On subtropical remote sensing in China: Research status, key tasks and innovative development approaches
- Vol. 26, Issue 8, Pages: 1483-1503(2022)
Published: 07 August 2022
DOI: 10.11834/jrs.20222173
扫 描 看 全 文
浏览全部资源
扫码关注微信
Published: 07 August 2022 ,
扫 描 看 全 文
吴立新,孙根云,苗则朗,张爱竹,冯徽徽,胡俊,杨泽发,王威,陈必焰,汤玉奇.2022.浅论中国亚热带遥感现状、任务与创新发展途径.遥感学报,26(8): 1483-1503
Wu L X,Sun G Y,Miao Z L,Zhang A Z,Feng H H,Hu J,Yang Z F,Wang W,Chen B Y and Tang Y Q. 2022. On subtropical remote sensing in China: Research status, key tasks and innovative development approaches. National Remote Sensing Bulletin, 26(8):1483-1503
中国亚热带区域覆盖范围广,面积达240万km
2
。区内不仅自然景观复杂,多云多雨、多山多林,生物多样性丰富、是中国稻米主产区,而且多河多湖、多矿多污,生态环境十分敏感、自然灾害多发频发,迫切需要利用遥感技术监测其自然资源、环境变化与灾害现象。虽然近年来国内外已逐渐开展亚热带遥感应用研究,但缺乏对亚热带遥感理论与方法的系统性研究,共性与科学问题尚不明晰。本文总结分析了中国亚热带遥感的3个基本特征,按遥感数据类型梳理了中国亚热带遥感的应用实践;进而归纳出中国亚热带遥感实践的4个共性问题,指出亚热带遥感核心元素的主要特点、地理对象的复杂性与遥感信息的病态性,提出中国亚热带遥感的4项重点任务;然后,分析了当今中国亚热带遥感发展的历史机遇,阐述了中国亚热带遥感的创新发展途径,包括厘清人地现象的动态特征、聚焦亚热带遥感的科学问题、攻克不同层面的关键难题、结合应用需求开展技术攻关与重点研发。论文旨在推动亚热带遥感应用的创新发展、促进亚热带遥感理论与技术体系形成,进而助力卫星及航空遥感更好地服务于中国亚热带地区的资源环境监测、区域防灾减灾、生态文明建设与“双碳”目标。
The subtropical region of China covers a vast area with special and unique geographical characteristics. Typical geographical characteristics include complex natural landscape with a mass of mountains and forests
cloudy and rainy climate
and rich biodiversity. And the subtropical region is the major producing areas of rice in China. Moreover
the subtropical region has abundant rivers
lakes
and mineral resources
which induce the sewage from the mining area spread widely along the river basins. All these geographical characteristics lead to high ecological environment sensitivity and frequent natural disasters of subtropical region in China. The characteristics of remote sensing for large range of rapid observation make it essential for precise monitoring of natural resources and environmental disasters in the wide subtropical region. Furthermore
it is urgent to develop special remote sensing theory and technology for subtropical region in China
so as to support the sustainable development and ecological civilization construction. In recent years
many researchers have gradually paid their attention to the subtropical satellite remote sensing. Internationally
the research topics mainly include land use cover change
urban environmental monitoring
wetland mapping
earthquake damage and its secondary disaster monitoring
water quality monitoring
vegetation biomass inversion
and aerosol parameter inversion and so on. In China
scholars mainly focus on some specific applications
such as flood disaster monitoring
mangrove monitoring
and forest degradation etc. These works provide abundant cases and raw materials for the formation and development of the theoretical system of subtropical remote sensing. However
most of the current studies just concentrated on some particular objects
local areas
or specific problems. So far
the theory and technology system of subtropical remote sensing is still in its infancy
and lacks in systematic analysis on characteristics of research status
fundamental problems and future development. In this paper
we first described the basic characteristics of subtropical region of China and the related practice researches in remote sensing. In this part
we analyzed the practice of remote sensing in subtropical region from the perspective of remote sensing data sources
including optical
hyperspectral
microwave
and multi-source data. Furthermore
we discussed the common problems of the practical researches in subtropical remote sensing. In this part
we analyzed and pointed out the two fundamental problems of subtropical remote sensing
i.e. the problems of geographical objects and remote sensing information. Accordingly
we elucidated the key tasks and scientific problems derived from the two fundamental problems. Then
we analyzed the historical opportunity of subtropical remote sensing development
and put forward the core scientific problems and development approaches of subtropical remote sensing that should be focused on in the future. In conclusion
there are some basic features and common problems in subtropical remote sensing. The innovation and development of subtropical remote sensing
including the collaborative observations of multiple sensors and various platforms
are inevitable trend. This paper aims to explore the development ideas for theories and methods of subtropical remote sensing. Meanwhile
we commit to clarify the innovation direction of subtropical remote sensing technology and application. Most important of all
we hope to promote the application of remote sensing in resource and environment monitoring
disaster prevention and reduction
and ecological civilization construction in the subtropical region of China.
亚热带遥感地理对象遥感信息资源环境自然灾害
subtropical remote sensinggeographical objectsremote sensing informationresources and environmentnatural disasters
Ashton P and Zhu H. 2020. The tropical-subtropical evergreen forest transition in East Asia: an exploration. Plant Diversity, 42(4): 255-280 [DOI: 10.1016/j.pld.2020.04.001http://dx.doi.org/10.1016/j.pld.2020.04.001]
Berlanga-Robles C A and Ruiz-Luna A. 2011. Integrating remote sensing techniques, geographical information systems (GIS), and stochastic models for monitoring land use and land cover (LULC) changes in the northern coastal region of Nayarit, Mexico. GIScience and Remote Sensing, 48(2): 245-263 [DOI: 10.2747/1548-1603.48.2.245http://dx.doi.org/10.2747/1548-1603.48.2.245]
Brakenridge G R, Syvitski J P M, Overeem I, Higgins S A, Kettner A J, Stewart-Moore J A and Westerhoff R. 2013. Global mapping of storm surges and the assessment of coastal vulnerability. Natural Hazards, 66(3): 1295-1312 [DOI: 10.1007/s11069-012-0317-zhttp://dx.doi.org/10.1007/s11069-012-0317-z]
Buchroithner M. 1990. High-mountain remote sensing cartography//1st Internat. Symp. on High-Moutain Remote Sensing Cartography. At: Schladming, Germany
Carvalho F and Henriques D. 2000. Use of brewer ozone spectrophotometer for aerosol optical depth measurements on ultraviolet region. Advances in Space Research, 25(5): 997-1006 [DOI: 10.1016/S0273-1177(99)00463-9http://dx.doi.org/10.1016/S0273-1177(99)00463-9]
Chadwick J. 2011. Integrated LiDAR and IKONOS multispectral imagery for mapping mangrove distribution and physical properties. International Journal of Remote Sensing, 32(21): 6765-6781 [DOI: 10.1080/01431161.2010.512944http://dx.doi.org/10.1080/01431161.2010.512944]
Chang Y, Wang S X, Zhou Y, Wang L T and Wang F T. 2019. A novel method of evaluating highway traffic prosperity based on nighttime light remote sensing. Remote Sensing, 12(1): 102 [DOI: 10.3390/rs12010102http://dx.doi.org/10.3390/rs12010102]
Chen B, Zhao G S, Han S and Lu L. 2019. Approach for annual deforestation extraction in subtropical zone combing GF-1 with LiDAR. Geomatics and Spatial Information Technology, 42(3): 79-83, 86
陈斌, 赵国帅, 韩尚, 鲁林. 2019. 结合高分一号和LiDAR的亚热带森林年度采伐迹地提取. 测绘与空间地理信息, 42(3): 79-83, 86 [DOI: 10.3969/j.issn.1672-5867.2019.03.021http://dx.doi.org/10.3969/j.issn.1672-5867.2019.03.021]
Chen B Q, Xiao X M, Li X P, Pan L H, Doughty R, Ma J, Dong J W, Qin Y W, Zhao B, Wu Z X, Sun R, Lan G Y, Xie G S, Clinton N and Giri C. 2017. A mangrove forest map of China in 2015: analysis of time series Landsat 7/8 and Sentinel-1A imagery in google earth engine cloud computing platform. ISPRS Journal of Photogrammetry and Remote Sensing, 131: 104-120 [DOI: 10.1016/j.isprsjprs.2017.07.011http://dx.doi.org/10.1016/j.isprsjprs.2017.07.011]
