Comparison between modified remote sensing ecological index and RSEI
- Vol. 26, Issue 4, Pages: 683-697(2022)
Published: 07 April 2022
DOI: 10.11834/jrs.20229338
扫 描 看 全 文
浏览全部资源
扫码关注微信
Published: 07 April 2022 ,
扫 描 看 全 文
刘英,党超亚,岳辉,吕春光,钱嘉鑫,朱蓉.2022.改进型遥感生态指数与RSEI的对比分析.遥感学报,26(4): 683-697
Liu Y,Dang C Y,Yue H,Lyu C G,Qian J X and Zhu R. 2022. Comparison between modified remote sensing ecological index and RSEI. National Remote Sensing Bulletin, 26(4):683-697
为了更好对城市生态质量进行监测和评价,构建一个更精确的城市遥感生态指数十分必要。本文结合绿度、湿度、干度、热度和空气质量指标采用主成分分析PCA(Principal Component Analysis) 构建改进型遥感生态指数MRSEI(Modified Remote Sensing Ecological Index);利用熵权法计算压力—状态—响应模型PSR (Pressure State Response Model)中各指标的权重,通过加权法获得生态环境指数EI(Eco-environmental Index)与MRSEI和RSEI进行比较。同时,综合绿度、热度、湿度、干度指标利用核主成分分析KPCA(Kernel Principal Component Analysis)构建非线性遥感生态指数NRSEI(Nonlinear Remote Sensing Ecological Index);最后将MRSEI、NRSEI分别与常用的遥感生态指数RSEI(Remote Sensing Ecological Index)进行对比和分析。结果表明,MRSEI可体现空气质量空间分布对城市生态质量的影响,2014年和2017年MRSEI与EI的相关系数分别是0.829和0.857(
P
<
0.01),比RSEI与EI的相关系数分别提高0.035和0.055。在主城区MRSEI和RSEI与EI比较结果表明,MRSEI的平均绝对误差、均方根误差和平均相对误差均小于RSEI,表明MRSEI更适用于城市生态质量评价,空气质量指标对北京市生态环境监测、评价是非常重要的。同时,在实验区KPCA第一主成分贡献率比PCA提高了11.94%—21.45%;各个指标与NRSEI相关系数比与RSEI提高了0.128—0.198;NRSEI可体现生态等级间的过渡,RSEI对生态环境差的区域有时低估,对生态环境优的区域有时高估,NRSEI与遥感影像定性反映的生态状况更加相符。在监测空气质量严峻的北京市生态质量方面,MRSEI优于RSEI;顾及各指标间的弱线性或非线性问题的NRSEI监测生态环境质量效果优于利用线性变换的RSEI。
Establishing a more accurate remote sensing ecological index is necessary to evaluate urban ecological quality and provide timely warnings. Taking the Beijing city as the study area
this paper used five indices (vegetation index
humidity
Land Surface Temperature (LST)
Normalized Difference Build-up and bare Soil Index (NDBSI) and air quality) through the Principal Component Analysis (PCA) method to construct a Modified Remote Sensing Ecological Index (MRSEI). The Eco-environment Index (EI) was derived from the Pressure-State-Response model (PSR) combined with the entropy weight method to compare with MRSEI and RSEI. Moreover
the nuclear principal component analysis (KPCA) was applied to establish the Nonlinear Remote Sensing Ecological Index (NRSEI)
which was integrated vegetation index
humidity
LST
and NDBSI. Finally
MRSEI and NRSEI were separately compared with the remote sensing ecological index (RSEI). The results showed that MRSEI could reflect the spatial distribution of air quality
and the correlation coefficients between MRSEI and EI were 0.829 in 2014 and 0.857 in 2017 (
P
<
0.01)
which were improved by 0.035 and 0.055 over that of RSEI
respectively. Compared with EI
the average absolute error
root mean square error
and average relative error of MRSEI in the main districts were all lower than that of RSEI. These results indicated that the MRSEI in evaluating urban ecological quality was better than RSEI and the air quality indicator was feasible to monitor the ecological environment of Beijing. The contribution rate of the first principal component from NRSEI was increased by 11.94%—21.45% than that of RSEI in the experiment areas. Compared with RSEI
the correlation coefficients between each indicator and NRSEI increased by 0.128—0.198. NRSEI could demonstrate the transition of different ecological levels. RSEI sometimes underestimated the areas with poor ecological environments
and it sometimes overestimated the areas with excellent ecological environments. NRSEI was more consistent with the ecological conditions reflected by remotely sensed images. MRSEI is more suitable than RSEI for monitoring the ecological quality of Beijing. NRSEI
taking into account the weak linear or nonlinear correlations of various indicators
is better than RSEI in assessing the ecological environment quality.
