Rapid emergency analysis of the surface rupture related to the Qinghai Menyuan Ms6.9 earthquake on January 8, 2022, using GF-7 satellite images
- Vol. 26, Issue 9, Pages: 1895-1908(2022)
DOI: 10.11834/jrs.20222043
扫 描 看 全 文
扫 描 看 全 文
JIAO Qisong, JIANG Wenliang, LI Qiang, et al. Rapid emergency analysis of the surface rupture related to the Qinghai Menyuan Ms6.9 earthquake on January 8, 2022, using GF-7 satellite images. [J]. National Remote Sensing Bulletin 26(9):1895-1908(2022)
强震地表破裂调查与灾情评估是地震应急响应的重要工作内容,快速获取震后高分辨率卫星数据并开展应急信息提取分析,是提升应急时效性的重要支撑手段。2022年1月8日青海门源,M,s6.9级地震发生的当天快速获取了国产高分七号卫星等数据,基于分辨率0.65 m的全色及2.6 m的多光谱图像快速解译分析地震地表破裂带分形成布特征、构造样式与位错强度等,为地震应急响应与现场调查提供了重要信息。深入分析表明,门源,M,s6.9级地震发生了南、北两条同震地表破裂带,其中北支沿冷龙岭断裂带主断层的西段发育,长度约19 km;南支沿托莱山断裂东段分布,长度约2.3 km。同震地表破裂带左旋断错了一系列冲沟、洪积物、道路、冰层等地貌特征,最大左旋位移约2.2 m,沿地表破裂带形成鼓包、拉张凹陷、斜列式张裂隙等变形构造。最新同震破裂与历史破裂分布吻合,反映了强震活动的原地破裂特征,其地震危险性需要引起高度关注,值得深入研究。GF-7卫星首次在地震灾害发生当日就发挥较大优势,表明高分系列卫星在地震应急调查方面具有良好应用潜力。
The surface rupture investigation and disaster assessment of large earthquakes are important in earthquake emergency response. The rapid data acquisition and analysis of satellite images after earthquakes are of great importance for improving the timeliness of emergency response. After the Menyuan ,M,s6.9 earthquake, we quickly acquired GF-7 satellite images on January 8, 2022, and identified the overall distribution characteristics, structural style, and dislocation scale of the surface rupture, which provided an important reference for earthquake emergency response and field investigation. According to the deep analysis of high-resolution satellite images, the Menyuan ,M,s6.9 earthquake generated two co-seismic surface rupture zones, of which the north branch mainly developed along the western part of the Lenglongling fault, and the recognizable surface rupture zone is approximately 19 km-long. The south branch with a length of 2.3 km was distributed along the eastern part of the Tuolaishan fault. The co-seismic surface rupture produced a series of sinistral faulted geomorphic features such as gullies, diluvium, roads, ice layers, etc., and the maximum sinistral displacement was about 2.2 m. Deformation structures such as bulges, tension depressions and oblique tension fissures were formed along the surface fracture zone. The distribution of the latest co-seismic rupture coincided with the historical rupture, which reflected the in-situ rupture characteristics of strong earthquakes along the Lenglongling fault zone. Its seismic risk needed to be highly concerned and deserved in-depth study. This application work shows that the great potential and advantages of the China High-Resolution Satellites in major earthquake emergency.