Chen B Y, Dai W J, Liu Z Z, Wu L X, Kuang C L and Ao M S. 2018. Constructing a precipitable water vapor map from regional GNSS network observations without collocated meteorological data for weather forecasting. Atmospheric Measurement Techniques, 11(9): 5153-5166 [DOI: 10.5194/amt-11-5153-2018http://dx.doi.org/10.5194/amt-11-5153-2018]
Chen J Q, Wei H, Li N, Chen S Q, Qu W Q and Zhang Y. 2020a. Exploring the spatial-temporal dynamics of the Yangtze River Delta urban agglomeration based on night-time light remote sensing technology. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13: 5369-5383 [DOI: 10.1109/JSTARS.2020.3022178http://dx.doi.org/10.1109/JSTARS.2020.3022178]
Chen L F, Tao J H, Wang Z F, Li S S, Zhang Y, Fan M, Li X Y, Yu C, Zou M M, Su L and Tao M H. 2015. Review of satellite remote sensing of air quality. Journal of Atmospheric and Environmental Optics, 10(2): 117-125
陈良富, 陶金花, 王子峰, 李莘莘, 张莹, 范萌, 李小英, 余超, 邹铭敏, 苏林, 陶明辉. 2015. 空气质量卫星遥感监测技术进展. 大气与环境光学学报, 10(2): 117-125 [DOI: 10.3969/j.issn.1673-6141.2015.02.004http://dx.doi.org/10.3969/j.issn.1673-6141.2015.02.004]
Chen Y L, Feng L P, Mo J F, Mo W H, Ding M H and Liu Z P. 2020b. Identification of sugarcane with NDVI time series based on HJ-1 CCD and MODIS fusion. Journal of the Indian Society of Remote Sensing, 48(2): 249-262 [DOI: 10.1007/s12524-019-01042-1http://dx.doi.org/10.1007/s12524-019-01042-1]
Chen Z Y, Ren J Q, Tang H J, Shi Y, Leng P, Liu J, Wang L M, Wu W B, Yao Y M and Hasiyuya. 2016. Progress and perspectives on agricultural remote sensing research and applications in China. Journal of Remote Sensing, 20(5): 748-767
陈仲新, 任建强, 唐华俊, 史云, 冷佩, 刘佳, 王利民, 吴文斌, 姚艳敏, 哈斯图亚. 2016. 农业遥感研究应用进展与展望. 遥感学报, 20(5): 748-767 [DOI: 10.11834/jrs.20166214http://dx.doi.org/10.11834/jrs.20166214]
Cui L, Du H Q, Zhou G M, Li X J, Mao F J, Xu X J, Fan W L, Li Y G, Zhu D E, Liu T Y and Xing L Q. 2019. Combination of decision tree and mixed pixel decomposition for extracting bamboo forest information in China. Journal of Remote Sensing, 23(1): 166-176
崔璐, 杜华强, 周国模, 李雪建, 毛方杰, 徐小军, 范渭亮, 李阳光, 朱迪恩, 刘腾艳, 邢璐琪. 2019. 决策树结合混合像元分解的中国竹林遥感信息提取. 遥感学报, 23(1): 166-176 [DOI: 10.11834/jrs.20187155http://dx.doi.org/10.11834/jrs.20187155]
Da Costa S M F and Cintra J P. 1999. Environmental analysis of metropolitan areas in Brazil. ISPRS Journal of Photogrammetry and Remote Sensing, 54(1): 41-49 [DOI: 10.1016/S0924-2716(98)00024-0http://dx.doi.org/10.1016/S0924-2716(98)00024-0]
Deng X L, Zeng G L, Zhu Z H, Huang Z X, Yang J C, Tong Z J, Yin X B, Wang T W and Lan Y B. 2020. Classification and feature band extraction of diseased citrus plants based on UAV hyperspectral remote sensing. Journal of South China Agricultural University, 41(6): 100-108
邓小玲, 曾国亮, 朱梓豪, 黄梓效, 杨佳诚, 童泽京, 殷献博, 王天伟, 兰玉彬. 2020. 基于无人机高光谱遥感的柑橘患病植株分类与特征波段提取. 华南农业大学学报, 41(6): 100-108 [DOI: 10.7671/j.issn.1001-411X.202006042http://dx.doi.org/10.7671/j.issn.1001-411X.202006042]
Dong L F, Du H Q, Mao F J, Han N, Li X J, Zhou G M, Zhu D E, Zheng J L, Zhang M, Xing L Q and Liu T Y. 2020a. Very high resolution remote sensing imagery classification using a fusion of random forest and deep learning technique—subtropical area for example. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13: 113-128 [DOI: 10.1109/JSTARS.2019.2953234http://dx.doi.org/10.1109/JSTARS.2019.2953234]
Dong Y Y, Xu F, Liu L Y, Du X P, Ren B Y, Guo A T, Geng Y, Ruan C, Ye H C, Huang W J and Zhu Y N. 2020b. Automatic system for crop pest and disease dynamic monitoring and early forecasting. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13: 4410-4418 [DOI: 10.1109/JSTARS.2020.3013340http://dx.doi.org/10.1109/JSTARS.2020.3013340]
Du P J. 2020. Progress of high resolution remotely sensed image progressing and urban application examples. Modern Surveying and Mapping, 43(1): 1-9
杜培军. 2020. 高分辨率遥感影像处理进展与城市应用若干实例. 现代测绘, 43(1): 1-9 [DOI: 10.3969/j.issn.1672-4097.2020.01.001http://dx.doi.org/10.3969/j.issn.1672-4097.2020.01.001]
Du P J, Bai X Y, Luo J Q, Li E Z and Lin C. 2018. Advances of urban remote sensing. Journal of Nanjing University of Information Science and Technology (Natural Science Edition), 10(1): 16-29
杜培军, 白旭宇, 罗洁琼, 李二珠, 林聪. 2018. 城市遥感研究进展. 南京信息工程大学学报(自然科学版), 10(1): 16-29 [DOI: 10.13878/j.cnki.jnuist.2018.01.003http://dx.doi.org/10.13878/j.cnki.jnuist.2018.01.003]
Du W H, Qin Z H, Fan J L, Gao M F, Wang F and Abbasi B. 2019. An efficient approach to remove thick cloud in VNIR bands of multi-temporal remote sensing images. Remote Sensing, 11(11): 1284 [DOI: 10.3390/rs11111284http://dx.doi.org/10.3390/rs11111284]
Fang C Y, Wu H, Tao Z H, Gao D and Zhou H. 2016. The wetland information extraction research of Nanji wetland in Poyang Lake based on high resolution remote sensing image. Journal of Geo-Information Science, 18(6): 847-856
方朝阳, 邬浩, 陶长华, 高丹, 周华. 2016. 鄱阳湖南矶湿地景观信息高分辨率遥感提取. 地球信息科学学报, 18(6): 847-856 [DOI: 10.3724/SP.J.1047.2016.00847http://dx.doi.org/10.3724/SP.J.1047.2016.00847]
Fang S S, Lu P C, Liao K W, Wu F, Hu D P and Zhang W G. 2020. Analysis of typical winter thick fog events in Wuhan based on microwave radiometer data. Meteorological and Environmental Sciences, 43(4): 81-87
方莎莎, 陆鹏程, 廖可文, 吴芬, 胡东平, 张文刚. 2020. 基于微波辐射计资料对武汉市冬季典型大雾个例的探测分析. 气象与环境科学, 43(4): 81-87 [DOI: 10.16765/j.cnki.1673-7148.2020.04.011http://dx.doi.org/10.16765/j.cnki.1673-7148.2020.04.011]
Feng H H and Liu Y B. 2014. Trajectory based detection of forest-change impacts on surface soil moisture at a basin scale [Poyang Lake Basin, China]. Journal of Hydrology, 514: 337-346 [DOI: 10.1016/j.jhydrol.2014.04.044http://dx.doi.org/10.1016/j.jhydrol.2014.04.044]
Feng H H and Liu Y B. 2015. Combined effects of precipitation and air temperature on soil moisture in different land covers in a humid basin. Journal of Hydrology, 531: 1129-1140 [DOI: 10.1016/j.jhydrol.2015.11.016http://dx.doi.org/10.1016/j.jhydrol.2015.11.016]
Feng H H, Zhao X F, Chen F and Wu L C. 2014. Using land use change trajectories to quantify the effects of urbanization on urban heat island. Advances in Space Research, 53(3): 463-473 [DOI: 10.1016/j.asr.2013.11.028http://dx.doi.org/10.1016/j.asr.2013.11.028]
Fraser A D, Massom R A and Michael K J. 2010. Generation of high-resolution east Antarctic landfast sea-ice maps from cloud-free MODIS satellite composite imagery. Remote Sensing of Environment, 114(12): 2888-2896 [DOI: 10.1016/j.rse.2010.07.006http://dx.doi.org/10.1016/j.rse.2010.07.006]
Fu Y C, Lu X Y, Zhao Y L, Zeng X T and Xia L L. 2013. Assessment impacts of weather and land use/land cover (LULC) change on urban vegetation net primary productivity (NPP): a case study in Guangzhou, China. Remote Sensing, 5(8): 4125-4144 [DOI: 10.3390/rs5084125http://dx.doi.org/10.3390/rs5084125]
Gong J Y, Zhang X, Xiang L G and Chen N C. 2019. Progress and applications for integrated sensing and intelligent decision in smart city. Acta Geodaetica et Cartographica Sinica, 48(12): 1482-1497
龚健雅, 张翔, 向隆刚, 陈能成. 2019. 智慧城市综合感知与智能决策的进展及应用. 测绘学报, 48(12): 1482-1497 [DOI: 10.11947/j.AGCS.2019.20190464http://dx.doi.org/10.11947/j.AGCS.2019.20190464]
Gong P, Li X C, Wang J, Bai Y Q, Chen B, Hu T Y, Liu X P, Xu B, Yang J, Zhang W and Zhou Y Y. 2020. Annual maps of global artificial impervious area (GAIA) between 1985 and 2018. Remote Sensing of Environment, 236: 111510 [DOI: 10.1016/j.rse.2019.111510http://dx.doi.org/10.1016/j.rse.2019.111510]
