Research Progress of Tomographic SAR Three Dimension Imaging Methods and Forest Parameters Inversion
- Pages: 1-15(2022)
DOI: 10.11834/jrs.20222107
Quote
扫 描 看 全 文
扫 描 看 全 文
Quote
万杰,汪长城,朱建军,付海强.XXXX.层析SAR三维成像方法与森林参数反演研究进展.遥感学报,XX(XX): 1-15
Wan Jie,Wang Changcheng,Zhu Jianjun,Fu Haiqiang. XXXX. Research Progress of Tomographic SAR Three Dimension Imaging Methods and Forest Parameters Inversion. National Remote Sensing Bulletin, XX(XX):1-15
森林是陆地上最大的生态系统,在全球碳氧循环中发挥着举足轻重的作用。森林植被集中了85%以上的陆地植被生物量,森林的生物物理参数,如森林高度、林下地形、生物量等,对森林资源管理、森林碳汇能力及碳储量的评估、生物多样性保护等具有重要意义。合成孔径雷达层析技术(Synthetic Aperture Radar Tomography, TomoSAR)具备对观测目标的三维成像能力,可以获得森林的内部结构信息,在森林植被参数反演中发挥着重要的作用。本文从层析SAR的三维成像原理出发,系统阐述目前层析SAR技术进行多维感知的主流算法。根据SAR数据获取模式的不同,将层析SAR的三维成像方法归纳为单极化层析SAR算法和全极化层析SAR算法两类。对比分析植被参数反演中不同层析SAR成像算法在垂直分辨率、辐射分辨率、鲁棒性、计算复杂度等方面的表现。基于层析SAR的三维成像能力,阐述层析SAR技术在森林垂直结构重构、森林高度反演、林下地形测绘、生物量估计等应用中的研究进展。展望层析SAR技术在森林植被区前沿应用,总结层析SAR技术植被区应用中面临的关键挑战。
Objective Forest is the largest ecosystem on land and plays an important role in the global carbon and oxygen cycle. Synthetic Aperture Radar Tomography (TomoSAR) has the capability of three-dimensional (3-D) imaging of observation targets, and can obtain information of forest internal structure, which plays an important role in the inversion of forest parameters. This paper will review the imaging methods and applications of TomoSAR over the past two decades, and focus on the latest research progress of TomoSAR in forest parameter inversion. More importantly, different parameter inversion methods will be systematically compared, and the challenges in TomoSAR forest parameter inversion will be analyzed.Method First, the mathematical models of TomoSAR in single-polarization and full-polarization mode were introduced in this paper. Then, different TomoSAR imaging algorithms were analyzed in detail. The performances of different methods in terms of vertical resolution, radiation accuracy, computational efficiency and stability were compared. Next, we summarized the progress of TomoSAR in inversion of forest parameters such as underlying topography, forest height, and biomass. Finally, this paper analyzed the key challenges faced in the inversion of forest parameters using TomoSAR, and the frontier applications of TomoSAR were prospected. The P-band TropiSAR 2009 data set over a test site in Paracou French Guiana were used to analyze the performance of different methods.Result By reviewing the published literature, the theoretical differences between different TomoSAR imaging algorithms were listed. Experiments show that the Fourier transform method has limited vertical resolution but high radiation accuracy, and has been successfully used for biomass estimation. Beamforming spectral estimation method can improve the vertical resolution, but the image quality is seriously degraded when the number of observations is reduced. Compressed sensing and statistical optimization algorithms have sparse imaging capabilities and super-resolution, enabling fine-grained identification of forest vertical structures. For the estimation of forest underlying topography and forest height, accurate estimation of canopy scattering center and ground phase center is an important prerequisite. The addition of polarization information is more conducive to the identification of different scattering mechanisms. In biomass estimation, the application of three-dimensional structure can significantly improve the accuracy of inversion.Conclusion The three-dimensional structure of the forests plays an important role in the estimation of forest parameters. TomoSAR can reconstruct the three-dimensional structure of forests through specific imaging techniques. In general, high-resolution imaging algorithms are beneficial to distinguish and identify scatterers with different heights, and are widely used in underlying topography and forests height estimation. However, for biomass estimation, radiation accuracy is more of a concern for researchers. At present, the most critical challenge of TomoSAR is the data processing and application of spaceborne data. The main difficulties include the correction of time decoherence and atmospheric delay errors. In the future, long-wavelength TomoSAR systems will become one of the most important approaches for forest biomass estimation on a global scale.
