MAR20: A benchmark for military aircraft recognition in remote sensing images
- Vol. 27, Issue 12, Pages: 2688-2696(2023)
Published: 07 December 2023
DOI: 10.11834/jrs.20222139
扫 描 看 全 文
浏览全部资源
扫码关注微信
Published: 07 December 2023 ,
扫 描 看 全 文
禹文奇,程塨,王美君,姚艳清,谢星星,姚西文,韩军伟.2023.MAR20:遥感图像军用飞机目标识别数据集.遥感学报,27(12): 2688-2696
Yu W Q,Cheng G,Wang M J,Yao Y Q,Xie X X,Yao X X and Han J W. 2023. MAR20: A benchmark for military aircraft recognition in remote sensing images. National Remote Sensing Bulletin, 27(12):2688-2696
遥感图像军用飞机目标识别是对遥感图像中的军用飞机进行定位和细粒度分类,其在侦察预警、情报分析等领域起着至关重要的作用。但是,由于数据集匮乏,遥感图像军用飞机目标识别发展相对缓慢。为推动该领域的研究进展,本文构建了公开的遥感图像军用飞机目标识别数据集MAR20(Military Aircraft Recognition)。该数据集具有以下特点:(1)MAR20是目前规模最大的遥感图像军用飞机目标识别数据集,包含3842张图像、20种军用飞机型号以及22341个实例,并且每个目标实例具有水平边界框和有向边界框两种标注方式;(2)由于所有的细粒度类别均隶属于飞机大类,因此不同型号的飞机往往具有相似的特征,导致不同型号目标具有较高的相似性;(3)由于遥感图像采集过程中受到气候、季节、光照、遮挡、乃至大气散射等因素的影响,相同型号的目标存在较大的类内差异性。最后,为建立遥感图像军用飞机目标识别基准,本文在MAR20数据集上评估了7种常用的水平框目标识别方法和8种有向框目标识别方法。
Military aircraft recognition in remote sensing images locates military aircraft in remote sensing images and classify them at a fine-grained level. It plays a vital role in reconnaissance and early warning
intelligence analysis
and other fields. However
the development of military aircraft recognition in remote sensing images is relatively slow due to the lack of publicly available datasets. Therefore
constructing a high-quality and large-scale military aircraft recognition dataset is important.
This study constructs a public remote sensing image military aircraft recognition dataset called MAR20 to promote the research progress in this field. The dataset has the following characteristics: (1) MAR20 is currently the largest remote sensing image military aircraft recognition dataset
which includes 3842 images
20 types
and 22341 instances. Each instance has a horizontal bounding box and also an oriented bounding box. (2) Given that all fine-grained types belong to the aircraft category
different types of aircraft often have similar characteristics
which result in high similarity of different types of targets. (3) Large intra-class differences exist between targets of the same type due to the influence of climate
season
illumination
occlusion
and even the atmospheric scattering in the process of remote sensing imaging.
To establish a benchmark for military aircraft recognition in remote sensing images
this paper study evaluates seven commonly used horizontal object recognition methods
namely
Faster R-CNN
RetinaNet
ATSS
FCOS
Cascade R-CNN
TSD
and Double-Head
as well as eight oriented object recognition methods
namely
Faster R-CNN-O
RetinaNet-O
RoI Transformer
Gliding Vertex
Double-Head-O
Oriented R-CNN
FCOS-O
and S2A-Net
on the MAR20 dataset. Through experimental comparisons in the tasks of horizontal object recognition and oriented object recognition
two-stage methods are proven to be more effective in target recognition than one-stage methods.
In this study
3842 high-resolution remote sensing images were collected from 60 military airports around the world through Google Earth
and a large-scale publicly available remote sensing image military aircraft recognition dataset
named MAR20
was established. In terms of data annotation
MAR20 provides two annotation methods
namely
horizontal bounding boxes and oriented bounding boxes
which correspond to the tasks of horizontal target recognition and oriented target recognition. We hope that the MAR20 dataset established in this study could promote the research progress in this field. MAR20 can be downloaded at
https://gcheng-nwpu.github.io/
https://gcheng-nwpu.github.io/
.
