed windows can not reveal the complex and changeable morphological characteristics of ground objects. In order to capture the complex and changeable spatial structure in hyperspectral image, an adaptive window is proposed which can better reflect the complex spatial information, a variable K-neighborhood with shape-adaptive algorithm (VKSA) is further designed.Purdue Campus, Indian Pines and Salinas hyperspectral remote sensing data are used to design experiments and testify the performance of the proposed VKS and VKSA. Four state-of-the-art methods, namely, majority voting(MV), overall local accuracy (OLA), modified local accuracy (MLA), and multiple classifier behavior (MCB), are used to quantify the classification accuracy. Experimental results demonstrate the VKS and VKSA outperforms static ensemble methods and three classic dynamic ensemble methods in overall classification accuracy. Moreover, the VKSA algorithm with the adaptive window can provide better performance than the VKS algorithm with the fixed window.
高光谱遥感动态集成自适应邻域协同表示影像分类
Hyperspectral remote sensingdynamic selectionshape-adaptive neighborhoodcollaborative representationimage classification
Bioucas-Dias J M, Plaza A, Camps-Valls G, Scheunders P and Nasrabadi N. 2013. Hyperspectral Remote Sensing Data Analysis and Future Challenges. IEEE Geoscience and Remote Sensing Magazine, 1(2):6-36 [DOI: 10.1109/MGRS.2013.2244672http://dx.doi.org/10.1109/MGRS.2013.2244672]
Zhang L P and Zhang L F. 2005. Hyperspectral Remote Sensing. Wuhan: Wuhan University Press
张良培,张立福. 2005. 高光谱遥感. 武汉: 武汉大学出版社
Chang C I. 2003. Hyperspectral Imaging: Techniques for Spectral Detection and Classification. New York: Kluwer Academic
Tong Q X, Zhang B and Zhang L F. 2016.Current progress of hyperspectral remote sensing in China. Journal of Remote Sensing,20(5):689-707
童庆禧,张兵,张立福. 2016.中国高光谱遥感的前沿进展.遥感学报,20(5):689-707 [DOI: 10.11834/jrs.20166264http://dx.doi.org/10.11834/jrs.20166264]
Du P J, Xia J S, Xue Z H, Tan K, Su H J and Bao R. 2016.Review of Hyperspectral remote sensing image classification. Journal of Remote Sensing, 20(2):236-256
杜培军,夏俊士,薛朝辉,谭琨,苏红军,鲍蕊.2016.高光谱遥感影像分类研究进展.遥感学报,20(2):236-256 [DOI: 10.11834/jrs.20165022http://dx.doi.org/10.11834/jrs.20165022]
Kuncheva L I. 2007. Combining Pattern Classifiers: Methods and Algorithms. New York: Wiley-Interscience
Benediktsson J A, Chanussot J and Fauvel M. 2007. Multiple classifier systems in remote sensing: from basics to recent developments. Multiple Classifier Systems, 4472:501–512 [DOI: 10.1007/978-3-540-72523-7_50http://dx.doi.org/10.1007/978-3-540-72523-7_50]
Woloszynski T and Kurzynski M.A. 2011. probabilistic model of classifier competence for dynamic ensemble selection. Pattern Recognition, 44(10-11):2656-2668 [DOI: 10.1016/j.patcog.2011.03.020http://dx.doi.org/10.1016/j.patcog.2011.03.020]
Didaci L and Giacinto G. 2004. Dynamic classifier selection by adaptive k-nearest-neighbourhood rule //International Workshop on Multiple Classifier Systems. Springer, Berlin, Heidelberg, 2004: 174-183 [DOI: 10.1007/978-3-540-25966-4_17http://dx.doi.org/10.1007/978-3-540-25966-4_17]