门源地震应急响应GF-7地震地表破裂构造解析
Menyuan earthquakeemergency responseGF-7earthquake surface rupturestructure analysis
Cao H Y, Zhang X W, Zhao C G, Xu C, Mo F and Dai J. 2020. System design and key technolongies of the GF-7 satellite. Chinese Space Science and Technology, 40(5): 1-9
曹海翊, 张新伟, 赵晨光, 徐驰, 莫凡, 戴君. 2020. 高分七号卫星总体设计与技术创新. 中国空间科学技术, 40(5): 1-9 [DOI: 10.16708/j.cnki.1000-758X.2020.0052http://dx.doi.org/10.16708/j.cnki.1000-758X.2020.0052]
Deng Q D, Ran Y K, Yang X P, Min W and Chu Q Z. 2007. Map of Active Tectonics in China (1: 4000000). Beijing: Seismological Press (邓起东, 冉勇康, 杨晓平, 闵伟, 楚全芝. 2007. 中国活动构造图(1: 400万). 北京: 地震出版社) [ISBN:9787502830519]
Fu B H, Awata Y, Du J G and He W G. 2005a. Late Quaternary systematic stream offsets caused by repeated large seismic events along the Kunlun fault, northern Tibet. Geomorphology, 71(3/4): 278-292 [DOI: 10.1016/j.geomorph.2005.03.001http://dx.doi.org/10.1016/j.geomorph.2005.03.001]
Fu B H, Awata Y, Du J G, Ninomiya Y and He W G. 2005b. Complex geometry and segmentation of the surface rupture associated with the 14 November 2001 great Kunlun earthquake, northern Tibet, China. Tectonophysics, 407(1/2): 43-63 [DOI: 10.1016/j.tecto.2005.07.002http://dx.doi.org/10.1016/j.tecto.2005.07.002]
Fu B H, Zhang S L, Xie X P, Shi X H and Wang S F. 2006. Late quaternary tectono-geomorphic features along the Kangxiwar fault, Altyn Tagh fault system, northern Tibet. Quaternary Sciences, 26(2): 228-235
付碧宏, 张松林, 谢小平, 石许华, 王世锋. 2006. 阿尔金断裂系西段—康西瓦断裂的晚第四纪构造地貌特征研究. 第四纪研究, 26(2): 228-235 [DOI:CNKI:SUN:DSJJ.0.2006-02-009http://dx.doi.org/CNKI:SUN:DSJJ.0.2006-02-009]
Gaudemer Y, Tapponnier P, Meyer B, Peltzer G, Shunmin G, Zhitai C, Huagung D and Cifuentes I. 1995. Partitioning of crustal slip between linked, active faults in the eastern Qilian Shan, and evidence for a major seismic gap, the ‘Tianzhu gap’, on the western Haiyuan Fault, Gansu (China). Geophysical Journal International, 120(3): 599-645 [DOI: 10.1111/j.1365-246X.1995.tb01842.xhttp://dx.doi.org/10.1111/j.1365-246X.1995.tb01842.x]
Guo P, Han Z J, Dong S P, Yuan R M and Xie Z D. 2019. Surface rupture and slip distribution along the Lenglongling fault in the NE Tibetan Plateau: implications for faulting behavior. Journal of Asian Earth Sciences, 172: 190-207 [DOI: 10.1016/j.jseaes.2018.09.008http://dx.doi.org/10.1016/j.jseaes.2018.09.008]
Guo P, Han Z J, Jiang W L and Mao Z B. 2017. Holocene left-lateral slip rate of the Lenglongling fault, northeastern margin of the Tibetan plateau. Seismology and Geology, 39(2): 323-341
郭鹏, 韩竹军, 姜文亮, 毛泽斌. 2017. 青藏高原东北缘冷龙岭断裂全新世左旋滑动速率. 地震地质, 39(2): 323-341 [DOI: 10.3969/j.issn.0253-4967.2017.02.005http://dx.doi.org/10.3969/j.issn.0253-4967.2017.02.005]
