Retrieving sparse non-photosynthetic vegetation fractional cover by Sentinel-1 and Sentinel-2
- Vol. 27, Issue 12, Pages: 2873-2881(2023)
Published: 07 December 2023
DOI: 10.11834/jrs.20231207
扫 描 看 全 文
浏览全部资源
扫码关注微信
Published: 07 December 2023 ,
扫 描 看 全 文
姬翠翠,骆义峡,李晓松,徐金鸿,杨雪梅,陈茂霖.2023.Sentinel-1和Sentinel-2协同反演稀疏非光合植被覆盖度.遥感学报,27(12): 2873-2881
Ji C C,Luo Y X,Li X S,Xu J H,Yang X M and Chen M L. 2023. Retrieving sparse non-photosynthetic vegetation fractional cover by Sentinel-1 and Sentinel-2. National Remote Sensing Bulletin, 27(12):2873-2881
精准定量反演光合植被(PV)和非光合植被(NPV)覆盖度对了解植被碳循环过程至关重要,同时,获取的非光合植被覆盖度信息也为土地沙漠化及植被转化机制研究提供重要信息。本文以甘肃省民勤县为研究区、Sentinel-1B IW GRD和Sentinel-2A为数据源,采用线性指数模型(LIM)和随机森林模型(RFM),基于控制变量法开展微波与光学遥感数据协同反演NPV覆盖度的方法研究,并参考野外获取样地真实性检验数据,将均方根误差(RMSE)和相对均方根误差(RMSE,%)作为指标评价反演结果精度。结果表明:(1)与仅采用Sentinel-2光学遥感数据相比,Sentinel-1和Sentinel-2协同反演NPV能够明显提高NPV覆盖度的估算精度;(2)由Sentinel-1和Sentinel-2获取植被指数构建的RFM在NPV覆盖度估算上较LIM精度更高,RFM和LIM估算NPV的RMSE分别为0.0149和0.0153,估算精度提高了1.4%;(3)垂直水平极化(VH)和垂直极化(VV)两种极化方式参与建立RFM可有效提高NPV覆盖度的估算精度,尤其VH极化对非光合植被信息探测更为敏感,较VV模型估算精度提高了5.1%;(4)加入表征土壤信息的比值土壤指数(RSI)有效减少了土壤对NPV覆盖度估算影响,提高了NPV覆盖度估算精度。综上,微波和光学遥感数据结合是提高NPV覆盖度估算精度的有效方法,同时,土壤作为独立重要指标参与模型计算对提高NPV覆盖度估算具有重要意义。
Quantitatively estimating the fractional cover of photosynthetic vegetation
non-photosynthetic vegetation (NPV)
and bare soil plays an important role in establishing carbon dynamics models. Accurately obtaining the fractional cover of NPV provides the important information for the study of land desertification and vegetation transformation mechanisms. Although some progress has been made in obtaining NPV fractional cover (
f
NPV
) by optical remote sensing in previous studies
many interfering factors and difficulties are still present. We will attempt to combine microwave and optical remote sensing information to obtain NPV fractional cover for further improving the accuracy of the fractional cover estimation of NPV.
In this study
we used Minqin County in Gansu Province as the research area
and we employed Sentinel-1B IW GRD and Sentinel-2A as data sources. The experiments employed the control variable method with the linear index model and the random forest regression (RFR) model to conduct the fractional cover estimation of NPV by using microwave and optical remote sensing data. Then
the estimated endmember fractions were validated with reference to fraction measurements. In addition
the Root Mean Square Error (RMSE) and Relative Root Mean Square Error (RMSE%) were employed as indicators to evaluate the inversion accuracy.