Kumar S, Ghosh J and Crawford M M. 2002. Hierarchical Fusion of Multiple Classifiers for Hyperspectral Data Analysis. Pattern Analysis & Applications, 5(2):210-220 [DOI: 10.1007/s100440200019http://dx.doi.org/10.1007/s100440200019]
Kuncheva L I. 2000. Clustering-and-selection model for classifier combination//Proceedings of the Fourth International Conference on Knowledge Based and Intelligent Information and Engineering Systems, Brighton: IEEE:185-188 [DOI: 10.1109/KES.2000.885788http://dx.doi.org/10.1109/KES.2000.885788]
Garcia S, Zhang Z L, Altalhi A H, Alshomrani S and Herrera F. 2018. Dynamic ensemble selection for multi-class imbalanced datasets. Information Sciences, 445:22-37 [DOI: 10.1016/j.ins.2018.03.002http://dx.doi.org/10.1016/j.ins.2018.03.002]
Woods K, Kegelmeyer W P and Bowyer K W. 1997. Combination of multiple classifiers using local accuracy estimates. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(4): 405-410 [DOI: 10.1109/34.588027http://dx.doi.org/10.1109/34.588027]
Smits P C. 2002. Multiple classifier systems for supervised remote sensing image classification based on dynamic classifier selection. IEEE Transactions on Geoscience and Remote Sensing,40(4): 801-813 [DOI: 10.1109/TGRS.2002.1006354http://dx.doi.org/10.1109/TGRS.2002.1006354]
Giacinto G and Roli F. 2001. Dynamic classifier selection based on multiple classifier behavior. Pattern Recognition, 34(9): 1879-1881 [ DOI: 10.1016/S0031-3203(00)00150-3]
Ko A H R, Sabourin R and Britto A S. 2008. From dynamic classifier selection to dynamic ensemble selection. Pattern Recognition, 41(5):1718-1731 [DOI: 10.1016/j.patcog.2007.10.015http://dx.doi.org/10.1016/j.patcog.2007.10.015]
Li D Y, Wen G H, Li X and Cai X F. 2019. Graph-based dynamic ensemble pruning for facial expression recognition. Applied Intelligence, 49(9):3188-3206 [DOI: org/10.1007/s10489-019-01435-2http://dx.doi.org/org/10.1007/s10489-019-01435-2]
Hou C Q, Xia Y J, Xu Z R and Sun J. 2016. Learning classifier competence based on graph for dynamic classifier selection. //Proceeding of the 12th International Conference On Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD). IEEE, 2016:1164-1168 [DOI: 10.1109/FSKD.2016.7603343http://dx.doi.org/10.1109/FSKD.2016.7603343]
Damodaran B B, Nidamanuri R R and Tarabalka Y. 2015. Dynamic ensemble selection approach for hyperspectral image classification with joint spectral and spatial information. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(6): 2405-2417 [DOI: 10.1109/JSTARS.2015.2407493http://dx.doi.org/10.1109/JSTARS.2015.2407493]
Su H J and Liu H. 2017. A novel dynamic classifier selection algorithm using spatial-spectral information for hyperspectral classification. Remote Sensing for Land and Resources, 29(2) :15-21
苏红军,刘浩. 2017.一种利用空间和光谱信息的高光谱遥感多分类器动态集成算法.国土资源遥感,29(2):15-21 [DOI: 10.6046/gtzyyg.2017.02.03http://dx.doi.org/10.6046/gtzyyg.2017.02.03]
Cruz R M O, Sabourin R and Cavalcanti G D C. 2018. Dynamic classifier selection: Recent advances and perspectives. Information Fusion, 41:195-216 [DOI: 10.1016/j.inffus.2017.09.010http://dx.doi.org/10.1016/j.inffus.2017.09.010]
Damodaran B B and Nidamanuri R R. 2014. Dynamic Linear Classifier System for Hyperspectral Image Classification for Land Cover Mapping. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,7(2):2080-2093 [DOI: 10.1109/JSTARS.2013.2294857http://dx.doi.org/10.1109/JSTARS.2013.2294857]