Guo S C, Du P J, Meng Y P, Wang X, Tang P F, Lin C and Xia J S. 2021. Dynamic monitoring on flooding situation in the middle and lower reaches of the Yangtze River region using Sentinel-1A time series. Journal of Remote Sensing, 25(10): 2127-2141
郭山川, 杜培军, 蒙亚平, 王欣, 唐鹏飞, 林聪, 夏俊士. 2021. 时序Sentinel-1A数据支持的长江中下游汛情动态监测. 遥感学报, 25(10): 2127-2141 [DOI: 10.11834/jrs.20210547http://dx.doi.org/10.11834/jrs.20210547]
Guo S Q, Zhou J J and Nong Z X. 2019. Hydrogeological investigation and heavy metal migration regularity study of a Pb-Zn deposit in Guangxi. Mineral Resources and Geology, 33(3): 567-572
郭尚其, 周洁军, 农泽喜. 2019. 广西某铅锌矿水文地质调查与重金属迁移规律研究. 矿产与地质, 33(3): 567-572
He J L. 2020. Study on the influence of cloud adjacency effects on the aerosol optical depth retrieval and its reducing method. Acta Geodaetica et Cartographica Sinica, 49(1): 132
贺军亮. 2020. 云邻近效应对气溶胶光学厚度遥感反演的影响及其消减方法研究. 测绘学报, 49(1): 132 [DOI: 10.11947/j.AGCS.2020.20190060http://dx.doi.org/10.11947/j.AGCS.2020.20190060]
He Q S, Li C C, Tang X, Li H L, Geng F H and Wu Y L. 2010. Validation of MODIS derived aerosol optical depth over the Yangtze River Delta in China. Remote Sensing of Environment, 114(8): 1649-1661 [DOI: 10.1016/j.rse.2010.02.015http://dx.doi.org/10.1016/j.rse.2010.02.015]
He Y, Huang C, Li H, Liu C S, Liu G H, Zhou Z C and Zhang C C. 2019. Land-cover classification of random forest based on Sentinel-2A image feature optimization. Resources Science, 41(5): 992-1001
何云, 黄翀, 李贺, 刘庆生, 刘高焕, 周振超, 张晨晨. 2019. 基于Sentinel-2A影像特征优选的随机森林土地覆盖分类. 资源科学, 41(5): 992-1001 [DOI: 10.18402/resci.2019.05.15http://dx.doi.org/10.18402/resci.2019.05.15]
Hu B, Chen J Y and Zhang X F. 2019. Monitoring the land subsidence area in a coastal urban area with InSAR and GNSS. Sensors, 19(14): 3181 [DOI: 10.3390/s19143181http://dx.doi.org/10.3390/s19143181]
Hu B, Yu M, Li Z Y, Wang D Y and Chen X D. 2021. Study of ice condition on the northeast route during window period based on onboard observation. Journal of Ship Mechanics, 25(8): 1001-1009
胡冰, 于淼, 李志远, 王德禹, 陈晓东. 2021. 基于实船观测的北极东北航线窗口期海冰冰情研究. 船舶力学, 25(8): 1001-1009 [DOI: 10.3969/j.issn.1007-7294.2021.08.003http://dx.doi.org/10.3969/j.issn.1007-7294.2021.08.003]
Hua Y. 2020. Ecological Risk Assessment of Heavy Metals in Sulfide Mining Area of Shuikoushan, Hunan. Beijing: China University of Geosciences (Beijing)
华语. 2020. 湖南水口山硫化物矿区重金属生态风险评价. 北京: 中国地质大学(北京) [DOI: 10.27493/d.cnki.gzdzy.2020.001189http://dx.doi.org/10.27493/d.cnki.gzdzy.2020.001189]
Huang S F, Ma J W and Sun Y Y. 2021. Situation and prospect of flood disaster monitoring by remote sensing in China. China Water Resources, (15): 15-17
黄诗峰, 马建威, 孙亚勇. 2021. 中国洪涝灾害遥感监测现状与展望. 中国水利, (15): 15-17 [DOI: 10.3969/j.issn.1000-1123.2021.15.017http://dx.doi.org/10.3969/j.issn.1000-1123.2021.15.017]
Jendryke M, McClure S C, Balz T and Liao M S. 2017. Monitoring the built-up environment of Shanghai on the street-block level using SAR and volunteered geographic information. International Journal of Digital Earth, 10(7): 675-686 [DOI: 10.1080/17538947.2016.1216616http://dx.doi.org/10.1080/17538947.2016.1216616]
Ji J Y, Li X J, Du H Q, Mao F J, Fan W L, Xu Y X, Huang Z H, Wang J Y and Kang F F. 2021. Multiscale leaf area index assimilation for moso bamboo forest based on Sentinel-2 and MODIS data. International Journal of Applied Earth Observation and Geoinformation, 104: 102519 [DOI: 10.1016/j.jag.2021.102519http://dx.doi.org/10.1016/j.jag.2021.102519]
Jia M M, Wang Z M, Zhang Y Z, Ren C Y and Song K S. 2015. Landsat-based estimation of mangrove forest loss and restoration in Guangxi Province, China, influenced by human and natural factors. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(1): 311-323 [DOI: 10.1109/JSTARS.2014.2333527http://dx.doi.org/10.1109/JSTARS.2014.2333527]
Jiang G J, Loiselle S A, Yang D T, Ma R H, Su W and Gao C J. 2020. Remote estimation of chlorophyll a concentrations over a wide range of optical conditions based on water classification from VIIRS observations. Remote Sensing of Environment, 241: 111735 [DOI: 10.1016/j.rse.2020.111735http://dx.doi.org/10.1016/j.rse.2020.111735]
Jiang R, Sanchez-Azofeifa A, Laakso K, Xu Y, Zhou Z Y, Luo X W, Huang J H, Chen X and Zang Y. 2021. Cloud cover throughout all the paddy rice fields in Guangdong, China: impacts on Sentinel 2 MSI and Landsat 8 OLI optical observations. Remote Sensing, 13(15): 2961 [DOI: 10.3390/rs13152961http://dx.doi.org/10.3390/rs13152961]
Jiang Y N, Liao M S, Wang H M, Zhang L and Balz T. 2016. Deformation monitoring and analysis of the geological environment of Pudong international airport with persistent scatterer SAR interferometry. Remote Sensing, 8(12): 1021 [DOI: 10.3390/rs8121021http://dx.doi.org/10.3390/rs8121021]
Jin H A, Li A N, Bian J H, Zhao W, Zhang Z J and Nan X. 2016. Leaf area index (LAI) estimationfrom remotely sensed observations in different topographic gradients over southwestern China. Remote Sensing Technology and Application, 31(1): 42-50
靳华安, 李爱农, 边金虎, 赵伟, 张正健, 南希. 2016. 西南地区不同山地环境梯度叶面积指数遥感反演. 遥感技术与应用, 31(1): 42-50 [DOI: 10.11873/j.issn.1004-0323.2016.1.0042http://dx.doi.org/10.11873/j.issn.1004-0323.2016.1.0042]
Jing C B, Zhou W Q, Qian Y G, Yu W J and Zheng Z. 2021. A novel approach for quantifying high-frequency urban land cover changes at the block level with scarce clear-sky Landsat observations. Remote Sensing of Environment, 255: 112293 [DOI: 10.1016/j.rse.2021.112293http://dx.doi.org/10.1016/j.rse.2021.112293]
Kaya Ş, Curran P J and Llewellyn G. 2005. Post‐earthquake building collapse: a comparison of government statistics and estimates derived from SPOT HRVIR data. International Journal of Remote Sensing, 26(13): 2731-2740 [DOI: 10.1080/01431160500099428http://dx.doi.org/10.1080/01431160500099428]
Kim G, Baek I, Stocker M D, Smith J E, Van Tassell A L, Qin J W, Chan D E, Pachepsky Y and Kim M S. 2020. Hyperspectral imaging from a multipurpose floating platform to estimate Chlorophyll-a concentrations in irrigation pond water. Remote Sensing, 12(13): 2070 [DOI: 10.3390/rs12132070http://dx.doi.org/10.3390/rs12132070]
Kou Z X, Yao Y H and Hu Y F. 2020. Delimitation of the northern boundary of the subtropical zone in China by geodetector. Geographical Research, 39(12): 2821-2832
寇志翔, 姚永慧, 胡宇凡. 2020. 基于地理探测器的中国亚热带北界探讨. 地理研究, 39(12): 2821-2832 [DOI: 10.11821/dlyj020191026http://dx.doi.org/10.11821/dlyj020191026]
Lacroix P, Berthier E and Maquerhua E T. 2015. Earthquake-driven acceleration of slow-moving landslides in the Colca Valley, Peru, detected from Pléiades images. Remote Sensing of Environment, 165: 148-158 [DOI: 10.1016/j.rse.2015.05.010http://dx.doi.org/10.1016/j.rse.2015.05.010]
Lee D, Son S, Joo H, Kim K, Kim M J, Jang H K, Yun M S, Kang C K and Lee S H. 2020. Estimation of the particulate organic carbon to chlorophyll-a ratio using MODIS-aqua in the East/Japan Sea, South Korea. Remote Sensing, 12(5): 840 [DOI: 10.3390/rs12050840http://dx.doi.org/10.3390/rs12050840]
Lei F G, Wang J H and Chen S W. 1984. Preparation of vegetation map of liangshuangbanna nature reserve by using aerial photos. Forest Inventory and Planning, (3): 24-26
雷福光, 王建浩, 陈述旺. 1984. 利用航摄照片编制两双版纳自然保护区植被图. 林业调查规划, (3) : 24-26
Li A N, Bian J H, Zhang Z J, Zhao W and Yin G F. 2016a. Progresses, opportunities, and challenges of mountain remote sensing research. Journal of Remote Sensing, 20(5): 1199-1215