军用飞机目标识别数据集遥感图像细粒度识别
military aircraftobject recognitiondatasetremote sensing imagesfine-grained recognition
Cai Z W and Vasconcelos N. 2018. Cascade R-CNN: delving into high quality object detection//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE: 6154-6162 [DOI: 10.1109/cvpr.2018.00644http://dx.doi.org/10.1109/cvpr.2018.00644]
Chen K, Wang J Q, Pang J M, Cao Y H, Xiong Y, Li X X, Sun S Y, Feng W S, Liu Z W, Xu J R, Zhang Z, Cheng D Z, Zhu C C, Cheng T H, Zhao Q J, Li B Y, Lu X, Zhu R, Wu Y, Dai J F, Wang J D, Shi J P, Ouyang W L, Loy C C and Lin D H. 2019. MMDetection: open MMLab detection toolbox and benchmark. arXiv preprint arXiv: 1906.07155
Cheng G, Zhou P C and Han J W. 2016. Learning rotation-invariant convolutional neural networks for object detection in VHR optical remote sensing images. IEEE Transactions on Geoscience and Remote Sensing, 54(12): 7405-7415 [DOI: 10.1109/TGRS.2016.2601622http://dx.doi.org/10.1109/TGRS.2016.2601622]
Ding J, Xue N, Long Y, Xia G S and Lu Q K. 2019. Learning RoI transformer for oriented object detection in aerial images//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE: 2844-2853 [DOI: 10.1109/CVPR.2019.00296http://dx.doi.org/10.1109/CVPR.2019.00296]
Everingham M, Van Gool L, Williams C K I, Winn J and Zisserman A. 2010. The Pascal visual object classes (VOC) challenge. International Journal of Computer Vision, 88(2): 303-338 [DOI: 10.1007/s11263-009-0275-4http://dx.doi.org/10.1007/s11263-009-0275-4]
Han J M, Ding J, Li J and Xia G S. 2022. Align deep features for oriented object detection. IEEE Transactions on Geoscience and Remote Sensing, 60: 5602511 [DOI: 10.1109/TGRS.2021.3062048http://dx.doi.org/10.1109/TGRS.2021.3062048]
Haroon M, Shahzad M and Fraz M M. 2020. Multisized object detection using spaceborne optical imagery. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13: 3032-3046 [DOI: 10.1109/JSTARS.2020.3000317http://dx.doi.org/10.1109/JSTARS.2020.3000317]
He K M, Zhang X Y, Ren S Q and Sun J. 2016. Deep residual learning for image recognition//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE: 770-778 [DOI: 10.1109/cvpr.2016.90http://dx.doi.org/10.1109/cvpr.2016.90]
Li K, Wan G, Cheng G, Meng L Q and Han J W. 2020. Object detection in optical remote sensing images: a survey and a new benchmark. ISPRS Journal of Photogrammetry and Remote Sensing, 159: 296-307 [DOI: 10.1016/j.isprsjprs.2019.11.023http://dx.doi.org/10.1016/j.isprsjprs.2019.11.023]
Lin T Y, Dollár P, Girshick R, He K M, Hariharan B and Belongie S. 2017a. Feature pyramid networks for object detection//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE: 936-944 [DOI: 10.1109/cvpr.2017.106http://dx.doi.org/10.1109/cvpr.2017.106]
Lin T Y, Goyal P, Girshick R, He K M and Dollár P. 2017b. Focal loss for dense object detection//Proceedings of the 2017 IEEE International Conference on Computer Vision. Venice: IEEE: 2999-3007 [DOI: 10.1109/iccv.2017.324http://dx.doi.org/10.1109/iccv.2017.324]
Long Y, Gong Y P, Xiao Z F and Liu Q. 2017. Accurate object localization in remote sensing images based on convolutional neural networks. IEEE Transactions on Geoscience and Remote Sensing, 55(5): 2486-2498 [DOI: 10.1109/tgrs.2016.2645610http://dx.doi.org/10.1109/tgrs.2016.2645610]
Ren S Q, He K M, Girshick R and Sun J. 2017. Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(6): 1137-1149 [DOI: 10.1109/tpami.2016.2577031http://dx.doi.org/10.1109/tpami.2016.2577031]
Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S A, Huang Z H, Karpathy A, Khosla A, Bernstein M, Berg A C and Fei-Fei L. 2015. ImageNet large scale visual recognition challenge. International Journal of Computer Vision, 115(3): 211-252 [DOI: 10.1007/s11263-015-0816-yhttp://dx.doi.org/10.1007/s11263-015-0816-y]