遥感改进型遥感生态指数非线性遥感生态指数空气质量指标核主成分分析压力—状态—响应模型
remote sensingmodified remote sensing ecological indexnonlinear remote sensing ecological indexair quality indexkernel principal component analysisPressure-State-Response model
Artis D A and Carnahan W H. 1982. Survey of emissivity variability in thermography of urban areas. Remote Sensing of Environment, 12(4): 313-329 [DOI: 10.1016/0034-4257(82)90043-8http://dx.doi.org/10.1016/0034-4257(82)90043-8]
Bachmann C M, Ainsworth T L, Fusina R A, Topping R and Gates T. 2010. Manifold coordinate representations of hyperspectral imagery: improvements in algorithm performance and computational efficiency//Proceedings of 2010 IEEE International Geoscience and Remote Sensing Symposium. Honolulu, HI, USA: IEEE: 4244-4247 [DOI: 10.1109/IGARSS.2010.5653550http://dx.doi.org/10.1109/IGARSS.2010.5653550]
Cao Q F, Shen L, Chen S C and Pui D Y H. 2018. WRF modeling of PM2.5 remediation by SALSCS and its clean air flow over Beijing terrain. Science of the Total Environment, 626: 134-146 [DOI: 10.1016/j.scitotenv.2018.01.062http://dx.doi.org/10.1016/j.scitotenv.2018.01.062]
Chen W W, Liu Y, Wu X W, Bao Q Y, Gao Z T, Zhang X L, Zhao H M, Zhang S C, Xiu A J and Cheng T H. 2019. Spatial and temporal characteristics of air quality and cause analysis of heavy pollution in northeast China. Environmental Science, 40(11): 4810-4823
陈卫卫, 刘阳, 吴雪伟, 鲍秋阳, 高枞亭, 张学磊, 赵红梅, 张世春, 修艾军, 程天海. 2019. 东北区域空气质量时空分布特征及重度污染成因分析. 环境科学, 40(11): 4810-4823 [DOI: 10.13227/j.hjkx.201807159http://dx.doi.org/10.13227/j.hjkx.201807159]
De Silva V and Tenenbaum J B. 2002. Global versus local methods in nonlinear dimensionality reduction//Proceedings of the 15th International Conference on Neural Information Processing Systems. Cambridge: ACM: 721-728
Fu X Q and Chen H Y. 2015. Comprehensive power quality evaluation based on weighted rank sum ration method. Electric Power Automation Equipment, 35(1): 128-132
付学谦, 陈皓勇. 2015. 基于加权秩和比法的电能质量综合评估. 电力自动化设备, 35(1): 128-132 [DOI: 10.16081/j.issn.1006-6047.2015.01.019http://dx.doi.org/10.16081/j.issn.1006-6047.2015.01.019]
Gao H Z, Wang J W, Nian Y J, Wang L B and Xu Z. 2011. Fusion classification of hyperspectral image by composite kernels support vector machine. Optics and Precision Engineering, 19(4): 878-883
高恒振, 粘永健, 万建伟, 王力宝, 徐湛. 2011. 组合核函数支持向量机高光谱图像融合分类. 光学 精密工程, 19(4): 878-883 [DOI: 10.3788/OPE.20111904.0878http://dx.doi.org/10.3788/OPE.20111904.0878]
Guo H L, Zhang B W, Bai Y F and He X H. 2017. Ecological environment assessment based on Remote Sensing in Zhengzhou. IOP Conference Series: Earth and Environmental Science, 94(1): 012190 [DOI: 10.1088/1755-1315/94/1/012190http://dx.doi.org/10.1088/1755-1315/94/1/012190]
Gupta K, Kumar P, Pathan S K and Sharma K P. 2012. Urban neighborhood green index – a measure of green spaces in urban areas. Landscape and Urban Planning, 105(3): 325-335 [DOI: 10.1016/j.landurbplan.2012.01.003http://dx.doi.org/10.1016/j.landurbplan.2012.01.003]