李爱农, 边金虎, 张正健, 赵伟, 尹高飞. 2016a. 山地遥感主要研究进展、发展机遇与挑战. 遥感学报, 20(5): 1199-1215 [DOI: 10.11834/jrs.20166227http://dx.doi.org/10.11834/jrs.20166227]
Li A N, Yin G F, Jin H A, Bian J H and Zhao W. 2016b. Principles and methods for the retrieval of biophysical variables in mountainous areas. Remote Sensing Technology and Application, 31(1): 1-11
李爱农, 尹高飞, 靳华安, 边金虎, 赵伟. 2016b. 山地地表生态参量遥感反演的理论、方法与问题. 遥感技术与应用, 31(1): 1-11 [DOI: 10.11873/j.issn.1004-0323.2016.1.0001http://dx.doi.org/10.11873/j.issn.1004-0323.2016.1.0001]
Li D, Qin K, Wu L X, Xu J, Letu H, Zou B, He Q and Li Y F. 2019a. Evaluation of JAXA himawari-8-AHI level-3 aerosol products over eastern China. Atmosphere, 10(4): 215 [DOI: 10.3390/atmos10040215http://dx.doi.org/10.3390/atmos10040215]
Li D R, Luo H and Shao Z F. 2016. Review of impervious surface mapping using remote sensing technology and its application. Geomatics and Information Science of Wuhan University, 41(5): 569-577, 703
李德仁, 罗晖, 邵振峰. 2016. 遥感技术在不透水层提取中的应用与展望. 武汉大学学报(信息科学版), 41(5): 569-577, 703 [DOI: 10.13203/j.whugis20160038http://dx.doi.org/10.13203/j.whugis20160038]
Li H K, Wu L X and Liu X S. 2014. Change detection of ground-surface environment in rare earth mining area based on multi-temporal remote sensing: a case in Lingbei rare earth mining area. Journal of China University of Mining and Technology, 43(6): 1077-1094
李恒凯, 吴立新, 刘小生. 2014. 稀土矿区地表环境变化多时相遥感监测研究——以岭北稀土矿区为例. 中国矿业大学学报, 2014, 43(6): 1087-1094 [DOI: 10.13247/j.cnki.jcumt.000260http://dx.doi.org/10.13247/j.cnki.jcumt.000260]
Li L W, Li N, Lu D S and Chen Y Y. 2019b. Mapping Moso bamboo forest and its on-year and off-year distribution in a subtropical region using time-series Sentinel-2 and Landsat 8 data. Remote Sensing of Environment, 231: 111265 [DOI: 10.1016/j.rse.2019.111265http://dx.doi.org/10.1016/j.rse.2019.111265]
Li Q Q, Lu Y, Hu S B, Hu Z W, Li H Z, Liu P, Shi T Z, Wang C S, Wang J J and Wu G F. 2016. Review of remotely sensed geo-environmental monitoring of coastal zones. Journal of Remote Sensing, 20(5): 1216-1229
李清泉, 卢艺, 胡水波, 胡忠文, 李洪忠, 刘鹏, 石铁柱, 汪驰升, 王俊杰, 邬国锋. 2016. 海岸带地理环境遥感监测综述. 遥感学报, 20(5): 1216-1229 [DOI: 10.11834/jrs.20166168http://dx.doi.org/10.11834/jrs.20166168]
Li T W and Cheng X. 2021. Estimating daily full-coverage surface ozone concentration using satellite observations and a spatiotemporally embedded deep learning approach. International Journal of Applied Earth Observation and Geoinformation, 101: 102356 [DOI: 10.1016/j.jag.2021.102356http://dx.doi.org/10.1016/j.jag.2021.102356]
Li W T. 2018. Distribution Characteristics and Sources of Cd-Contamination in Shizhuyuan Mine and its Surrounding Soils, Hunan Province. Beijing: China University of Geosciences (Beijing)
黎伟田. 2018. 湖南柿竹园矿区及周边土壤镉污染分布特征与来源研究. 北京: 中国地质大学(北京)
Li X S, Li H, Chen D H, Liu Y F, Liu S S, Liu C F and Hu G Q. 2020. Multiple classifiers combination method for tree species identification based on GF-5 and GF-6. Scientia Silvae Sinicae, 56(10): 93-104
栗旭升, 李虎, 陈冬花, 刘玉锋, 刘赛赛, 刘聪芳, 胡国庆. 2020. 联合GF-5与GF-6卫星数据的多分类器组合亚热带树种识别.林业科学, 56(10): 93-104 [DOI: 10.11707/j.1001-7488.20201010http://dx.doi.org/10.11707/j.1001-7488.20201010]
Li Y Q, Liang W and Cao W. 2018. Urban heat island pattern analysis of typical city in the subtropical region: a case study of Nanning. Urban Development Studies, 25(7): C14-C18
李雅箐, 梁炜, 曹伟. 2018. 亚热带地区典型城市热岛格局分析—以南宁为例. 城市发展研究, 25(7): C14-C18 [DOI: 10.3969/j.issn.1006-3862.2018.7/ier07.020http://dx.doi.org/10.3969/j.issn.1006-3862.2018.7/ier07.020]
Li Z, Hu H P, Yang M H and Chen M. 2018. Forest classification based on Landsat-8 multi-temporal remote sensing image. Geomatics and Spatial Information Technology, 41(9): 147-149
李振, 胡慧萍, 杨敏华, 陈鸣. 2018. Landsat-8多时相遥感影像亚热带森林分类. 测绘与空间地理信息, 41(9): 147-149 [DOI: 10.3969/j.issn.1672-5867.2018.09.040http://dx.doi.org/10.3969/j.issn.1672-5867.2018.09.040]
Li Z Q, Chen X F, Ma Y, Qie L L, Hou W Z and Qiao Y L. 2018. An overview of atmospheric correction for optical remote sensing satellites. Journal of Nanjing University of Information Science and Technology (Natural Science Edition), 10(1): 6-15
李正强, 陈兴峰, 马, 伽丽丽, 侯伟真, 乔延利. 2018. 光学遥感卫星大气校正研究综述. 南京信息工程大学学报(自然科学版), 10(1): 6-15 [DOI: 10.13878/j.cnki.jnuist.2018.01.002http://dx.doi.org/10.13878/j.cnki.jnuist.2018.01.002]
Li Z W, Xu W B, Feng G C, Hu J, Wang C C, Ding X L and Zhu J J. 2012. Correcting atmospheric effects on InSAR with MERIS water vapour data and elevation-dependent interpolation model. Geophysical Journal International,189(2): 898-910 [DOI: 10.1111/j.1365-246X.2012.05432.xhttp://dx.doi.org/10.1111/j.1365-246X.2012.05432.x]
Liang H, He J and Lei J J. 2020. Monitoring of corn canopy blight disease based on UAV hyperspectral method. Spectroscopy and Spectral Analysis, 40(6): 1965-1972
梁辉, 何敬, 雷俊杰. 2020. 无人机高光谱的玉米冠层大斑病监测. 光谱学与光谱分析, 40(6): 1965-1972 [DOI: 10.3964/j.issn.1000-0593(2020)06-1965-08http://dx.doi.org/10.3964/j.issn.1000-0593(2020)06-1965-08]
Liang S L, Cheng J, Jia K, Jiang B, Liu Q, Liu S H, Xiao Z Q, Xie X H, Yao Y J, Yuan W P, Zhang X T and Zhao X. 2016. Recent progress in land surface quantitative remote sensing. Journal of Remote Sensing, 20(5): 875-898
梁顺林, 程洁, 贾坤, 江波, 刘强, 刘素红, 肖志强, 谢先红, 姚云军, 袁文平, 张晓通, 赵祥. 2016. 陆表定量遥感反演方法的发展新动态. 遥感学报, 20(5): 875-898 [DOI: 10.11834/jrs.20166258http://dx.doi.org/10.11834/jrs.20166258]
Lin H and Zhang H S. 2021. Tropical and subtropical remote sensing: needs, challenges, and opportunities. Journal of Remote Sensing, 25(1): 276-291
林珲, 张鸿生. 2021. 热带与亚热带遥感: 需求、挑战与机遇. 遥感学报, 25(1): 276-291 [DOI: 10.11834/jrs.20210237http://dx.doi.org/10.11834/jrs.20210237]
Lin H, Zhang H S, Lin Y Y, Wei S and Wu Z F. 2018. Spatiotemporal changes of gridded urban population in the Guangdong-Hong Kong-Macao greater bay area based on impervious surface-population correlation. Progress in Geography, 37(12): 1644-1652
林珲, 张鸿生, 林殷怡, 魏姗, 吴志峰. 2018. 基于城市不透水面—人口关联的粤港澳大湾区人口密度时空分异规律与特征. 地理科学进展, 37(12): 1644-1652 [DOI: 10.18306/dlkxjz.2018.12.006http://dx.doi.org/10.18306/dlkxjz.2018.12.006]
Lin Y, Li L, Yu J, Hu Y, Zhang T H, Ye Z L, Syed A and Li J. 2021. An optimized machine learning approach to water pollution variation monitoring with time-series Landsat images. International Journal of Applied Earth Observation and Geoinformation, 102: 102370 [DOI: 10.1016/j.jag.2021.102370http://dx.doi.org/10.1016/j.jag.2021.102370]
Liu J, Wang S Y and Li D M. 2014. The analysis of the impact of land-use changes on flood exposure of Wuhan in Yangtze River Basin, China. Water Resources Management, 28(9): 2507-2522 [DOI: 10.1007/s11269-014-0623-1http://dx.doi.org/10.1007/s11269-014-0623-1]
Liu L X, Pang Y, Ren H B and Li Z Y. 2019. Predict tree species diversity from GF-2 satellite data in a subtropical forest of China. Scientia Silvae Sinicae, 55(2): 61-74
刘鲁霞, 庞勇, 任海保, 李增元. 2019. 基于高分2号遥感数据估测中亚热带天然林木本植物物种多样性. 林业科学, 55(2): 61-74 [DOI: 10.11707/j.1001-7488.20190207http://dx.doi.org/10.11707/j.1001-7488.20190207]
Liu M K, Guan L, Chen G and Zhao W. 2020. Retrieval of sea surface temperature from HY-2A scanning microwave radiometer. IEEE Transactions on Geoscience and Remote Sensing, 58(10): 7216-7231 [DOI: 10.1109/TGRS.2020.2980975http://dx.doi.org/10.1109/TGRS.2020.2980975]
Liu M L, Skidmore A K, Wang T J, Liu X N, Wu L and Tian L W. 2019. An approach for heavy metal pollution detected from spatio-temporal stability of stress in rice using satellite images. International Journal of Applied Earth Observation and Geoinformation, 80: 230-239 [DOI: 10.1016/j.jag.2019.04.012http://dx.doi.org/10.1016/j.jag.2019.04.012]