Results show that (1) using cooperative Sentinel-1 and Sentinel-2 remote sensing data to estimate the fractional cover of NPV can effectively improve the estimated accuracy compared with using Sentinel-2 data alone. (2) The RFR model is an effective method for the fractional cover estimation of sparse NPV
and its estimation accuracy is higher than that of the linear index model. The validation RMSE of the random forest model and the estimated
f
NPV
of the linear index model are 0.0149 and 0.0153
respectively. Obviously
the accuracy of
f
NPV
estimation increases by 1.4% when using the RFR model instead of the linear index model. (3) The VH and VV polarization bands of Sentinel-1 data can effectively detect the characteristics of NPV. Especially
VH band is more sensitive to NPV
and its estimation accuracy is improved by 5.1% compared with that of VV band. (4) The accuracy of
f
NPV
estimation can be improved when soil index is considered in each model
which illustrates that incorporating the soil characteristic information in the models is important for NPV extraction.
Overall
the combination of Sentinel-1 and Sentinel-2 remote sensing data can effectively improve the accuracy of the fractional cover estimation of NPV by employing the RFR model. VV and VH polarization modes are sensitive to NPV vegetation detection
especially VH polarization mode. The accuracy of NPV extraction can be further improved by considering the soil index
which reflects the soil characteristics. Therefore
the combination of microwave and optical remote sensing data is an effective method to improve the accuracy of
f
NPV
estimation. Incorporating polarization information with vegetation structure information and soil parameters with soil characteristic information is important for improving the accuracy of the fractional cover estimation of NPV.
非光合植被Sentinel-1Sentinel-2线性指数模型随机森林回归模型VV和VH极化甘肃省民勤县
non-photosynthetic vegetationSentinel-1Sentinel-2linear index modelrandom forest regression modelVV and VH polarizationMinqin County in Gansu province
Adams J B, Smith M O and Johnson P E. 1986. Spectral mixture modeling: a new analysis of rock and soil types at the Viking Lander 1 site. Journal of Geophysical Research: Solid Earth, 91(B8): 8098-8112 [DOI: 10.1029/JB091iB08p08098http://dx.doi.org/10.1029/JB091iB08p08098]
Arias M, Campo-Bescós M Á and Álvarez-Mozos J. 2020. Crop classification based on temporal signatures of sentinel-1 observations over Navarre Province, Spain. Remote Sensing, 12(2): 278 [DOI: 10.3390/rs12020278http://dx.doi.org/10.3390/rs12020278]
Asner G P and Lobell D B. 2000. A biogeophysical approach for automated SWIR unmixing of soils and vegetation. Remote Sensing of Environment, 74(1): 99-112 [DOI: 10.1016/S0034-4257(00)00126-7http://dx.doi.org/10.1016/S0034-4257(00)00126-7]
Belgiu M and Drăguţ L. 2016. Random forest in remote sensing: a review of applications and future directions. ISPRS Journal of Photogrammetry and Remote Sensing, 114: 24-31 [DOI: 10.1016/j.isprsjprs.2016.01.011http://dx.doi.org/10.1016/j.isprsjprs.2016.01.011]
Breiman L. 2001. Random forests. Machine Learning, 45(1): 5-32 [DOI: 10.1023/A:1010933404324http://dx.doi.org/10.1023/A:1010933404324]