层析SAR三维成像林下地形森林高度森林垂直结构森林生物量
SAR Tomography3-D imagingunderlying topographyforest heightforest vertical structureforest biomass
Aghababaee H, Ferraioli G, Ferro-Famil L, Schirinzi G and Huang Y. 2019. Sparsity Based Full Rank Polarimetric Reconstruction of Coherence Matrix T. Remote Sensing, 11 (11) [DOI: 10.3390/rs11111288]
Aghababaee H, and Sahebi M R. 2018. Model-Based Target Scattering Decomposition of Polarimetric SAR Tomography. IEEE Transactions on Geoscience and Remote Sensing, 56 (2):972-983 [DOI: 10.1109/Tgrs.2017.2757062http://dx.doi.org/10.1109/Tgrs.2017.2757062]
Aguilera E, Nannini M and Reigber A. 2013a. A Data-Adaptive Compressed Sensing Approach to Polarimetric SAR Tomography of Forested Areas. IEEE Geoscience and Remote Sensing Letters, 10 (3):543-547 [DOI: 10.1109/Lgrs.2012.2212693http://dx.doi.org/10.1109/Lgrs.2012.2212693]
Aguilera E, Nannini M and Reigber A. 2013b. Wavelet-Based Compressed Sensing for SAR Tomography of Forested Areas. IEEE Transactions on Geoscience and Remote Sensing, 51 (12):5283-5295 [DOI: 10.1109/Tgrs.2012.2231081http://dx.doi.org/10.1109/Tgrs.2012.2231081]
Blomberg E, Ulander L M H, Tebaldini S and Ferro-Famil L. 2021. Evaluating P-Band TomoSAR for Biomass Retrieval in Boreal Forest. IEEE Transactions on Geoscience and Remote Sensing, 59 (5):3793-804 [DOI: 10.1109/Tgrs.2020.3020775http://dx.doi.org/10.1109/Tgrs.2020.3020775]
Cazcarra-Bes V, Pardini M, Tello M and Papathanassiou K P. 2020. Comparison of Tomographic SAR Reflectivity Reconstruction Algorithms for Forest Applications at L-band. IEEE Transactions on Geoscience and Remote Sensing, 58 (1):147-164 [DOI: 10.1109/Tgrs.2019.2934347http://dx.doi.org/10.1109/Tgrs.2019.2934347]
Aghababaee H, Ferraioli G, Ferro-Famil L, Schirinzi G and Huang Y. 2019. Sparsity Based Full Rank Polarimetric Reconstruction of Coherence Matrix T. Remote Sensing, 11 (11) [DOI: 10.3390/rs11111288]
Aghababaee H, and Sahebi M R. 2018. Model-Based Target Scattering Decomposition of Polarimetric SAR Tomography. IEEE Transactions on Geoscience and Remote Sensing, 56 (2):972-983 [DOI: 10.1109/Tgrs.2017.2757062http://dx.doi.org/10.1109/Tgrs.2017.2757062]
Aguilera E, Nannini M and Reigber A. 2013a. A Data-Adaptive Compressed Sensing Approach to Polarimetric SAR Tomography of Forested Areas. IEEE Geoscience and Remote Sensing Letters, 10 (3):543-547 [DOI: 10.1109/Lgrs.2012.2212693http://dx.doi.org/10.1109/Lgrs.2012.2212693]
Aguilera E, Nannini M and Reigber A. 2013b. Wavelet-Based Compressed Sensing for SAR Tomography of Forested Areas. IEEE Transactions on Geoscience and Remote Sensing, 51 (12):5283-5295 [DOI: 10.1109/Tgrs.2012.2231081http://dx.doi.org/10.1109/Tgrs.2012.2231081]
Blomberg E, Ferro-Famil L, Soja M J, Ulander L M H and Tebaldini S. 2018. Forest Biomass Retrieval From L-Band SAR UsingTomographic Ground Backscatter Removal. IEEE Geoscience and Remote Sensing Letters, 2018, 15(7), 1030-1034. [DOI: 10.1109/LGRS.2018.2819884http://dx.doi.org/10.1109/LGRS.2018.2819884]
Cazcarra-Bes V, Pardini M, Tello M and Papathanassiou K P. 2020. Comparison of Tomographic SAR Reflectivity Reconstruction Algorithms for Forest Applications at L-band. IEEE Transactions on Geoscience and Remote Sensing, 58 (1):147-164 [DOI: 10.1109/Tgrs.2019.2934347http://dx.doi.org/10.1109/Tgrs.2019.2934347]
Cazcarra-Bes V, Tello-Alonso M, Fischer R, Heym M, and Papathanassiou K P. 2017. Monitoring of Forest Structure Dynamics by Means of L-Band SAR Tomography. Remote Sensing, 9 (12) [DOI: 10.3390/rs9121229]