Liu Q, Yue G S, Ding X B, Yang K, Feng G C and Xiong Z Q. 2019. Temporal and spatial characteristics analysis of deformation along foshan subway using time series InSAR. Geomatics and Information Science of Wuhan University, 44(7): 1099-1106
刘琦, 岳国森, 丁孝兵, 杨坤, 冯光财, 熊志强. 2019. 佛山地铁沿线时序InSAR形变时空特征分析. 武汉大学学报(信息科学版), 44(7): 1099-1106 [DOI: 10.13203/j.whugis20190025http://dx.doi.org/10.13203/j.whugis20190025]
Liu Q H, Zhong B, Tang P, Zhang H H, Li H Y, Wu S L, Xin X Z, Li J, Jia L, Shan X J, Zhang Z, Wen J G, Du Y M, Li L, Yang A X, Li H, Hu G C, Zhao J, Zhang H L, Yu S S, Dou B C and Wu J J. 2018. Remote sensing data products oriented quantita-tive computing system——the GSC best practice data computing environment. Journal of Global Change Data and Discovery, 2(3): 271-278
柳钦火, 仲波, 唐娉, 张宏海, 李宏益, 吴善龙, 辛晓洲, 李静, 贾立, 单小军, 张正, 闻建光, 杜永明, 李丽, 杨爱霞, 历华, 胡光成, 赵静, 张海龙, 余珊珊, 窦宝成, 吴俊君. 2018. 多源协同定量遥感产品生产系统——2018年中国地理学会地理大数据计算环境“优秀实用案例”. 全球变化数据学报, 2(3): 271-278 [DOI: 10.3974/geodp.2018.03.04http://dx.doi.org/10.3974/geodp.2018.03.04]
Liu Q H, Zhong B, Wu J T, Xiao Z Q and Wang Q. 2011. Quantitative Inversion and Assimilation for Remote Sensing of Environment. Beijing: Science Press
柳钦火, 仲波, 吴纪桃, 肖志强, 王桥. 2011. 环境遥感定量反演与同化. 北京:科学出版社
Liu W B, Tao J B, Chen H P and Chen R Q. 2018. Moritoring of urbanization process by VPAUI index in central China from 2001 to 2013-take Wuhan, Changsha and Nanchang as examples. Journal of Huazhong Normal University (Natural Sciences), 52(4): 557-564
刘文斌, 陶建斌, 程会平, 陈瑞卿. 2018. VPAUI指数监测中部城市群2001年~2013年建设用地扩张——以武汉、长沙和南昌为例. 华中师范大学学报(自然科学版), 52(4): 557-564 [DOI: 10.19603/j.cnki.1000-1190.2018.04.019http://dx.doi.org/10.19603/j.cnki.1000-1190.2018.04.019]
Liu W X, Liu X L, Weng F H and Zhou C P. 2011. Monitoring of soil moisture variation based on AMSR-E passive microwave remote sensing. Tropical Geography, 31(3): 272-277
刘万侠, 刘旭拢, 翁丰惠, 周常萍. 2011. 基于AMSR-E被动微波遥感数据的广东省土壤水分变化监测. 热带地理, 31(3): 272-277 [DOI: 10.13284/j.cnki.rddl.001491http://dx.doi.org/10.13284/j.cnki.rddl.001491]
Liu X L and Miao C. 2018. Large-scale assessment of landslide hazard, vulnerability and risk in China. Geomatics, Natural Hazards and Risk, 9(1): 1037-1052 [DOI: 10.1080/19475705.2018.1502690http://dx.doi.org/10.1080/19475705.2018.1502690]
Liu X L, Ou S L, Lu S F and Yue C R. 2020. Estimation of forest volume based on Sentinel-1 a microwave remote sensing data. Journal of West China Forestry Science, 49(6): 128-136
刘雪莲, 欧绍龙, 陆双飞, 岳彩荣. 2020. 基于Sentinel-1A微波遥感数据的森林蓄积量估测. 西部林业科学, 49(6): 128-136 [DOI: 10.16473/j.cnki.xblykx1972.2020.06.018http://dx.doi.org/10.16473/j.cnki.xblykx1972.2020.06.018]
Liu X N, Feng Z M, Jiang L G and Zhang J H. 2012. Rubber plantations in xishuangbanna: remote sensing identification and digital mapping. Resources Science, 34(9): 1769-1780
刘晓娜, 封志明, 姜鲁光, 张景华. 2012. 西双版纳橡胶林地的遥感识别与数字制图. 资源科学, 34(9): 1769-1780
Liu X S, Dong X J, Qian J R, Guo C, Zhao J C and Zhan J Q. 2021. Airborne LiDAR-based debris flow source area recognition in lush mountainous area. Geomatics and Information Science of Wuhan University, 45(11): 1-16
刘小莎, 董秀军, 钱济人, 郭晨, 赵俊丞, 詹佳琪. 2021. 高植被山区泥石流物源LiDAR遥感精细识别方法研究. 武汉大学学报(信息科学版), 45(11): 1-16 [DOI: 10.13203/j.whugis20210486http://dx.doi.org/10.13203/j.whugis20210486]
Lu N, Hernandez A J and Ramsey R D. 2015. Land cover dynamics monitoring with Landsat data in Kunming, China: a cost-effective sampling and modelling scheme using Google Earth imagery and random forests. Geocarto International, 30(2): 186-201 [DOI: 10.1080/10106049.2014.894583http://dx.doi.org/10.1080/10106049.2014.894583]
Luo Y, Luo M, Fan J Z, Luo L Y and Duan S R. 2020. Precision evaluation of FY-3B MWRI based soil moisture product in Hunan Province. Guizhou Agricultural Sciences, 48(7): 113-118
罗宇, 罗曼, 范嘉智, 罗林艳, 段思汝. 2020. 基于风云三系列卫星B的湖南省土壤湿度数据的精度评价. 贵州农业科学, 48(7): 113-118 [DOI: 10.3969/j.issn.1001-3601.2020.07.026http://dx.doi.org/10.3969/j.issn.1001-3601.2020.07.026]
Madugundu R, Nizalapur V and Jha C S. 2008. Estimation of LAI and above-ground biomass in deciduous forests: western ghats of Karnataka, India. International Journal of Applied Earth Observation and Geoinformation, 10(2): 211-219 [DOI: 10.1016/j.jag.2007.11.004http://dx.doi.org/10.1016/j.jag.2007.11.004]
Malahlela O, Cho M A and Mutanga O. 2014. Mapping canopy gaps in an indigenous subtropical coastal forest using high-resolution WorldView-2 data. International Journal of Remote Sensing, 35(17): 6397-6417 [DOI: 10.1080/01431161.2014.954061http://dx.doi.org/10.1080/01431161.2014.954061]
Mao F J, Li X J, Du H Q, Zhou G M, Han N, Xu X J, Liu Y L, Chen L and Cui L. 2017. Comparison of two data assimilation methods for improving MODIS LAI time series for bamboo forests. Remote Sensing, 9(5): 401 [DOI: 10.3390/rs9050401http://dx.doi.org/10.3390/rs9050401]
Masemola C, Cho M A and Ramoelo A. 2016. Comparison of Landsat 8 OLI and Landsat 7 ETM+ for estimating grassland LAI using model inversion and spectral indices: case study of Mpumalanga, South Africa. International Journal of Remote Sensing, 37(18): 4401-4419 [DOI: 10.1080/01431161.2016.1212421http://dx.doi.org/10.1080/01431161.2016.1212421]
Mhawish A, Sorek-Hamer M, Chatfield R, Banerjee T, Bilal M, Kumar M, Sarangi C, Franklin M, Chau K, Garay M and Kalashnikova O. 2021. Aerosol characteristics from earth observation systems: a comprehensive investigation over South Asia (2000—2019). Remote Sensing of Environment, 259: 112410 [DOI: 10.1016/j.rse.2021.112410http://dx.doi.org/10.1016/j.rse.2021.112410]
Miao Z L, Xiao Y L, Shi W Z, He Y G, Gamba P, Li Z B, Samat A, Wu L X, Li J and Wu H. 2019. Integration of satellite images and open data for impervious surface classification. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 12(4): 1120-1133 [DOI: 10.1109/JSTARS.2019.2903585http://dx.doi.org/10.1109/JSTARS.2019.2903585]
Monteiro A T, Carvalho-Santos C, Lucas R, Rocha J, Costa N, Giamberini M, da Costa E M and Fava F. 2021. Progress in grassland cover conservation in southern European mountains by 2020: a transboundary assessment in the iberian peninsula with satellite observations (2002—2019). Remote Sensing, 13(15): 3019 [DOI: 10.3390/rs13153019http://dx.doi.org/10.3390/rs13153019]
Morley P J, Donoghue D N M, Chen J C and Jump A S. 2019. Quantifying structural diversity to better estimate change at mountain forest margins. Remote Sensing of Environment, 223: 291-306 [DOI: 10.1016/j.rse.2019.01.027http://dx.doi.org/10.1016/j.rse.2019.01.027]
Morris M, Chew C, Reager J T, Shah R and Zuffada C. 2019. A novel approach to monitoring wetland dynamics using CYGNSS: everglades case study. Remote Sensing of Environment, 233: 111417 [DOI: 10.1016/j.rse.2019.111417http://dx.doi.org/10.1016/j.rse.2019.111417]
Mu Y X, Wu M Q, Niu Z, Huang W J and Yang J. 2020. Method of remote sensing extraction of cultivated land area under complex conditions in southern region. Remote Sensing Technology and Application, 35(5): 1127-1135
牟昱璇, 邬明权, 牛铮, 黄文江, 杨尽. 2020. 南方地区复杂条件下的耕地面积遥感提取方法. 遥感技术与应用, 35(5): 1127-1135 [DOI: 10.11873/j.issn.1004http://dx.doi.org/10.11873/j.issn.1004]
Nichol J, Wong M S, Fung C and Leung K K M. 2006. Assessment of urban environmental quality in a subtropical city using multispectral satellite images. Environment and Planning B: Planning and Design, 33(1): 39-58 [DOI: 10.1068/b31195http://dx.doi.org/10.1068/b31195]