He K B, Yang F M, Ma Y L, Zhang Q, Yao X H, Chan C K, Cadle S, Chan T and Mulawa P. 2001. The characteristics of PM2.5 in Beijing, China. Atmospheric Environment, 35(29): 4959-4970 [DOI: 10.1016/s1352-2310(01)00301-6http://dx.doi.org/10.1016/s1352-2310(01)00301-6]
Hu X S and Xu H Q. 2019. A new remote sensing index based on the pressure-state-response framework to assess regional ecological change. Environmental Science and Pollution Research, 26(6): 5381-5393 [DOI: 10.1007/s11356-018-3948-0http://dx.doi.org/10.1007/s11356-018-3948-0]
Imhoff M L, Zhang P, Wolfe R E and Bounoua L. 2010. Remote sensing of the urban heat island effect across biomes in the continental USA. Remote Sensing of Environment, 114(3): 504-513 [DOI: 10.1016/j.rse.2009.10.008http://dx.doi.org/10.1016/j.rse.2009.10.008]
Ivits E, Cherlet M, Mehl W and Sommer S. 2009. Estimating the ecological status and change of riparian zones in Andalusia assessed by multi-temporal AVHHR datasets. Ecological Indicators, 9(3): 422-431 [DOI: 10.1016/j.ecolind.2008.05.013http://dx.doi.org/10.1016/j.ecolind.2008.05.013]
Kearney M S, Rogers A S, Townshend J R G, Lawrence W T, Dorn K, Eldred K, Stutzer D, Lindsay F and Rizzo E. 1995. Developing a model for determining coastal marsh “health”//Proceedings of the Third Thematic Conference on Remote Sensing for Marine and Coastal Environments. Ann Arbor: Environmental Research Institute of Michigan: 527-537
Liu Z C, Xu H Q, Li L, Tang F and Lin L Z. 2015. Ecological change in the Hangzhou area using the remote sensing based ecological index. Journal of Basic Science and Engineering, 23(4): 728-739
刘智才, 徐涵秋, 李乐, 唐菲, 林中立. 2015. 基于遥感生态指数的杭州市城市生态变化. 应用基础与工程科学学报, 23(4): 728-739 [DOI: 10.16058/j.issn.1005-0930.2015.04.008http://dx.doi.org/10.16058/j.issn.1005-0930.2015.04.008]
Lyapustin A, Martonchik J, Wang Y J, Laszlo I and Korkin S. 2011a. Multiangle implementation of atmospheric correction (MAIAC): 1. Radiative transfer basis and look-up tables. Journal of Geophysical Research: Atmospheres, 116(D3): D03210 [DOI: 10.1029/2010JD014985http://dx.doi.org/10.1029/2010JD014985]
Lyapustin A, Wang Y, Laszlo I, Kahn R, Korkin S, Remer L, Levy R and Reid J S. 2011b. Multiangle implementation of atmospheric correction (MAIAC): 2. Aerosol algorithm. Journal of Geophysical Research: Atmospheres, 116(D3): D03211 [DOI: 10.1029/2010JD014986http://dx.doi.org/10.1029/2010JD014986]
Moran M S, Peters-Lidard C D, Watts J M and McElroy S. 2004. Estimating soil moisture at the watershed scale with satellite-based radar and land surface models. Canadian Journal of Remote Sensing, 30(5): 805-826 [DOI: 10.5589/m04-043http://dx.doi.org/10.5589/m04-043]
National Environmental Protection Agency. 2006. HJ/T 192-2006 Technical criterion for eco-environmental status evaluation. Beijing: Standards Press of China
国家环保局. 2006. HJ/T 192-2006 生态环境状况评价技术规范(试行). 北京: 中国标准出版社
Neri A C, Dupin P and Sánchez L E. 2016. A pressure-state-response approach to cumulative impact assessment. Journal of Cleaner Production, 126: 288-289 [DOI: 10.1016/j.jclepro.2016.02.134http://dx.doi.org/10.1016/j.jclepro.2016.02.134]