d'Alessandro M M and Tebaldini S. 2019. Digital Terrain Model Retrieval in Tropical Forests Through P-Band SAR Tomography. IEEE Transactions on Geoscience and Remote Sensing, 57 (9):6774-6781 [DOI: 10.1109/Tgrs.2019.2908517http://dx.doi.org/10.1109/Tgrs.2019.2908517]
del Campo G M, Nannini M and Reigber A. 2018. Towards Feature Enhanced SAR Tomography: A Maximum-Likelihood Inspired Approach. IEEE Geoscience and Remote Sensing Letters, 15 (11):1730-1734 [DOI: 10.1109/Lgrs.2018.2858571http://dx.doi.org/10.1109/Lgrs.2018.2858571]
del Campo G M, Nannini M and Reigber A. 2020. Statistical Regularization for Enhanced TomoSAR Imaging. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13:1567-1589 [DOI: 10.1109/Jstars.2020.2970595http://dx.doi.org/10.1109/Jstars.2020.2970595]
Donoho D L. 2006. Compressed sensing.IEEE Transactions on Information Theory, 52 (4):1289-1306 [DOI: 10.1109/Tit.2006.871582http://dx.doi.org/10.1109/Tit.2006.871582]
El Moussawi I, Minh D H T, Baghdadi N, Abdallah C, Jomaah J, Strauss O and Lavalle M. 2019. L-Band UAVSAR Tomographic Imaging in Dense Forests: Gabon Forests. Remote Sensing, 11 (5) [DOI: 10.3390/rs11050475]
Gao H, Wang C C, Wang G Y, Fu H Q and Zhu J J. 2021. A novel crop classification method based on ppfSVM classifier with time-series alignment kernel from dual-polarization SAR datasets. Remote Sensing of Environment, 264 [DOI: 10.1016/j.rse.2021.112628http://dx.doi.org/10.1016/j.rse.2021.112628]
Hamadi A, Borderies P, Albinet C, Koleck T, Villard L, Minh D H T, Toan T L and Burban B. 2015. Temporal Coherence of Tropical Forests at P-Band: Dry and Rainy Seasons. IEEE Geoscience and Remote Sensing Letters, 12 (3):557-561 [DOI: 10.1109/Lgrs.2014.2350513http://dx.doi.org/10.1109/Lgrs.2014.2350513]
Huang J L,Ju W M,Zheng G and Kang T T.2013. Estimation of forest above ground biomass using high spatial resolution remote sensing imagery.Acta Ecologica Sinica, 33( 20) : 6497-6508
黄金龙,居为民,郑光,康婷婷.2013. 基于高分辨率遥感影像的森林地上生物量估算.生态学报,2013,33( 20) : 6497-6508 [DOI: 10.5846 /stxb201212211841http://dx.doi.org/10.5846/stxb201212211841]
Huang Y, Ferro-Famil L and Lardeux C. 2011. Polarimetric Sar Tomography of Tropical Forests at P-Band. 2011 Ieee International Geoscience and Remote Sensing Symposium (Igarss), 1373-1376 [DOI: 10.1109/Igarss.2011.6049321http://dx.doi.org/10.1109/Igarss.2011.6049321]
Huang Y, Ferro-Famil L and Reigber A. 2012. Under-Foliage Object Imaging Using SAR Tomography and Polarimetric Spectral Estimators. IEEE Transactions on Geoscience and Remote Sensing, 50 (6):2213-2225 [DOI: 10.1109/Tgrs.2011.2171494http://dx.doi.org/10.1109/Tgrs.2011.2171494]
Huang Y, Zhang Q P and Ferro-Famil L. 2021. Forest Height Estimation Using a Single-Pass Airborne L-Band Polarimetric and Interferometric SAR System and Tomographic Techniques. Remote Sensing, 13 (3) [DOI: 10.3390/rs13030487]
Kumar S, Joshi S K and Govil H. 2017. Spaceborne PolSAR Tomography for Forest Height Retrieval. Ieee Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10 (12):5175-5185 [DOI: 10.1109/Jstars.2017.2741723http://dx.doi.org/10.1109/Jstars.2017.2741723]
Le Toan T, Chave J, Dall J, Papathanassiou K P, Paillou P, Rechstein M and Quegan S. 2018. The Biomass Mission: Objectives and Requirements. 2018 IEEE International Geoscience and Remote Sensing Symposium, 8563-8566 [DOI: 10.1109/IGARSS.2018.8518491http://dx.doi.org/10.1109/IGARSS.2018.8518491].