Pan J H and Hu Y X. 2018. Spatial Identification of multi-dimensional poverty in rural China: a perspective of nighttime-light remote sensing data. Journal of the Indian Society of Remote Sensing, 46(7): 1093-1111 [DOI: 10.1007/s12524-018-0772-4http://dx.doi.org/10.1007/s12524-018-0772-4]
Peel M C, Finlayson B L and McMahon T A. 2007. Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences, 11(5): 1633-1644 [DOI: 10.5194/hess-11-1633-2007http://dx.doi.org/10.5194/hess-11-1633-2007]
Prasad C R S, Thayalan S, Reddy R S and Reddy P S A. 1990. Use of Landsat imagery for mapping soil and land resources for development planning in parts of northern Karnataka, India. International Journal of Remote Sensing, 11(10): 1889-1900 [DOI: 10.1080/01431169008955136http://dx.doi.org/10.1080/01431169008955136]
Qi Y, Wu L X, Ding Y F, He M, Mao W F, Xie B S and Zhou S Y. 2020. Mining seismic thermal anomalies from massive satellite passive microwave images. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLIII-B3-2020: 281-286 [DOI: 10.5194/isprs-archives-XLIII-B3-2020-281-2020http://dx.doi.org/10.5194/isprs-archives-XLIII-B3-2020-281-2020]
Qi Y, Wu L X, Mao W F, Ding Y F and He M. 2021b. Discriminating possible causes of microwave brightness temperature positive anomalies related with May 2008 Wenchuan earthquake sequence. IEEE Transactions on Geoscience and Remote Sensing, 59(3): 1903-1916 [DOI: 10.1109/TGRS.2020.3004404http://dx.doi.org/10.1109/TGRS.2020.3004404]
Qi Y, Wu L X, Mao W F, Ding Y F and Liu Y J. 2021a. Satellite passive microwave remote sensing for seismic thermal anomaly: phenomena and mechanisms//Proceedings of 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS. Brussels: IEEE: 8696-8699 [DOI: 10.1109/IGARSS47720.2021.9553690http://dx.doi.org/10.1109/IGARSS47720.2021.9553690]
Rajapakse R M S S, Tripathi N K and Honda K. 2002. Spectral characterization and LAI modelling for the tea (Camellia sinensis (L.) O. Kuntze) canopy. International Journal of Remote Sensing, 23(18): 3569-3577 [DOI: 10.1080/01431160110114583http://dx.doi.org/10.1080/01431160110114583]
Rajesh A, Jiji G W and Raj J D. 2020. Estimating the pollution level based on heavy metal concentration in water bodies of tiruppur district. Journal of the Indian Society of Remote Sensing, 48(1): 47-57 [DOI: 10.1007/s12524-019-01058-7http://dx.doi.org/10.1007/s12524-019-01058-7]
Rao B W. 2014. The Research of Heavy Metals Migration Simulation Under The Tailing Geotechnical Seepage and Pollution Control. Changsha: Central South University
饶宝文. 2014. 重金属在尾矿库岩土渗流场中的迁移模拟及污染防治研究. 长沙: 中南大学
Rio J N R and Lozano-Garcı́a D F. 2000. Spatial filtering of radar data (RADARSAT) for wetlands (brackish marshes) classification. Remote Sensing of Environment, 73(2): 143-151 [DOI: 10.1016/S0034-4257(00)00089-4http://dx.doi.org/10.1016/S0034-4257(00)00089-4]
Shan N, Zhen T Y and Wang Z S. 2009. High-speed and high-accuracy algorithm for cloud detection and its application. Journal of Remote Sensing, 13(6): 1147-1162
单娜, 郑天垚, 王贞松. 2009. 快速高准确度云检测算法及其应用. 遥感学报, 13(6): 1147-1162 [DOI: 10.11834/jrs.20090612http://dx.doi.org/10.11834/jrs.20090612]
Shen X, Cao L, Xu T and She G H. 2015. Classification of Pinus massoniana and secondary deciduous tree species in northern subtropical region based on high resolution and hyperspectral remotely sensed data. Chinese Journal of Plant Ecology, 39(12): 1125-1135
申鑫, 曹林, 徐婷, 佘光辉. 2015. 基于高分辨率与高光谱遥感影像的北亚热带马尾松及次生落叶树种的分类. 植物生态学报, 39(12): 1125-1135 [DOI: 10.17521/cjpe.2015.0109http://dx.doi.org/10.17521/cjpe.2015.0109]
Shi X G, Liao M S, Li M H, Zhang L and Cunningham C. 2016. Wide-area landslide deformation mapping with multi-path ALOS PALSAR data stacks: a case study of Three Gorges Area, China. Remote Sensing, 8(2): 136 [DOI: 10.3390/rs8020136http://dx.doi.org/10.3390/rs8020136]
Shi X G, Zhang L, Balz T and Liao M S. 2015. Landslide deformation monitoring using point-like target offset tracking with multi-mode high-resolution TerraSAR-X data. ISPRS Journal of Photogrammetry and Remote Sensing, 105: 128-140 [DOI: 10.1016/j.isprsjprs.2015.03.017http://dx.doi.org/10.1016/j.isprsjprs.2015.03.017]
Sui H G, Zhao B F, Xu C, Zhou M T, Du Z T and Liu J Y. 2021. Rapid extraction of flood disaster emergency information with multi-modal sequence remote sensing images. Geomatics and Information Science of Wuhan University, 46(10): 1441-1449
眭海刚, 赵博飞, 徐川, 周明婷, 杜卓童, 刘俊怡. 2021. 多模态序列遥感影像的洪涝灾害应急信息快速提取. 武汉大学学报(信息科学版), 46(10): 1441-1449 [DOI: 10.13203/j.whugis20210465http://dx.doi.org/10.13203/j.whugis20210465]
Sun T, Xu M Y, Dong X J and Pan X. 2021. Application of airborne LiDAR technology in geological hazard investigation in mountainous area with dense vegetation. Bulletin of Surveying and Mapping, (4): 90-97
孙涛, 徐明宇, 董秀军, 潘星. 2021. 机载LiDAR技术应用于茂密植被山区地质灾害调查. 测绘通报, (4): 90-97 [DOI: 10.13474/j.cnki.11-2246.2021.0117http://dx.doi.org/10.13474/j.cnki.11-2246.2021.0117]
Tang H J and Li Z L. 2014. Land surface temperature retrieval from thermal infrared data//Tang H J and Li Z L, eds. Quantitative Remote Sensing in Thermal Infrared. Berlin: Springer: 93-143 [DOI: 10.1007/978-3-642-42027-6_5http://dx.doi.org/10.1007/978-3-642-42027-6_5]
Tang Y Q, Feng L P, Li M, Nie P and Lan C Y. 2016. Land use change analysis of Changzhutan urban area from 1978 to 2015. Geomatics and Spatial Information Technology, 39(10): 5-10
汤玉奇, 冯兰平, 李明, 聂品, 兰翠玉. 2016. 1978—2015年长株潭主城区土地利用变化分析. 测绘与空间地理信息, 39(10): 5-10 [DOI: 10.3969/j.issn.1672-5867.2016.10.002http://dx.doi.org/10.3969/j.issn.1672-5867.2016.10.002]
Thenkabail P S, Schull M and Turral H. 2005. Ganges and Indus River basin land use/land cover (LULC) and irrigated area mapping using continuous streams of MODIS data. Remote Sensing of Environment, 95(3): 317-341 [DOI: 10.1016/j.rse.2004.12.018http://dx.doi.org/10.1016/j.rse.2004.12.018]
Wang H, Li J W, Gao Z Q, Yim S H L, Shen H F, Ho H C, Li Z Y, Zeng Z L, Liu C, Li Y B, Ning G C and Yang Y J. 2019a. High-spatial-resolution population exposure to PM2.5 pollution based on multi-satellite retrievals: a case study of seasonal variation in the Yangtze River Delta, China in 2013. Remote Sensing, 11(23): 2724 [DOI: 10.3390/rs11232724http://dx.doi.org/10.3390/rs11232724]
Wang H H, Wang J and Cui Y H. 2020. Remote sensing monitoring on spatial differentiation of suspended sediment concentration in a river-lake system based on Sentinel-2 MSI imaging:a case for Shengjin Lake and connected Yangtze River section in Anhui Province. Environmental Science, 41(3): 1207-1216
王行行, 王杰, 崔玉环. 2020. 基于Sentinel-2 MSI影像的河湖系统水体悬浮物空间分异遥感监测: 以安徽省升金湖与连接长江段为例. 环境科学, 41(3): 1207-1216 [DOI: 10.13227/j.hjkx.201907164http://dx.doi.org/10.13227/j.hjkx.201907164]
Wang H Q, Feng G C, Xu B, Yu Y P, Li Z W, Du Y N and Zhu J J. 2017. Deriving spatio-temporal development of ground subsidence due to subway construction and operation in delta regions with ps-insar data: a case study in Guangzhou, China. Remote Sensing, 9(10): 1004 [DOI: 10.3390/rs9101004http://dx.doi.org/10.3390/rs9101004]
Wang J, Han P and Li G X. 2021. The extraction and analysis of deformation features of hualien earthquake based on Sentinel-1A/B SAR data. Journal of the Indian Society of Remote Sensing, 49(9): 2069-2077 [DOI: 10.1007/s12524-021-01377-8http://dx.doi.org/10.1007/s12524-021-01377-8]
Wang Q, Yang Y P, Zhao S H and Liu S H. 2018. Application of HJ-1 in China’s ecological environment. Space International, (9): 16-19.