OECD. 1993. Core Set of Indicators for Environmental Performance Reviews. Paris, France: OECD
Ochoa-Gaona S, Kampichler C, de Jong B H J, Hernández S, Geissen V, Huerta E. 2010. A multi-criterion index for the evaluation of local tropical forest conditions in Mexico.Forest Ecology and Management, 260 (5) :618-627. [DOI: 10.1016/j.foreco.2010.05.018http://dx.doi.org/10.1016/j.foreco.2010.05.018]
Paciorek C J, Liu Y, Moreno-Macias H and Kondragunta S. 2008. Spatiotemporal associations between GOES aerosol optical depth retrievals and ground-level PM2.5. Environmental Science and Technology, 42(15): 5800-5806 [DOI: 10.1021/es703181jhttp://dx.doi.org/10.1021/es703181j]
Peng J, Chen S, Lv H L, Liu Y X and Wu J S. 2016. Spatiotemporal patterns of remotely sensed PM2.5 concentration in China from 1999 to 2011. Remote Sensing of Environment, 174: 109-121 [DOI: 10.1016/j.rse.2015.12.008http://dx.doi.org/10.1016/j.rse.2015.12.008]
Remer L A, Kaufman Y J, Tanré D, Mattoo S, Chu D A, Martins J V, Li R R, Ichoku C, Levy R C, Kleidman R G, Eck T F, Vermote E and Holben B N. 2005. The MODIS aerosol algorithm, products, and validation. Journal of the Atmospheric Sciences, 62(4): 947-973 [DOI: 10.1175/JAS3385.1http://dx.doi.org/10.1175/JAS3385.1]
Song T, Duan Z, Liu J Z, Shi J Z, Yan F, Sheng S J, Huang J and Wu W. 2015. Comparison of four algorithms to retrieve land surface temperature using Landsat 8 satellite. Journal of Remote Sensing, 2015, 19(3): 451-464
宋挺, 段峥, 刘军志, 石浚哲, 严飞, 盛世杰, 黄君, 吴蔚. 2015. Landsat 8数据地表温度反演算法对比. 遥感学报, 19(3): 451-464 [DOI: 10.11834/jrs.20154180http://dx.doi.org/10.11834/jrs.20154180]
Sullivan C A, Skeffington M S, Gormally M J and Finn J A. 2010. The ecological status of grasslands on lowland farmlands in western Ireland and implications for grassland classification and nature value assessment. Biological Conservation, 143(6): 1529-1539 [DOI: 10.1016/j.biocon.2010.03.035http://dx.doi.org/10.1016/j.biocon.2010.03.035]
Van Donkelaar A, Martin R V, Brauer M and Boys B L. 2015. Use of satellite observations for long-term exposure assessment of global concentrations of fine particulate matter. Environmental Health Perspectives, 123(2): 135-143 [DOI: 10.1289/ehp.1408646http://dx.doi.org/10.1289/ehp.1408646]
Wang M Y and Xu H Q. 2018. Temporal and spatial changes of urban impervious surface and its influence on urban ecological quality: a comparison between Shanghai and New York. Chinese Journal of Applied Ecology, 29(11): 3735-3746
王美雅, 徐涵秋. 2018. 上海和纽约城市不透水面时空变化及其对生态质量影响的对比. 应用生态学报, 29(11): 3735-3746 [DOI: 10.13287/j.1001-9332.201811.018http://dx.doi.org/10.13287/j.1001-9332.201811.018]
Wang W Q, Zang Z L, Song B, Wang T J, Jiang Z Q and You W. 2016. Correlation between averaged PM2.5 concentrations and MODIS aerosol optical depth during different periods in Beijing. Acta Scientiae Circumstantiae, 36(8): 2794-2802