Le Toan T, Quegan S, Davidson M W J, Balzter H, Paillou P, Papathanassiou K P and Plummer S. 2011. The BIOMASS mission: Mapping global forest biomass to better understand the terrestrial carbon cycle. Remote Sensing of Environment, 115 (11):2850-2860 [DOI: 10.1016/j.rse.2011.03.020http://dx.doi.org/10.1016/j.rse.2011.03.020]
Lewis S L. 2006. Tropical forests and the changing earth system. Philosophical Transactions of the Royal Society B-Biological Sciences,361 (1465):195-210 [DOI :10.1098/rstb.2005.1711http://dx.doi.org/10.1098/rstb.2005.1711]
Li L. 2016. Forest Vertical Information Extraction Based on P-Band SAR Tomography. Beijing: Chinese Academy of Forestry
李兰. 2016. 森林垂直信息P-波段SAR层析提取方法. 北京: 中国林业科学研究院
Li L. 2014. Research on Ionospheric Effects in Spaceborne P Band Synthetic Aperture Radar. Changsha: National University of Defense Technology
李力. 29014. 星载 P 波段合成孔径雷达中的电离层效应研究. 长沙: 国防科学技术大学
Li X W, Liang L, Guo H D and Huang Y. 2016. Compressive Sensing for Multibaseline Polarimetric SAR Tomography of Forested Areas.IEEE Transactions on Geoscience and Remote Sensing, 54 (1):153-166 [DOI: 10.1109/Tgrs.2015.2451992http://dx.doi.org/10.1109/Tgrs.2015.2451992]
Liao L. 2015. Optimization Research on Airborne SAR System Polarimetric Calibration Methods. Wuhan: Wuhan University
廖露,机载SAR系统极化定标方法的优化研究. 武汉: 武汉大学
Liao Z M. 2019. Forest aboveground biomass estimation using PolInSAR data.Chengdu: University of Electronic Science and Technology of China
廖展芒. 2019. 森林地上生物量极化干涉SAR反演方法研究. 成都: 电子科技大学
Liu Z M, Huang Z T and Zhou Y Y. 2013. Sparsity-Inducing Direction Finding for Narrowband and Wideband Signals Based on Array Covariance Vectors. IEEE Transactions on Wireless Communications, 12 (8):3896-3907 [DOI:10.1109/Twc.2013.071113.121305http://dx.doi.org/10.1109/Twc.2013.071113.121305]
Lombardini F and Reigber A. 2003. Adaptive spectral estimation for multibaseline SAR tomography with airborne L-band data. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477), 2014-2016 [DOI: 10.1109/IGARSS.2003.1294324http://dx.doi.org/10.1109/IGARSS.2003.1294324]
Minh D H T, Tebaldini S, Rocca F, Toan T L, Villard L and Dubois-Fernandez P C. 2015a. Capabilities of BIOMASS Tomography for Investigating Tropical Forests. Ieee Transactions on Geoscience and Remote Sensing, 53 (2):965-975 [DOI: 10.1109/Tgrs.2014.2331142http://dx.doi.org/10.1109/Tgrs.2014.2331142]
Minh D H T, Tebaldini S, Rocca F and Toan T L. 2015b. The Impact of Temporal Decorrelation on BIOMASS Tomography of Tropical Forests. IEEE Geoscience and Remote Sensing Letters, 12 (6):1297-301 [doi: 10.1109/Lgrs.2015.2394235http://dx.doi.org/10.1109/Lgrs.2015.2394235]
Minh D H T, Toan T L, Rocca F, Tebaldini S, d'Alessandro M M and Villard L. 2014. Relating P-Band Synthetic Aperture Radar Tomography to Tropical Forest Biomass. IEEE Transactions on Geoscience and Remote Sensing, 52 (2):967-979 [DOI: 10.1109/TGRS.2013.2246170http://dx.doi.org/10.1109/TGRS.2013.2246170]
Peng X, Li X W, Wang C C, Fu H Q and Du Y N. 2018. A Maximum Likelihood Based Nonparametric Iterative Adaptive Method of Synthetic Aperture Radar Tomography and Its Application for Estimating Underlying Topography and Forest Height. Sensors 18 (8) [DOI: 10.3390/s18082459]