王桥, 杨一鹏, 赵少华, 刘思含. 2018. 环境减灾卫星在中国生态环境中的应用. 国际太空, (9): 16-19 [DOI: 10.3969/j.issn.1009-2366.2018.09.004http://dx.doi.org/10.3969/j.issn.1009-2366.2018.09.004]
Wang Q. 2021. Progress of environmental remote sensing monitoring technology in China and some related frontier issues. Journal of Remote Sensing, 25(1): 25-36
王桥. 2021. 中国环境遥感监测技术进展及若干前沿问题. 遥感学报, 25(1): 25-36 [DOI: 10.11834/jrs.20210572http://dx.doi.org/10.11834/jrs.20210572]
Wang W, Mao F Y, Pan Z X, Gong W, Yoshida M, Zou B and Ma H Y. 2019c. Evaluating aerosol optical depth from Himawari-8 with sun photometer network. Journal of Geophysical Research: Atmospheres, 124(10): 5516-5538 [DOI: 10.1029/2018JD028599http://dx.doi.org/10.1029/2018JD028599]
Wang W, Mao F Y, Zou B, Guo J P, Wu L X, Pan Z X and Zang L. 2019b. Two-stage model for estimating the spatiotemporal distribution of hourly PM1.0 concentrations over central and east China. Science of the Total Environment, 675: 658-666 [DOI: 10.1016/j.scitotenv.2019.04.134http://dx.doi.org/10.1016/j.scitotenv.2019.04.134]
Wang X Q, Dou A X, Ding X and Li Y W. 2015. Advance on the RS-based emergency seismic intensity assessment. Journal of Geo-Information Science, 17(12): 1536-1544
王晓青, 窦爱霞, 丁香, 李旖雯. 2015. 地震烈度应急遥感评估研究与应用进展. 地球信息科学学报, 17(12): 1536-1544 [DOI: 10.3724/sp.j.1047.2015.01536http://dx.doi.org/10.3724/sp.j.1047.2015.01536]
Wu B F. 2000. Operational remote sensing methods for agricultural statistics. Acta Geographica Sinica, 55(1): 25-35
吴炳方. 2000. 全国农情监测与估产的运行化遥感方法. 地理学报, 55(1): 25-35 [DOI: 10.3321/j.issn:0375-5444.2000.01.004http://dx.doi.org/10.3321/j.issn:0375-5444.2000.01.004]
Wu B F, Zhang M, Zeng H W, Yan N N, Zhang X, Xing Q and Chang S. 2019. Twenty years of cropwatch: progress and prospect. Journal of Remote Sensing, 23(6): 1053-1063
吴炳方, 张淼, 曾红伟, 闫娜娜, 张鑫, 邢强, 常胜. 2019. 全球农情遥感速报系统20年. 遥感学报, 23(6): 1053-1063 [DOI: 10.11834/jrs.20198156http://dx.doi.org/10.11834/jrs.20198156]
Wu L X, Li J, Miao Z L, Wang W, Chen B Y, Li Z W, Dai W J and Xu W B. 2021. Pattern and directions of spaceborne-airborne-ground collaborated intelligent monitoring on the geo-hazards developing environment and disasters in glacial basin. Acta Geodaetica et Cartographica Sinica, 50(8): 1109-1121
吴立新, 李佳, 苗则朗, 王威, 陈必焰, 李志伟, 戴吾蛟, 许文斌. 2021. 冰川流域孕灾环境及灾害的天空地协同智能监测模式与方向. 测绘学报, 50(8): 1109-1121 [DOI: 10.11947/j.AGCS.2021.20210107http://dx.doi.org/10.11947/j.AGCS.2021.20210107]
Wu L X, Qin K and Liu S J. 2012. GEOSS-based thermal parameters analysis for earthquake anomaly recognition. Proceedings of the IEEE, 100(10): 2891-2907 [DOI: 10.1109/JPROC.2012.2184789http://dx.doi.org/10.1109/JPROC.2012.2184789]
Wu R, Wang J Y, Zhang D C and Wang S J. 2021. Identifying different types of urban land use dynamics using point-of-interest (POI) and random forest algorithm: the case of Huizhou, China. Cities, 114: 103202 [DOI: 10.1016/j.cities.2021.103202http://dx.doi.org/10.1016/j.cities.2021.103202]
Wu W, Miao Z L, Xiao Y L, Li Z B, Zhang A S, Samat A, Du N C, Xu Z K and Gamba P. 2020. New scheme for impervious surface area mapping from SAR images with auxiliary user-generated content. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13: 5954-5970 [DOI: 10.1109/JSTARS.2020.3027507http://dx.doi.org/10.1109/JSTARS.2020.3027507]
Wu X W, Yin F Z and Sun J Q. 2011. The key technical analysis on remote sensing dynamic monitoring in antarctic based on image processing. Geomatics World, 9(2): 74-79
吴学伟, 殷福忠, 孙剑桥. 2011. 南极遥感动态监测影像处理关键技术分析. 地理信息世界, 9(2): 74-79 [DOI: 10.3969/j.issn.1672-1586.2011.02.016http://dx.doi.org/10.3969/j.issn.1672-1586.2011.02.016]
Xie B S, Zhou S Y, Wu L X, Mao W F, Wang W. 2022. RockSL: an integrated rock spectral library for better global shared services. Big Earth Data [DOI: 10.1080/20964471.2021.2017111http://dx.doi.org/10.1080/20964471.2021.2017111]
Xing Q G, Zheng X Y, Shi P, Hao J J, Yu D F, Liang S Z, Liu D Y and Zhang Y Z. 2011. Monitoring “green tide” in the Yellow Sea and the East China Sea using multi-temporal and multi-source remote sensing images. Spectroscopy and Spectral Analysis, 31(6): 1644-1647
邢前国, 郑向阳, 施平, 郝佳佳, 禹定峰, 梁守真, 刘东艳, 张渊智. 2011. 基于多源、多时相遥感影像的黄、东海绿潮影响区检测. 光谱学与光谱分析, 31(6): 1644-1647 [DOI: 10.3964/j.issn.1000-0593(2011)06-1644-04http://dx.doi.org/10.3964/j.issn.1000-0593(2011)06-1644-04]
Xu H, Li M L, Liang H B, Li Z S and Wu X. 2018. Review of the evaluation index system for degraded forest ecosystems. Acta Ecologica Sinica, 38(24): 9034-9042
徐欢, 李美丽, 梁海斌, 李宗善, 伍星. 2018. 退化森林生态系统评价指标体系研究进展. 生态学报, 38(24): 9034-9042 [DOI: 10.5846/stxb201805301196http://dx.doi.org/10.5846/stxb201805301196]
Xu H Q. 2013. A remote sensing urban ecological index and its application. Acta Ecologica Sinica, 33(24): 7853-7862
徐涵秋. 2013. 城市遥感生态指数的创建及其应用. 生态学报, 33(24): 7853-7862 [DOI: 10.5846/stxb201208301223http://dx.doi.org/10.5846/stxb201208301223]
Xu N X, Tian Q J, Shen H F and Xu K J. 2018. Classification of Pinus massoniana and Cunninghamia lanceolata using hyperspectral image based on differential transformation. Remote Sensing for Land and Resources, 30(4): 28-32
徐念旭, 田庆久, 申怀飞, 徐凯健. 2018. 基于微分变换的高光谱马尾松和杉木识别. 国土资源遥感, 30(4): 28-32 [DOI: 10.6046/gtzyyg.2018.04.05http://dx.doi.org/10.6046/gtzyyg.2018.04.05]
Xu T, Cao L, Shen X and She G H. 2015. Estimates of subtropical forest biomass based on airborne LiDAR and Landsat 8 OLI data. Chinese Journal of Plant Ecology, 39(4): 309-321
徐婷, 曹林, 申鑫, 佘光辉. 2015. 基于机载激光雷达与Landsat 8 OLI数据的亚热带森林生物量估算. 植物生态学报, 39(4): 309-321 [DOI: 10.17521/cjpe.2015.0030http://dx.doi.org/10.17521/cjpe.2015.0030]
Xu X H, Huang P, Huang S F, Sun Y Y and Zhang X P. 2021. Application of satellite radar remote sensing for emergency monitoring of flood disasters in Poyang Lake. China Flood and Drought Management, 31(4): 10-14
许小华, 黄萍, 黄诗峰, 孙亚勇, 张秀平. 2021. 鄱阳湖洪涝灾害卫星雷达遥感应急监测应用. 中国防汛抗旱, 31(4): 10-14 [DOI: 10.16867/j.issn.1673-9264.2021082http://dx.doi.org/10.16867/j.issn.1673-9264.2021082]
Xu Z Y, Li Y C, Li M Y, Li C and Wang L. 2020. Forest biomass retrieval based on Sentinel-1A and Landsat 8 image. Journal of Central South University of Forestry and Technology, 40(11): 147-155