Cao X, Chen J, Matsushita B, Imura H. 2010. Developing a MODIS-based index to discriminate dead fuel from photosynthetic vegetation and soil background in the Asian steppe area. International Journal of Remote Sensing, 31(6): 1589-1604 [DOI:10.1080/01431160903475274http://dx.doi.org/10.1080/01431160903475274]
Chen X X and Vierling L. 2006. Spectral mixture analyses of hyperspectral data acquired using a tethered balloon. Remote Sensing of Environment, 103(3): 338-350 [DOI: 10.1016/j.rse.2005.05.023http://dx.doi.org/10.1016/j.rse.2005.05.023]
Clasen A, Somers B, Pipkins K, Tits L, Segl K, Brell M, Kleinschmit B, Spengler D, Lausch A and Förster M. 2015. Spectral unmixing of forest crown components at close range, airborne and simulated sentinel-2 and EnMAP spectral imaging scale. Remote Sensing, 7(11): 15361-15387 [DOI: 10.3390/rs71115361http://dx.doi.org/10.3390/rs71115361]
Collins L, Griffioen P, Newell G and Mellor A. 2018. The utility of Random Forests for wildfire severity mapping. Remote Sensing of Environment, 216: 374-384 [DOI: 10.1016/j.rse.2018.07.005http://dx.doi.org/10.1016/j.rse.2018.07.005]
DAI S M, QIU G Y and ZHAO M. 2008. Study on land desertification and its prevention and control measures in the Minqin oasis in Gansu Province. Arid Zone Research, 25(3): 319-324
戴晟懋, 邱国玉, 赵明. 2008. 甘肃民勤绿洲荒漠化防治研究. 干旱区研究, 25(3): 319-324 [DOI: 10.13866/j.azr.2008.03.018http://dx.doi.org/10.13866/j.azr.2008.03.018]
Daughtry C S T, Mcmurtrey III J E, Chappelle E W, Dulaney W P, Irons J R and Satterwhite M B. 1995. Potential for discriminating crop residues from soil by reflectance and fluorescence. Agronomy Journal, 87(2): 165-171 [DOI: 10.2134/agronj1995.00021962008700020005xhttp://dx.doi.org/10.2134/agronj1995.00021962008700020005x]
Dong G W, Yang J, Peng Y N, Wang C and Zhang H. 2003. Forest characteristic detection with Pol-SAR. Journal of Tsinghua University (Science & Technology), 43(7): 953-956
董贵威, 杨健, 彭应宁, 王超, 张红. 2003. 极化SAR遥感中森林特征探测. 清华大学学报(自然科学版), 43(7): 953-956 [DOI: 10.16511/j.cnki.qhdxxb.2003.07.024http://dx.doi.org/10.16511/j.cnki.qhdxxb.2003.07.024]
Erinjery J J, Singh M and Kent R. 2018. Mapping and assessment of vegetation types in the tropical rainforests of the Western Ghats using multispectral Sentinel-2 and SAR Sentinel-1 satellite imagery. Remote Sensing of Environment, 216: 345-354 [DOI: 10.1016/j.rse.2018.07.006http://dx.doi.org/10.1016/j.rse.2018.07.006]
Fan W Y, Hu B X, Miller J and Li M Z. 2009. Comparative study between a new nonlinear model and common linear model for analysing laboratory simulated-forest hyperspectral data. International Journal of Remote Sensing, 30(11): 2951-2962 [DOI: 10.1080/01431160802558659http://dx.doi.org/10.1080/01431160802558659]
Garrigues S, Allard D, Baret F and Weiss M. 2006. Influence of landscape spatial heterogeneity on the non-linear estimation of leaf area index from moderate spatial resolution remote sensing data. Remote Sensing of Environment, 105(4): 286-298 [DOI: 10.1016/j.rse.2006.07.013http://dx.doi.org/10.1016/j.rse.2006.07.013]