He H L. 2011. Some problems of aerial photo interpretation in active fault mapping. Seismology and Geology, 33(4): 938-950
何宏林. 2011. 活动断层填图中的航片解译问题. 地震地质, 33(4): 938-950 [DOI: 10.3969/j.issn.0253-4967.2011.04.017http://dx.doi.org/10.3969/j.issn.0253-4967.2011.04.017]
He W G, Yuan D Y, Ge W P and Luo H. 2010. Determination of the slip rate of the Lenglongling fault in the middle and eastern segments of the Qilian mountain active fault zone. Earthquake, 30(1): 131-137
何文贵, 袁道阳, 葛伟鹏, 罗浩. 2010. 祁连山活动断裂带中东段冷龙岭断裂滑动速率的精确厘定. 地震, 30(1): 131-137 [DOI: 10.3969/j.issn.1000-3274.2010.01.015http://dx.doi.org/10.3969/j.issn.1000-3274.2010.01.015]
Jiang W L, Jiao Q S, Tian T and Zhang J F. 2021. Seismic slip distribution and rupture model of the Lenglongling Fault Zone, northeastern Tibetan Plateau. Geological Journal, 56(3): 1299-1314 [DOI: 10.1002/gj.4003http://dx.doi.org/10.1002/gj.4003]
Jiang W L, Li Y S, Tian Y F, Han Z J and Zhang J F. 2017. Research of seismogenic structure of the Menyuan Ms6.4 earthquake on January 21, 2016 in Lenglongling area of NE Tibetan Plateau. Seismology and Geology, 39(3): 536-549
姜文亮, 李永生, 田云锋, 韩竹军, 张景发. 2017. 冷龙岭地区2016年青海门源6.4级地震发震构造特征. 地震地质, 39(3): 536-549 [DOI: 10.3969/j.issn.0253-4967.2017.03.007http://dx.doi.org/10.3969/j.issn.0253-4967.2017.03.007]
Jiang W L, Zhang J F, Shen X H, Jiao Q S, Tian T and Wang X. 2018. Geometric and geomorphic features of active fault structures interpreted from high-resolution remote sensing data. Journal of Remote Sensing, 22(S1): 192-211
姜文亮, 张景发, 申旭辉, 焦其松, 田甜, 王鑫. 2018. 高分辨率遥感技术在活动断层研究中的应用. 遥感学报, 22(S1): 192-211 [DOI:CNKI:SUN:YGXB.0.2018-S1-019http://dx.doi.org/CNKI:SUN:YGXB.0.2018-S1-019]
Jiang W L. 2018. Holocene rupture pattern, seismic recurrence feature of the Lenglongling fault zone and its tectonic implication for the northeast Tibetan plateau. Beijing: Institute of Geology, China Earthquake Administration: 22-34
姜文亮. 2018. 冷龙岭断裂带全新世破裂模式、大震复发特征研究及其区域构造意义. 北京:中国地震局地质研究所:22-34
Lasserre C, Gaudemer Y, Tapponnier P, Mériaux A S, Van der Woerd J, Daoyang Y, Ryerson F J, Finkel R C and Caffee M W. 2002. Fast late Pleistocene slip rate on the Leng Long Ling segment of the Haiyuan fault, Qinghai, China. Journal of Geophysical Research: Solid Earth, 107(B11): ETG 4-1-ETG 4-15 [DOI: 10.1029/2000JB000060http://dx.doi.org/10.1029/2000JB000060]
Li G Y, Tang X M, Chen J Y, Yao J Q, Liu Z, Gao X M, Zuo Z Q and Zhou X Q. 2021. Processing and preliminary accuracy validation of the GF-7 satellite laser altimetry data. Acta Geodaetica et Cartographica Sinica, 50(10): 1338-1348
李国元, 唐新明, 陈继溢, 么嘉棋, 刘诏, 高小明, 左志强, 周晓青. 2021. 高分七号卫星激光测高数据处理与精度初步验证. 测绘学报, 50(10): 1338-1348 [DOI: 10.11947/j.AGCS.2021.20210025http://dx.doi.org/10.11947/j.AGCS.2021.20210025]