许振宇, 李盈昌, 李明阳, 李超, 汪霖. 2020. 基于Sentinel-1A和Landsat 8数据的区域森林生物量反演. 中南林业科技大学学报, 40(11): 147-155 [DOI: 10.14067/j.cnki.1673-923x.2020.11.018http://dx.doi.org/10.14067/j.cnki.1673-923x.2020.11.018]
Yan M C. 2007. Research and contrast on several vegetation-classification methods of high-resolution satellite image data. Journal of Remote Sensing, 11(2): 235-240
颜梅春. 2007. 高分辨率影像的植被分类方法对比研究. 遥感学报, 11(2): 235-240 [DOI: 10.11834/jrs.20070232http://dx.doi.org/10.11834/jrs.20070232]
Yang Q Y, Zheng D and Wu S H. 2006. On subtropical zone of China. Journal of Subtropical Resources and Environment, 1(3): 1-10
杨勤业, 郑度, 吴绍洪. 2006. 关于中国的亚热带. 亚热带资源与环境学报, 1(3): 1-10 [DOI: 10.3969/j.issn.1673-7105.2006.03.002http://dx.doi.org/10.3969/j.issn.1673-7105.2006.03.002]
Yang Z, Lu X P, Wu Y B, Miao P J and Zhou J L. 2020. Retrieval and model construction of water quality parameters for UAV hyperspectral remote sensing. Science of Surveying and Mapping, 45(9): 60-64, 95
杨振, 卢小平, 武永斌, 苗沛基, 周俊利. 2020. 无人机高光谱遥感的水质参数反演与模型构建. 测绘科学, 45(9): 60-64, 95 [DOI: 10.16251/j.cnki.1009-2307.2020.09.010http://dx.doi.org/10.16251/j.cnki.1009-2307.2020.09.010]
Yin H J, Zhu J J, Li Z W, Ding X L and Wang C C. 2011. Ground subsidence monitoring in mining area using DInSAR SBAS algorithm. Acta Geodaetica et Cartographica Sinica, 40(1): 52-58
尹宏杰, 朱建军, 李志伟, 丁晓利, 汪长城. 2011. 基于SBAS的矿区形变监测研究. 测绘学报, 40(1): 52-58
Zeng C, Liu Y L, Stein A and Jiao L M. 2015. Characterization and spatial modeling of urban sprawl in the Wuhan Metropolitan Area, China. International Journal of Applied Earth Observation and Geoinformation, 34: 10-24 [DOI: 10.1016/j.jag.2014.06.012http://dx.doi.org/10.1016/j.jag.2014.06.012]
Zhang J L, Pjam T T H, Kalacska M and Turner S. 2014. Using Landsat thematic mapper records to map land cover change and the impacts of reforestation programmes in the borderlands of southeast Yunnan, China: 1990—2010. International Journal of Applied Earth Observation and Geoinformation, 31: 25-36 [DOI: 10.1016/j.jag.2014.01.006http://dx.doi.org/10.1016/j.jag.2014.01.006]
Zhang M N, Huang H B, Li Z C, Hackman K O, Liu C, Andriamiarisoa R L, Raherivelo T N A N, Li Y X and Gong P. 2020. Automatic high-resolution land cover production in madagascar using Sentinel-2 time series, tile-based image classification and google earth engine. Remote Sensing, 12(21): 3663 [DOI: 10.3390/rs12213663http://dx.doi.org/10.3390/rs12213663]
Zhang X, Liu L Y, Chen X D, Gao Y, Xie S and Mi J. 2021. GLC_FCS30: global land-cover product with fine classification system at 30 m using time-series Landsat imagery. Earth System Science Data, 13(6): 2753-2776 [DOI: 10.5194/essd-13-2753-2021http://dx.doi.org/10.5194/essd-13-2753-2021]
Zhang X H. 2016. Decision tree algorithm of automatically extracting mangrove forests information from Landsat 8 OLI imagery. Remote Sensing for Land and Resources, 28(2): 182-187
张雪红. 2016. 基于决策树方法的Landsat8 OLI影像红树林信息自动提取. 自然资源遥感, 28(2): 182-187 [DOI: 10.6046/gtzyyg.2016.02.28http://dx.doi.org/10.6046/gtzyyg.2016.02.28]
Zhang Y Z, Huang Z J, Fu D Y, Tsou J Y, Jiang T C, Liang X S and Lu X. 2018. Monitoring of chlorophyll-a and sea surface silicate concentrations in the south part of Cheju Island in the East China Sea using MODIS data. International Journal of Applied Earth Observation and Geoinformation, 67: 173-178 [DOI: 10.1016/j.jag.2018.01.017http://dx.doi.org/10.1016/j.jag.2018.01.017]
Zhang Y Z and Zhang F X. 1994. Application of Landsat thematic mapper data to landuse classification and thematic information extraction in subtropical economic forest zone. Remote Sensing for Land and Resources, 6(2): 28-33
张彦忠, 张福祥. 1994. TM数据用于亚热带桔果林区的土地利用分类和专题信息提取. 国土资源遥感, 6(2): 28-33 [DOI: 10.6046/gtzyyg.1994.02.05http://dx.doi.org/10.6046/gtzyyg.1994.02.05]
Zhao D Z, Qu C Y, Shan X J, Gong W Y, Zhang Y F and Zhang G H. 2018. InSAR and GPS derived coseismic deformation and fault model of the 2017 Ms7.0 Jiuzhaigou earthquake in the Northeast Bayanhar block. Tectonophysics, 726: 86-99 [DOI: 10.1016/j.tecto.2018.01.026http://dx.doi.org/10.1016/j.tecto.2018.01.026]
Zhao X, Song Y Q, Liu Y L, Chen F X and Hu Y M. 2020. Population spatialization based on satellite remote sensing and POI data: Guangzhou as an example. Tropical Geography, 40(1): 101-109
赵鑫, 宋英强, 刘轶伦, 陈飞香, 胡月明. 2020. 基于卫星遥感和POI数据的人口空间化研究——以广州市为例. 热带地理, 40(1): 101-109 [DOI: 10.13284/j.cnki.rddl.003179http://dx.doi.org/10.13284/j.cnki.rddl.003179]
Zhao X Y, Zhang J, Zhang D Y, Zhou X G, Liu X H and Xie J. 2019. Comparison between the effects of visible light and multispectral sensor based on low-altitude remote sensing platform in the evaluation of rice sheath blight. Spectroscopy and Spectral Analysis, 39(4): 1192-1198
赵晓阳, 张建, 张东彦, 周新根, 刘小辉, 谢静. 2019. 低空遥感平台下可见光与多光谱传感器在水稻纹枯病病害评估中的效果对比研究. 光谱学与光谱分析, 39(4): 1192-1198 [DOI: 10.3964/j.issn.1000-0593(2019)04-1192-07http://dx.doi.org/10.3964/j.issn.1000-0593(2019)04-1192-07]
Zheng G, Yang J S, Li X F, Zhou L Z, Ren L, Chen P, Zhang H G and Lou X L. 2019. Using artificial neural network ensembles with crogging resampling technique to retrieve sea surface temperature from HY-2A scanning microwave radiometer data. IEEE Transactions on Geoscience and Remote Sensing, 57(2): 985-1000 [DOI: 10.1109/TGRS.2018.2863948http://dx.doi.org/10.1109/TGRS.2018.2863948]
Zhou F, Xu Y P and Lv H H. 2012. Analysis of the vegetation change in the Yangtze River delta based on MODIS-EVI time series data. Resources and Environment in the Yangtze Basin, 21(11): 1363-1369
周峰, 许有鹏, 吕慧华. 2012. 基于MODIS-EVI数据的长江三角洲地区植被变化的特征. 长江流域资源与环境, 21(11): 1363-1369
Zhou T Y, Wang Z H, Qin H Y and Zeng Y Q. 2020. Remote sensing extraction of geothermal anomaly based on terrain effect correction. Journal of Remote Sensing, 24(3): 265-276
周桃勇, 王正海, 秦昊洋, 曾雅琦. 2020. 地形效应校正的遥感地热异常提取. 遥感学报, 24(3): 265-276 [DOI: 10.11834/jrs.20208299http://dx.doi.org/10.11834/jrs.20208299]
Zhu J S. 2015. Research on aerosol inversion method of high resolution satellite. Global City Geography, 5(10): 251-252
朱金盛. 2015. 高分辨率卫星反演气溶胶方法研究. 城市地理, 5(10): 251-252 [DOI: 10.3969/j.issn.1674-2508.2015.10.221http://dx.doi.org/10.3969/j.issn.1674-2508.2015.10.221]
Zhu K Z. 1958. Subtropical zone in China. Chinese Science Bulletin, 9(17): 524-528
竺可桢. 1958. 中国的亚热带. 科学通报, 9(17): 524-528
相关文章
相关作者
相关机构