Peng X, Li X W, Wang C C, Zhu J J, Liang L, Fu H Q, Du Y N, Yang Z F and Xie Q H. 2019. SPICE-Based SAR Tomography over Forest Areas Using a Small Number of P-Band Airborne F-SAR Images Characterized by Non-Uniformly Distributed Baselines. Remote Sensing, 11 (8) [DOI: 10.3390/rs11080975]
Peng X, Wang Y J, Long S L, Pan X, Xie Q H, Du Y A, Fu H Q, Zhu J J and Li X W. 2021. Underlying Topography Inversion Using TomoSAR Based on Non-Local Means for an L-Band Airborne Dataset. Remote Sensing 13 (15). [DOI: 10.3390/rs13152926http://dx.doi.org/10.3390/rs13152926]
Quegan, S, Toan L T, Chave J, Dall J, Exbrayat J F, Minh D H T and Lomas M. 2019. The European Space Agency BIOMASS mission: Measuring forest above-ground biomass from space.Remote Sensing of Environment, 227:44-60. [DOI: 10.1016/j.rse.2019.03.032http://dx.doi.org/10.1016/j.rse.2019.03.032]
Reigber A, and Moreira A. 2000. First demonstration of airborne SAR tomography using multibaseline L-band data. IEEE Transactions on Geoscience and Remote Sensing, 38 (5):2142-2152 [DOI: 10.1109/36.868873http://dx.doi.org/10.1109/36.868873]
Shahzad M and Zhu X X. 2015. Robust Reconstruction of Building Facades for Large Areas Using Spaceborne TomoSAR Point Clouds. Ieee Transactions on Geoscience and Remote Sensing, 53 (2):752-769 [DOI: 10.1109/Tgrs.2014.2327391http://dx.doi.org/10.1109/Tgrs.2014.2327391]
Shen P, Wang C C, Zhu J J, Gao H, Fu H Q, Xie Q H, He S S. 2017. Vegetation Height Inversion Method with Three-layer Model by Fusing the Ascending and Descending PolInSAR Data. Acta Geodaetica et Cartographica Sinica, 2017, 46(11): 1868-1879
沈鹏,汪长城,朱建军,高晗,付海强,解清华,王赛,何帅帅. 融合升降轨的极化干涉SAR三层模型植被高度反演方法. 测绘学报, 46(11):1868-1879 [DOI: 10.11947/j.AGCS.2017.20170122http://dx.doi.org/10.11947/j.AGCS.2017.20170122]
Siddique M A, Strozzi T, Hajnsek I and Frey O. 2019. A Case Study on the Correction of Atmospheric Phases for SAR Tomography in Mountainous Regions. IEEE Transactions on Geoscience and Remote Sensing 57 (1):416-31. [doi: 10.1109/Tgrs.2018.2855101http://dx.doi.org/10.1109/Tgrs.2018.2855101]
Tebaldini S. 2009. Algebraic Synthesis of Forest Scenarios From Multibaseline PolInSAR Data. IEEE Transactions on Geoscience and Remote Sensing, 47 (12):4132-4142 [DOI: 10.1109/Tgrs.2009.2023785http://dx.doi.org/10.1109/Tgrs.2009.2023785]
Tebaldini S and Rocca F. 2012. Multibaseline Polarimetric SAR Tomography of a Boreal Forest at P- and L-Bands. IEEE Transactions on Geoscience and Remote Sensing, 50 (1):232-246 [DOI: 10.1109/Tgrs.2011.2159614http://dx.doi.org/10.1109/Tgrs.2011.2159614]
Tebaldini S, Rocca F, d'Alessandro M M and Ferro-Famil L. 2016. Phase Calibration of Airborne Tomographic SAR Data via Phase Center Double Localization. IEEE Transactions on Geoscience and Remote Sensing, 54 (3):1775-1792 [DOI: 10.1109/TGRS.2015.2488358http://dx.doi.org/10.1109/TGRS.2015.2488358]
Tipping M E. 2001. Sparse Bayesian learning and the relevance vector machine. Journal of Machine Learning Research, 1 (3):211-44 [DOI: 10.1162/15324430152748236http://dx.doi.org/10.1162/15324430152748236]