Gašparović M and Dobrinić D. 2020. Comparative assessment of machine learning methods for urban vegetation mapping using multitemporal sentinel-1 imagery. Remote Sensing, 12(12): 1952 [DOI: 10.3390/rs12121952http://dx.doi.org/10.3390/rs12121952]
Guerschman J P, Hill M J, Renzullo L J, Barrett D J, Marks A S and Botha E J. 2009. Estimating fractional cover of photosynthetic vegetation, non-photosynthetic vegetation and bare soil in the Australian tropical savanna region upscaling the EO-1 Hyperion and MODIS sensors. Remote Sensing of Environment, 113(5): 928-945 [DOI: 10.1016/j.rse.2009.01.006http://dx.doi.org/10.1016/j.rse.2009.01.006]
Heinz D C and Chang C I. 2001. Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery. IEEE Transactions on Geoscience and Remote Sensing, 39(3): 529-545 [DOI: 10.1109/36.911111http://dx.doi.org/10.1109/36.911111]
Ji C C, Jia Y H, Li X S and Wang J Y. 2016. Research on linear and nonlinear spectral mixture models for estimating vegetation fractional cover of nitraria bushes. Journal of Remote Sensing, 20(6): 1402-1412
姬翠翠, 贾永红, 李晓松, 王金英. 2016. 线性/非线性光谱混合模型估算白刺灌丛植被覆盖度. 遥感学报, 20(6): 1402-1412 [DOI: 10.11834/jrs.20166020http://dx.doi.org/10.11834/jrs.20166020]
Ji C C. 2018. Research on Muti-Scale Spectral Mixture Analysis Method for Sparse Photosynthetic/Non-Photosynthetic Vegetation in Arid Area. Wuhan: Wuhan University
姬翠翠. 2018. 干旱区稀疏光合与非光合植被多尺度光谱混合解析方法研究. 武汉: 武汉大学
Ji C C, Li X S, Wei H D and Li S K. 2020. Comparison of different multispectral sensors for photosynthetic and non-photosynthetic vegetation-fraction retrieval. Remote Sensing, 12(1): 115 [DOI: 10.3390/rs12010115http://dx.doi.org/10.3390/rs12010115]
Jiapaer G, Chen X and Bao A M. 2011. A comparison of methods for estimating fractional vegetation cover in arid regions. Agricultural and Forest Meteorology, 151(12): 1698-1710 [DOI: 10.1016/j.agrformet.2011.07.004http://dx.doi.org/10.1016/j.agrformet.2011.07.004]
Kim Y and van Zyl J J. 2009. A time-series approach to estimate soil moisture using polarimetric radar data. IEEE Transactions on Geoscience and Remote Sensing, 47(8): 2519-2527 [DOI: 10.1109/TGRS.2009.2014944http://dx.doi.org/10.1109/TGRS.2009.2014944]
Kim Y H, OH J H and Kim Y I. 2015. Development of a fusion vegetation index using full-PolSAR and multispectral data. Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, 33(6): 547-555 [DOI: 10.7848/ksgpc.2015.33.6.547http://dx.doi.org/10.7848/ksgpc.2015.33.6.547]
Kumar P, Prasad R, Gupta D K, Mishra V N, Vishwakarma A K, Yadav V P, Bala R, Choudhary A and Avtar R. 2018. Estimation of winter wheat crop growth parameters using time series Sentinel-1A SAR data. Geocarto International, 33(9): 942-956 [DOI: 10.1080/10106049.2017.1316781http://dx.doi.org/10.1080/10106049.2017.1316781]
Lary D J, Alavi A H, Gandomi A H and Walker A L. 2016. Machine learning in geosciences and remote sensing. Geoscience Frontiers, 7(1): 3-10 [DOI: 10.1016/j.gsf.2015.07.003http://dx.doi.org/10.1016/j.gsf.2015.07.003]
Lehnert L, Meyer H, Thies B, Reudenbach C and Bendix J. 2014. Monitoring plant cover on the Tibetan Plateau: a multi-scale remote sensing based approach//Proceedings of the EGU General Assembly 2014. Vienna, Austria: [s.n.]