Russell B C, Torralba A, Murphy K P and Freeman W T. 2008. LabelMe: a database and web-based tool for image annotation. International Journal of Computer Vision, 77(1/3): 157-173 [DOI: 10.1007/s11263-007-0090-8http://dx.doi.org/10.1007/s11263-007-0090-8]
Shermeyer J, Hossler T, Van Etten A, Hogan D, Lewis R and Kim D. 2020. RarePlanes: synthetic data takes flight. arXiv preprint arXiv: 2006.02963
Song G L, Liu Y and Wang X G. 2020. Revisiting the sibling head in object detector//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE: 11560-11569 [DOI: 10.1109/cvpr42600.2020.01158http://dx.doi.org/10.1109/cvpr42600.2020.01158]
Sun X, Wang P J, Yan Z Y, Xu F, Wang R P, Diao W H, Chen J, Li J H, Feng Y C, Xu T, Weinmann M, Hinz S, Wang C and Fu K. 2022. FAIR1M: a benchmark dataset for fine-grained object recognition in high-resolution remote sensing imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 184: 116-130 [DOI: 10.1016/j.isprsjprs.2021.12.004http://dx.doi.org/10.1016/j.isprsjprs.2021.12.004]
Tian Z, Shen C H, Chen H and He T. 2019. FCOS: fully convolutional one-stage object detection//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Seoul: IEEE: 9626-9635 [DOI: 10.1109/iccv.2019.00972http://dx.doi.org/10.1109/iccv.2019.00972]
Wu Y, Chen Y P, Yuan L, Liu Z C, Wang L J, Li H Z and Fu Y. 2020a. Rethinking classification and localization for object detection//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE: 10183-10192 [DOI: 10.1109/cvpr42600.2020.01020http://dx.doi.org/10.1109/cvpr42600.2020.01020]
Wu Z Z, Wan S H, Wang X F, Tan M, Zou L, Li X L and Chen Y. 2020b. A benchmark data set for aircraft type recognition from remote sensing images. Applied Soft Computing, 89: 106132 [DOI: 10.1016/j.asoc.2020.106132http://dx.doi.org/10.1016/j.asoc.2020.106132]
Xia G S, Bai X, Ding J, Zhu Z, Belongie S, Luo J B, Datcu M, Pelillo M and Zhang L P. 2018. DOTA: a large-scale dataset for object detection in aerial images//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE: 3974-3983 [DOI: 10.1109/CVPR.2018.00418http://dx.doi.org/10.1109/CVPR.2018.00418]
Xie X X, Cheng G, Wang J B, Yao X W and Han J W. 2021. Oriented R-CNN for object detection//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Montreal: IEEE: 3500-3509 [DOI: 10.1109/ICCV48922.2021.00350http://dx.doi.org/10.1109/ICCV48922.2021.00350]
Xu Y C, Fu M T, Wang Q M, Wang Y K, Chen K, Xia G S and Bai X. 2021. Gliding vertex on the horizontal bounding box for multi-oriented object detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43(4): 1452-1459 [DOI: 10.1109/TPAMI.2020.2974745http://dx.doi.org/10.1109/TPAMI.2020.2974745]
Yao Y Q, Cheng G, Xie X X and Han J W. 2021. Optical remote sensing image object detection based on multi-resolution feature fusion. Journal of Remote Sensing, 25(5): 1124-1137
姚艳清, 程塨, 谢星星, 韩军伟. 2021. 多分辨率特征融合的光学遥感图像目标检测. 遥感学报, 25(5): 1124-1137 [DOI: 10.11834/jrs.20210505http://dx.doi.org/10.11834/jrs.20210505]
Zhang S F, Chi C, Yao Y Q, Lei Z and Li S Z. 2020. Bridging the gap between anchor-based and anchor-free detection via adaptive training sample selection//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE: 9756-9765 [DOI: 10.1109/cvpr42600.2020.00978http://dx.doi.org/10.1109/cvpr42600.2020.00978]
Zhou P C, Cheng G, Yao X W and Han J W. 2021. Machine learning paradigms in high-resolution remote sensing image interpretation. National Remote Sensing Bulletin, 25(1): 182-197
周培诚, 程塨, 姚西文, 韩军伟. 2021. 高分辨率遥感影像解译中的机器学习范式. 遥感学报, 25(1): 182-197 [DOI: 10.11834/jrs.20210164http://dx.doi.org/10.11834/jrs.20210164]
Zou Z X and Shi Z W. 2018. Random access memories: a new paradigm for target detection in high resolution aerial remote sensing images. IEEE Transactions on Image Processing, 27(3): 1100-1111 [DOI: 10.1109/TIP.2017.2773199http://dx.doi.org/10.1109/TIP.2017.2773199]
相关作者
相关机构