王伟齐, 臧增亮, 宋彬, 王体健, 蒋自强, 尤伟. 2016. 北京地区不同时段平均PM2.5浓度与MODIS气溶胶光学厚度相关性分析. 环境科学学报, 36(8): 2794-2802 [DOI: 10.13671/j.hjkxxb.2015.0743http://dx.doi.org/10.13671/j.hjkxxb.2015.0743]
Weng Q H, Lu D S and Schubring J. 2004. Estimation of land surface temperature–vegetation abundance relationship for urban heat island studies. Remote Sensing of Environment, 89(4): 467-483 [DOI: 10.1016/j.rse.2003.11.005http://dx.doi.org/10.1016/j.rse.2003.11.005]
Willis K S. 2015. Remote sensing change detection for ecological monitoring in United States protected areas. Biological Conservation, 182: 233-242 [DOI: 10.1016/j.biocon.2014.12.006http://dx.doi.org/10.1016/j.biocon.2014.12.006]
Wu Y Q and Wu C. 2012. Denoising of hyperspectral remote sensing images using NSCT and KPCA. Journal of Remote Sensing, 16(3): 533-544
吴一全, 吴超. 2012. 结合NSCT和KPCA的高光谱遥感图像去噪. 遥感学报, 16(3): 533-544 [DOI: 10.11834/jrs.20121018http://dx.doi.org/10.11834/jrs.20121018]
Xu H Q. 2005. A study on information extraction of water body with the modified normalized difference water index (MNDWI). Journal of Remote Sensing, 9(5): 589-595
徐涵秋. 2005. 利用改进的归一化差异水体指数(MNDWI)提取水体信息的研究. 遥感学报, 9(5): 589-595 [DOI: 10.11834/jrs.20050586http://dx.doi.org/10.11834/jrs.20050586]
Xu H Q. 2010. Analysis of impervious surface and its impact on urban heat environment using the Normalized Difference Impervious Surface Index (NDISI). Photogrammetric Engineering and Remote Sensing, 76(5): 557-565 [DOI: 10.14358/PERS.76.5.557http://dx.doi.org/10.14358/PERS.76.5.557]
Xu H Q. 2013. A remote sensing urban ecological index and its application. Acta Ecologica Sinica, 33(24): 7853-7862
徐涵秋. 2013. 城市遥感生态指数的创建及其应用. 生态学报, 33(24): 7853-7862 [DOI: 10.5846/stxb201208301223http://dx.doi.org/10.5846/stxb201208301223]
Xu H Q, Wang M Y, Shi T T, Guan H D, Fang C Y and Lin Z L. 2018. Prediction of ecological effects of potential population and impervious surface increases using a remote sensing based ecological index (RSEI). Ecological Indicators, 93: 730-740 [DOI: 10.1016/j.ecolind.2018.05.055http://dx.doi.org/10.1016/j.ecolind.2018.05.055]
Yue H, Liu Y, Li Y and Lu Y. 2019. Eco-environmental quality assessment in China’s 35 major cities based on remote sensing ecological index. IEEE Access, 7: 51295-51311 [DOI: 10.1109/ACCESS.2019.2911627http://dx.doi.org/10.1109/ACCESS.2019.2911627]
Zhang J T, Zhao Y D, Tian Y G, He Q Q, Zhuang Y H, Peng Y X and Hong S. 2019. Spatial non-coupling of air pollutant emissions and particulate matter-related air quality: a case study in Wuhan City, China. Progress in Geography, 38(4): 612-624.
张金亭, 赵玉丹, 田扬戈, 何青青, 庄艳华, 彭韵羲, 洪松. 2019. 大气污染物排放量与颗粒物环境空气质量的空间非协同耦合研究——以武汉市为例. 地理科学进展, 38(4): 612-624 [DOI: 10.18306/dlkxjz.2019.04.013http://dx.doi.org/10.18306/dlkxjz.2019.04.013]
Zhang P. 2014. Study on the Spatial-Temporal Data Fusion Method using Tasseled-Cap-Transform Indices from Landsat TM and MODIS. Lanzhou: Lanzhou University
张鹏. 2014. 基于Landsat TM与MODIS缨帽变换分量的时空数据融合方法研究. 兰州: 兰州大学
相关文章
相关作者
相关机构