Li Q and Zhang J F. 2019. Investigation on earthquake-induced landslide in Jiuzhaigou using fully polarimetric GF-3 SAR images. Journal of Remote Sensing, 23(5): 883-891
李强, 张景发. 2019a. 高分三号卫星全极化SAR影像九寨沟地震滑坡普查. 遥感学报, 23(5): 883-891 [DOI: 10.11834/jrs.20197390http://dx.doi.org/10.11834/jrs.20197390]
Li Q, Zhang J F, Luo Y and Jiao Q S. 2019. Recognition of earthquake-induced landslide and spatial distribution patterns triggered by the Jiuzhaigou earthquake in August 8, 2017. Journal of Remote Sensing, 23(4): 785-795
李强, 张景发, 罗毅, 焦其松. 2019b. 2017年“8.8”九寨沟地震滑坡自动识别与空间分布特征. 遥感学报, 23(4): 785-795 [DOI: 10.11834/jrs.20197345http://dx.doi.org/10.11834/jrs.20197345]
Li Z H, Han B Q, Liu Z J, Zhang M M, Yu C, Chen B, Liu H H, Du J, Zhang S C, Zhu W, Zhang Q and Peng J B. 2022. Source parameters and slip distributions of the 2016 and 2022 Menyuan, Qinghai earthquakes constrained by InSAR observations. Geomatics and Information Science of Wuhan University, 1-15
李振洪, 韩炳权, 刘振江, 张苗苗, 余琛, 陈博, 刘海辉, 杜静, 张双成, 朱武, 张勤, 彭建兵. 2022. InSAR数据约束下的2016年和2022年青海门源地震震源参数及其滑动分布. 武汉大学学报(信息科学版), 1-15 [DOI: 10.13203/j.whugis20220037http://dx.doi.org/10.13203/j.whugis20220037]
Liu-Zeng J, Klinger Y, Xu X, Lasserre C, Chen G, Chen W, Tapponnier P and Zhang B. 2007. Millennial recurrence of large earthquakes on the Haiyuan Fault near Songshan, Gansu Province, China. Bulletin of the Seismological Society of America, 97(1B): 14-34 [DOI: 10.1785/0120050118http://dx.doi.org/10.1785/0120050118]
Ren Z K, Chen T, Zhang H P, Zheng W J and Zhang P Z. 2014. LiDAR survey in active tectonics studies: an introduction and overview. Acta Geologica Sinica, 88(6): 1196-1207
任治坤, 陈涛, 张会平, 郑文俊, 张培震. 2014. LiDAR技术在活动构造研究中的应用. 地质学报, 88(6): 1196-1207 [DOI: ISSN 0001-5717http://dx.doi.org/ISSN0001-5717]
Tang X M, Liu C R, Zhang H, Wang X, Li G Y, Mo F and Li F X. 2021. GF-7 satellite stereo images block adjustment assisted with laser altimetry data. Geomatics and Information Science of Wuhan University, 46(10): 1423-1430
唐新明, 刘昌儒, 张恒, 王霞, 李国元, 莫凡, 李丰翔. 2021. 高分七号卫星立体影像与激光测高数据联合区域网平差. 武汉大学学报(信息科学版), 46(10): 1423-1430 [DOI: 10.13203/j.whugis20210417http://dx.doi.org/10.13203/j.whugis20210417]
Wallace R E. 1968. Notes on stream channels offset by the San Andreas fault, southern Coast Ranges, California//Dickinson W R and Grantz A eds. Conference Geologic Problems of the San Andreas Fault System. Stanford University Publications in Geological Sciences, 11: 6-20
Wei Y M, Li J N, Chen Y and Gao J F. 2021. Research on optical remote sensing characteristics of coseismic surface rupture of different types of seismogenic faults. Quaternary Sciences, 41(6): 1513-1531