Wan J, Wang C C, Shen P, Fu H Q and Zhu J J. 2022. Robust and Fast Super-Resolution SAR Tomography of Forests Based on Covariance Vector Sparse Bayesian Learning. IEEE Geoscience and Remote Sensing Letters, 19 [DOI: 10.1109/Lgrs.2021.3060829http://dx.doi.org/10.1109/Lgrs.2021.3060829]
Wan J, Wang C C, Shen P, Hu J, Fu H Q and Zhu J J. 2021. Forest Height and Underlying Topography Inversion Using Polarimetric SAR Tomography Based on SKP Decomposition and Maximum Likelihood Estimation. Forests, 12 (4) [DOI: 10.3390/f12040444]
Wan X X, Li Z Y, Chen E X, Zhao L, Zhang W F and Xu K P. 2021. Forest Aboveground Biomass Estimation Using Multi-Features Extracted by Fitting Vertical Backscattered Power Profile of Tomographic SAR. Remote Sensing, 13 (2). [DOI:10.3390/rs13020186http://dx.doi.org/10.3390/rs13020186]
Xia D K. 2011. Research on data processing method of P-band fully polarimetric SAR. Hefei: University of Science and Technology of China
夏冬坤. 2011. P波段全极化SAR数据处理方法研究. 合肥: 中国科学技术大学
Xiao Y. 2021. Research on estimation method of forest volume of Wangyedian Forest Farm based on multi-source remote sensing data. Changsha: Central South University of Forestry and Technology (肖越. 2021. 基于多源遥感数据的旺业甸林场森林蓄积量估测方法研宄.长沙: 中南林业科技大学)
Wu C J, Wang C C, Shen P, Zhu J J, Fu H Q and Gao H. 2019. Forest Height Estimation Using PolInSAR Optimal Normal Matrix Constraint and Cross-Iteration Method. Ieee Geoscience and Remote Sensing Letters, 16 (8):1245-1249 [DOI: 10.1109/LGRS.2019.2895869http://dx.doi.org/10.1109/LGRS.2019.2895869]
Yamaguchi Y, Moriyama T, Ishido M and Yamada H. 2005. Four-component scattering model for polarimetric SAR image decomposition. IEEE Transactions on Geoscience and Remote Sensing, 43 (8):1699-1706. [DOI: 10.1109/Tgrs.2005.852084http://dx.doi.org/10.1109/Tgrs.2005.852084]
Yang X W, Tebaldi S, d'Alessandro M M and Liao M S. 2020. Tropical Forest Height Retrieval Based on P-Band Multibaseline SAR Data. IEEE Geoscience and Remote Sensing Letters, 17 (3):451-455 [DOI: 10.1109/Lgrs.2019.2923252http://dx.doi.org/10.1109/Lgrs.2019.2923252]
Yitayew T G, Ferro-Famil L, Eltoft T and Tebaldini S. 2017. Tomographic Imaging of Fjord Ice Using a Very High Resolution Ground-Based SAR System. IEEE Transactions on Geoscience and Remote Sensing, 55 (2):698-714 [DOI: 10.1109/Tgrs.2016.2613900http://dx.doi.org/10.1109/Tgrs.2016.2613900]
Zhang B C, Wang W Y, Bi H, Zhao Y abd Hong W. 2015. Polarimetric SAR Tomography for Forested Areas Based on Compressive Multiple SignalClassification. Acta Geodaetica et Cartographica Sinica, 37(03):625-630
张冰尘, 王万影, 毕辉, 赵曜,洪文. 2015. 基于压缩多信号分类算法的森林区域极化SAR层析成像. 电子与信息学报, 2015,37(03):625-630 [DOI: 10.11999/JEIT140584http://dx.doi.org/10.11999/JEIT140584]
Zhu J J, Xie Q H, Zuo T Y, Wang C C and Xie J. 2014. Criterion of Complex Least Squares Adjustment and Its Application in Tree Height Inversion with PolInSAR Data. Acta Geodaetica et Cartographica Sinica , 43(1): 45-51
朱建军, 解清华, 左廷英, 汪长城, 谢建. 2014.复数域最小二乘平差及其在PolInSAR植被高反演中的应用. 测绘学报,43(1):45-51 [DOI: 10.13485/j.cnki.11-2089.2014.0007http://dx.doi.org/10.13485/j.cnki.11-2089.2014.0007
相关文章
相关作者
相关机构