Li T, Li X S and Li F. 2015. Estimating fractional cover of photosynthetic vegetation and non-photosynthetic vegetation in the Xilingol steppe region with EO-1 hyperion data. Acta Ecologica Sinica, 35(11): 3643-3652
李涛, 李晓松, 李飞. 2015. 基于Hyperion的锡林郭勒草原光合植被、非光合植被覆盖度估算. 生态学报, 35(11): 3643-3652 [DOI: 10.5846/stxb201308142075http://dx.doi.org/10.5846/stxb201308142075]
Li X S, Zheng G X, Wang J Y, Ji C C, Sun B and Gao Z H. 2016. Comparison of methods for estimating fractional cover of photosynthetic and non-photosynthetic vegetation in the otindag sandy land using GF-1 wide-field view data. Remote Sensing, 8(10): 800 [DOI: 10.3390/rs8100800http://dx.doi.org/10.3390/rs8100800]
Liaw A and Wiener M. 2001. Classification and regression by RandomForest. R News, 2-3: 18-22
Luo Y X, Ji C C, Li X S, Xu J H and Yang X M. 2022. Vegetation index model for estimating sparse photosynthetic/non-photosynthetic vegetation fractional cover in arid zone. Remote Sensing Information, 37(3): 57-64
骆义峡, 姬翠翠, 李晓松, 徐金鸿, 杨雪梅. 2022. 植被指数模型估算干旱区稀疏光合/非光合植被覆盖度. 遥感信息, 37(3): 57-64
Macelloni G, Paloscia S, Pampaloni P, Marliani F and Gai M. 2001. The relationship between the backscattering coefficient and the biomass of narrow and broad leaf crops. IEEE Transactions on Geoscience and Remote Sensing, 39(4): 873-884 [DOI: 10.1109/36.917914http://dx.doi.org/10.1109/36.917914]
Mandal D, Kumar V, Bhattacharya A, Rao Y S, Siqueira P and Bera S. 2018. Sen4Rice: a processing chain for differentiating early and late transplanted rice using time-series sentinel-1 SAR data with Google earth engine. IEEE Geoscience and Remote Sensing Letters, 15(12): 1947-1951 [DOI: 10.1109/LGRS.2018.2865816http://dx.doi.org/10.1109/LGRS.2018.2865816]
Meng R, Wu J, Schwager K L, Zhao F, Dennison P E, Cook B D, Brewster K, Green T M and Serbin S P. 2017. Using high spatial resolution satellite imagery to map forest burn severity across spatial scales in a Pine Barrens ecosystem. Remote Sensing of Environment, 191: 95-109 [DOI: 10.1016/j.rse.2017.01.016http://dx.doi.org/10.1016/j.rse.2017.01.016]
Mitsopoulos I, Chrysafi I, Bountis D and Mallinis G. 2019. Assessment of factors driving high fire severity potential and classification in a Mediterranean pine ecosystem. Journal of Environmental Management, 235: 266-275 [DOI: 10.1016/j.jenvman.2019.01.056http://dx.doi.org/10.1016/j.jenvman.2019.01.056]
Montorio R, Pérez-Cabello F, Alves D B and García-Martín A. 2020. Unitemporal approach to fire severity mapping using multispectral synthetic databases and Random Forests. Remote Sensing of Environment, 249: 112025 [DOI: 10.1016/j.rse.2020.112025http://dx.doi.org/10.1016/j.rse.2020.112025]
Okin G S. 2007. Relative spectral mixture analysis — A multitemporal index of total vegetation cover. Remote Sensing of Environment, 106(4): 467-479 [DOI: 10.1016/j.rse.2006.09.018http://dx.doi.org/10.1016/j.rse.2006.09.018]
Parks S A, Holsinger L M, Koontz M J, Collins L, Whitman E, Parisien M A, Loehman R A, Barnes J L, Bourdon J F, Boucher J, Boucher Y, Caprio A C, Collingwood A, Hall R J, Park J, Saperstein L B, Smetanka C, Smith R J and Soverel N. 2019. Giving ecological meaning to satellite-derived fire severity metrics across North American forests. Remote Sensing, 11(14): 1735 [DOI: 10.3390/rs11141735http://dx.doi.org/10.3390/rs11141735]