Dos Santos E M, Sabourin R and Maupin P. 2008. A dynamic overproduce-and-choose strategy for the selection of classifier ensembles. Pattern recognition, 41(10):2993-3009 [DOI: 10.1016/j.patcog.2008.03.027http://dx.doi.org/10.1016/j.patcog.2008.03.027]
Cruz R M O, Sabourin R and Cavalcanti G D C. 2015. META-DES. H: a dynamic ensemble selection technique using meta-learning and a dynamic weighting approach. //Proceeding of 2015 International Joint Conference on Neural Networks (IJCNN). IEEE, 2015:1-8 [DOI: 10.1109/IJCNN.2015.7280594http://dx.doi.org/10.1109/IJCNN.2015.7280594]
Peng J T, Zhou Y C, Sun W W, Du Q and Xia L K. 2020. Self-Paced Nonnegative Matrix Factorization for Hyperspectral Unmixing. IEEE Transactions on Geoscience and Remote Sensing,59(2):1501-1515[DOI: 10.1109/TGRS.2020.2996688http://dx.doi.org/10.1109/TGRS.2020.2996688]
Tang X, Meng F B, Zhang X R, Cheung Y M, Ma J J, Liu F and Jiao L C. 2021. Hyperspectral Image Classification Based on 3-D Octave Convolution with Spatial–Spectral Attention Network. IEEE Transactions on Geoscience and Remote Sensing,59(3):2430-2447[DOI:10.1109/TGRS.2020.3005431http://dx.doi.org/10.1109/TGRS.2020.3005431]
He L, Li J, Liu C Y and Li S T. 2018. Recent Advances on Spectral-Spatial Hyperspectral Image Classification: An Overview and New Guidelines. IEEE Transactions on Geoscience and Remote Sensing, 56(3):1579-1597 [DOI: 10.1109/TGRS.2017.2765364http://dx.doi.org/10.1109/TGRS.2017.2765364]
Su H J, Zhao B, Du Q and Sheng Y H. 2016.Tangent Distance-Based Collaborative Representation for Hyperspectral Image Classification. IEEE Geoscience and Remote Sensing Letters, 13(9):1236-1240 [DOI: 10.1109/LGRS.2016.2578038http://dx.doi.org/10.1109/LGRS.2016.2578038]
Peng J T, Sun W W and Du Q. 2019. Self-Paced Joint Sparse Representation for the Classification of Hyperspectral Images. IEEE Transactions on Geoscience and Remote Sensing, 57(2):1183-1194 [DOI: 10.1109/TGRS.2018.2865102http://dx.doi.org/10.1109/TGRS.2018.2865102]
Li W and Du Q. 2014. Joint Within-Class Collaborative Representation for Hyperspectral Image Classification. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(6):2200-2208 [DOI: 10.1109/JSTARS.2014.2306956http://dx.doi.org/10.1109/JSTARS.2014.2306956]
Fu W, Li S T, Fang L Y, Kang X D and Benediktsson J A. 2016. Hyperspectral image classification via shape-adaptive joint sparse representation. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9(2):556–567 [DOI: 10.1109/JSTARS.2015.2477364http://dx.doi.org/10.1109/JSTARS.2015.2477364]
Foi A, Katkovnik V and Egiazarian K. 2007. Pointwise shape-adaptive DCT for high-quality denoising and deblocking of grayscale and color images. IEEE Transactions On Image Processing, 16(5):1395-1411 [DOI: 10.1109/TIP.2007.891788http://dx.doi.org/10.1109/TIP.2007.891788]
Su H J, Yu Y, Du Q and Du P J. 2020. Ensemble Learning for Hyperspectral Image Classification Using Tangent Collaborative Representation. IEEE Transactions on Geoscience and Remote Sensing, 58(6):3778-3790 [DOI: 10.1109/TGRS.2019.2957135http://dx.doi.org/10.1109/TGRS.2019.2957135]
相关作者
相关机构