魏永明, 李剑南, 陈玉, 高锦风. 2021. 不同类型发震断层的同震地表破裂光学遥感特征研究. 第四纪研究, 41(6): 1513-1531 [DOI:10.11928/j.issn.1001-7410.2021.06.01http://dx.doi.org/10.11928/j.issn.1001-7410.2021.06.01]
Xu J R, Yao L X and Wang J. 1986. Earthquake source mechanisms of Menyuan earthquake (Ms=6.4, on Aug. 26, 1986) and its strong aftershocks. Northwestern Seismological Journal, (4): 82-84
徐纪人, 姚立珣, 汪进. 1986. 1986年8月26日门源6.4级地震及其强余震的震源机制解. 西北地震学报, (4): 82-84 [DOI:CNKI:SUN:ZBDZ.0.1986-04-012http://dx.doi.org/CNKI:SUN:ZBDZ.0.1986-04-012]
Xu X W, Wu X Y, Yu G H, Tan X B and Li K. 2017. Seismo-geological signatures for identifying M≥7.0 earthquake risk areas and their premilimary application in China’s mainland. Seismology and Geology, 39(2): 219-275
徐锡伟, 吴熙彦, 于贵华, 谭锡斌, 李康. 2017. 中国大陆高震级地震危险区判定的地震地质学标志及其应用. 地震地质, 39(2): 219-275 [DOI: 10.3969/j.issn.0253-4967.2017.02.001http://dx.doi.org/10.3969/j.issn.0253-4967.2017.02.001]
Yao S H, Gai H L, Liu W, Yin X, Zhang J Q and Yao H F. 2020. Tectonic geomorphology and Late Quaternary slip rate of the Amunike segment, the north Qaidam Thrust Fault Zone. Quaternary Sciences, 40(5): 1312-1322
姚生海, 盖海龙, 刘炜, 殷翔, 张加庆, 姚海峰. 2020. 柴达木盆地北缘断裂(阿木尼克山段)构造地貌及晚第四纪活动速率研究[J]. 第四纪研究, 40(5): 1312-1322 [DOI:10.11928/j.issn.1001-7410.2020.05.19http://dx.doi.org/10.11928/j.issn.1001-7410.2020.05.19]
Yuan D Y, Liu B C, Lü T Y, He W G, Liu X F and Gan W J. 1998. Study on the segmentation in east segment of the Northern Qilianshan fault zone. Northwestern Seismological Journal, 20(4): 27-34
袁道阳, 刘百篪, 吕太乙, 何文贵, 刘小凤, 甘卫军. 1998. 北祁连山东段活动断裂带的分段性研究. 西北地震学报, 20(4): 27-34 [DOI:CNKI:SUN:ZBDZ.0.1998-04-003http://dx.doi.org/CNKI:SUN:ZBDZ.0.1998-04-003]
Zhang H P, Zhang P Z, Zheng D W, Zheng W J, Chen Z W and Wang W T. 2012. Tectonic geomorphology of the Qilian Shan: insights into the Late Cenozoic landscape evolution and deformation in the north eastern Tibetan plateau. Quaternary Sciences, 32(5): 907-920
张会平, 张培震, 郑德文, 郑文俊, 陈正位, 王伟涛. 2012. 祁连山构造地貌特征: 青藏高原东北缘晚新生代构造变形和地貌演化过程的启示. 第四纪研究, 32(5): 907-920 [DOI: 10.3969/j.issn.1001-7410.2012.05.08http://dx.doi.org/10.3969/j.issn.1001-7410.2012.05.08]
Zheng W J, Yuan D Y and He W G. 2004. Characteristics of palaeo-earthquake activity along the active Tianqiaogou-Huangyangchuan fault on the eastern section of the Qilianshan mountains. Seismology and Geology, 26(4): 645-657
郑文俊, 袁道阳, 何文贵. 2004. 祁连山东段天桥沟—黄羊川断裂古地震活动习性研究. 地震地质, 26(4): 645-657 [DOI: 10.3969/j.issn.0253-4967.2004.04.011http://dx.doi.org/10.3969/j.issn.0253-4967.2004.04.011]
Zielke O, Klinger Y and Arrowsmith J R. 2015. Fault slip and earthquake recurrence along strike-slip faults-Contributions of high-resolution geomorphic data. Tectonophysics, 638: 43-62 [DOI: 10.1016/j.tecto.2014.11.004http://dx.doi.org/10.1016/j.tecto.2014.11.004]
相关作者
相关机构