Pope K O, Rey-Benayas J M and Paris J F. 1994. Radar remote sensing of forest and wetland ecosystems in the Central American tropics. Remote Sensing of Environment, 48(2): 205-219 [DOI: 10.1016/0034-4257(94)90142-2http://dx.doi.org/10.1016/0034-4257(94)90142-2]
Quintano C, Fernández-Manso A and Roberts D A. 2020. Enhanced burn severity estimation using fine resolution ET and MESMA fraction images with machine learning algorithm. Remote Sensing of Environment, 244: 111815 [DOI: 10.1016/j.rse.2020.111815http://dx.doi.org/10.1016/j.rse.2020.111815]
Reynolds J F, Smith D M S, Lambin E F, Turner II B L, Mortimore M, Batterbury S P J, Downing T E, Dowlatabadi H, Fernandez R J, Herrick J E, Huber-Sannwald E, Jiang H, Leemans R, Lynam T, Maestre F T, Ayarza M and Walker B. 2007. Global desertification: building a science for dryland development. Science, 316(5826): 847-851 [DOI: 10.1126/science.1131634http://dx.doi.org/10.1126/science.1131634]
Roberts D A, Gardner M, Church R, Ustin S, Scheer G and Green R O. 1998. Mapping chaparral in the Santa Monica mountains using multiple endmember spectral mixture models. Remote Sensing of Environment, 65(3): 267-279 [DOI: 10.1016/S0034-4257(98)00037-6http://dx.doi.org/10.1016/S0034-4257(98)00037-6]
Serbin G, Hunt E R, Daughtry C S T, McCarty G W and Doraiswamy P C. 2009. An improved ASTER index for remote sensing of crop residue. Remote Sensing, 1(4): 971-991 [DOI: 10.3390/rs1040971http://dx.doi.org/10.3390/rs1040971]
Shao J, Li X S, Yang J T and Liu D C. 2021. Study on large scale grassland shrub monitoring based on optical and radar remote sensing. Journal of Arid Land Resources and Environment, 35(2): 130-135
邵京, 李晓松, 杨珺婷, 刘代超. 2021. 光学与雷达遥感协同的大尺度草地灌丛化监测研究. 干旱区资源与环境, 35(2): 130-135 [DOI: 10.13448/j.cnki.jalre.2021.050http://dx.doi.org/10.13448/j.cnki.jalre.2021.050]
Tian H F, Wu M Q, Niu Z, Wang C Y and Zhao X. 2015. Dryland crops recognition under complex planting structure based on Radarsat-2 images. Transactions of the Chinese Society of Agricultural Engineering, 31(23): 154-159
田海峰, 邬明权, 牛铮, 王长耀, 赵昕. 2015. 基于Radarsat-2影像的复杂种植结构下旱地作物识别. 农业工程学报, 31(23): 154-159 [DOI: 10.11975/j.issn.1002-6819.2015.23.020http://dx.doi.org/10.11975/j.issn.1002-6819.2015.23.020]
Tomppo E, Antropov O and Praks J. 2019. Cropland classification using sentinel-1 time series: methodological performance and prediction uncertainty assessment. Remote Sensing, 11(21): 2480 [DOI: 10.3390/rs11212480http://dx.doi.org/10.3390/rs11212480]
Vreugdenhil M, Wagner W, Bauer-Marschallinger B, Pfeil I, Teubner I, Rüdiger C and Strauss P. 2018. Sensitivity of sentinel-1 backscatter to vegetation dynamics: an Austrian case study. Remote Sensing, 10(9): 1396 [DOI: 10.3390/rs10091396http://dx.doi.org/10.3390/rs10091396]
Whelen T and Siqueira P. 2018. Time-series classification of Sentinel-1 agricultural data over North Dakota. Remote Sensing Letters, 9(5): 411-420 [DOI: 10.1080/2150704X.2018.1430393http://dx.doi.org/10.1080/2150704X.2018.1430393]
Zheng G X, Li X S, Zhang K X and Wang J Y. 2016. Spectral mixing mechanism analysis of photosynthetic/non-photosynthetic vegetation and bared soil mixture in the hunshandake (Otindag) sandy land. Spectroscopy and Spectral Analysis, 36(4): 1063-1068
郑国雄, 李晓松, 张凯选, 王金英. 2016. 浑善达克沙地光合/非光合植被及裸土光谱混合机理分析. 光谱学与光谱分析, 36(4): 1063-1068 [DOI: 10.3964/j.issn.1000-0593(2016)04-1063-06http://dx.doi.org/10.3964/j.issn.1000-0593(2016)04-1063-06]
相关文章
相关作者
相关机构