Uniformity correction of radiance responsivity in vacuum infrared calibration for FY-3B/VIRR
- Vol. 27, Issue 10, Pages: 2295-2306(2023)
Published: 07 October 2023
DOI: 10.11834/jrs.20231599
扫 描 看 全 文
浏览全部资源
扫码关注微信
Published: 07 October 2023 ,
扫 描 看 全 文
王阳,钮新华,张锷,陈帅帅,胡秀清,张冬冬,王向华,熊千千.2023.FY-3B/VIRR真空红外定标辐射响应度一致性校正.遥感学报,27(10): 2295-2306
Wang Y,Niu X H,Zhang E,Chen S S,Hu X Q,Zhang D D,Wang X H and Xiong Q Q. 2023. Uniformity correction of radiance responsivity in vacuum infrared calibration for FY-3B/VIRR. National Remote Sensing Bulletin, 27(10):2295-2306
在真空红外定标过程中,扫描辐射计系统响应度常受到试验污染及探测头部温度非一致性等因素影响,导致各通道获取定标系数及铂电阻转换系数不准确。为校正系统响应度的不一致性,可基于黑体辐射源恒温模式下的辐射稳定性和红外探测系统通道单一定标状态下响应度不变性,利用红外定标中的面源黑体及星上黑体变温数据,构建内外黑体红外通道响应一致性传递算法。针对FY-3B可见光红外扫描辐射计(VIRR)发射前定标数据,将定标过程中的系统响应度进行一致性校正。结果表明,面源黑体变温阶段面源黑体校正码值在升温和降温间的一致性优于0.7 DN,辐射传递过程中基准工况下星上黑体校正码值一致性优于0.3 DN,并分析了校正方法和其他传统方法在计算星上黑体变温阶段等效黑体温度的差异性。因此,该算法保证了空间辐射基准到红外探测系统以及星上黑体辐射传递过程的辐射准确性,为有效提高真空红外辐射定标精度提供技术保障。
In vacuum infrared calibration
factors
such as test contamination and non-uniformity of instrument temperature
cause response changes for scanning radiometer system
resulting in inaccurate calibration coefficients and platinum resistance conversion coefficients for each channel. The non-uniformity of the responsivity is corrected using the stability of the blackbody as a reference source in the constant temperature mode and the responsivity invariance in the single calibration state for the infrared detection system. The transfer algorithm of the consistent response from the internal to external blackbody measurement for the infrared channels is established by the data of variable temperature test for the surface blackbody and on-board blackbody in the infrared calibration. For the prelaunch calibration data of FY-3B visible infrared radiometer (VIRR)
the non-uniformity of system responsivity is corrected during the calibration. At the temperature change stage
the uniformity of the correction signal for the surface blackbody between the heating-up and cooling-down stages is better than 0.7 digital number. In the radiance transfer stage
the uniformity of the correction signal for the on-board blackbody is better than 0.3 digital number in the reference condition. The difference between the correction method and other traditional methods in calculating the equivalent blackbody temperature of the on-board blackbody is analyzed. This algorithm ensures the transfer accuracy from the space-based radiance standard to the infrared detection system and on-board blackbody
and the technical support is provided to effectively improve the accuracy of vacuum infrared calibration.
遥感红外定标稳定性扫描辐射计响应度一致性
remote sensinginfrared calibrationstabilityscanning radiometerresponsivityuniformity
Anderson J G, Dykema J A, Goody R M, Hu H and Kirk-Davidoff D B. 2004. Absolute, spectrally-resolved, thermal radiance: a benchmark for climate monitoring from space. Journal of Quantitative Spectroscopy and Radiative Transfer, 85(3/4): 367-383 [DOI: 10.1016/S0022-4073(03)00232-2http://dx.doi.org/10.1016/S0022-4073(03)00232-2]
Díaz C L P, Xiong X X, Wu A S and Chang T J. 2022. Terra and aqua MODIS thermal emissive bands calibration and RVS stability assessments using an in situ ocean target. IEEE Transactions on Geoscience and Remote Sensing, 60: 4201614 [DOI: 10.1109/TGRS.2021.3072791http://dx.doi.org/10.1109/TGRS.2021.3072791]
Fox N, Green P, Brindley H, Russell J, Smith D, Lobb D, Cutter M and Barnes A. 2017. Traceable radiometry underpinning terrestrial and heliostudies (truths): a bencmark mission for climate//Proceedings Volume 10563, International Conference on Space Optics. Tenerife: SPIE: 635-643 [DOI: 10.1117/12.2304220http://dx.doi.org/10.1117/12.2304220]
Gong L Y. 2017. Research of Vacuum Low Background Infrared Radiance Temperature Calibration Method. Chengdu: Chengdu University of Technology
龚律宇. 2017. 真空低背景红外亮度温度校准方法研究. 成都: 成都理工大学
Grandmont F, Moreau L, Bourque H, Taylor J, Girard F, Larouche M and Veilleux J. 2017. Instrument demonstration effort for the CLARREO mission//Proceedings Volume 10565, International Conference on Space Optics. Rhodes Island: SPIE: 241-245 [DOI: 10.1117/12.2309125http://dx.doi.org/10.1117/12.2309125]
Gu X F, Tian G L, Yu T, Li X Y, Gao H L and Xie Y. 2013. Radiation Calibration Principle and Method of Space Optical Remote Sensors. Beijing: Science Press
顾行发, 田国良, 余涛, 李小英, 高海亮, 谢勇. 2013. 航天光学遥感器辐射定标原理与方法. 北京: 科学出版
Guenther B, Barnes W, Knight E, Barker J, Harnden J, Weber R, Roberto M, Godden G, Montgomery H and Abel P. 1996. MODIS calibration: a brief review of the strategy for the at-launch calibration approach. Journal of Atmospheric and Oceanic Technology, 13(2): 274-285 [DOI: 10.1175/1520-0426(1996)013<0274:MCABRO>2.0.CO;2http://dx.doi.org/10.1175/1520-0426(1996)013<0274:MCABRO>2.0.CO;2]
Hao X P, Sun J P, Gong L Y, Song J, Gu J M and Ding L. 2018. Research on H500-type high-precision vacuum blackbody as a calibration standard for infrared remote sensing. International Journal of Thermophysics, 39(4): 51 [DOI: 10.1007/s10765-018-2371-6http://dx.doi.org/10.1007/s10765-018-2371-6]
Hilton F, Armante R, August T, Barnet C, Bouchard A, Camy-Peyret C, Capelle V, Clarisse L, Clerbaux C, Coheur P L, Collard A, Crevoisier C, Dufour G, Edwards D, Faijan F, Fourrié N, Gambacorta A, Goldberg M, Guidard V, Hurtmans D, Illingworth S, Jacquinet-Husson N, Kerzenmacher T, Klaes D, Lavanant L, Masiello G, Matricardi M, McNally A, Newman S, Pavelin E, Payan S, Péquignot E, Peyridieu S, Phulpin T, Remedios J, Schlüssel P, Serio C, Strow L, Stubenrauch C, Taylor J, Tobin D, Wolf W and Zhou D. 2012. Hyperspectral earth observation from IASI: five years of accomplishments. Bulletin of the American Meteorological Society, 93(3): 347-370 [DOI: 10.1175/BAMS-D-11-00027.1http://dx.doi.org/10.1175/BAMS-D-11-00027.1]
Hu X Q, Xu N, Weng F Z, Zhang Y, Chen L and Zhang P. 2013. Long-term monitoring and correction of FY-2 infrared channel calibration using AIRS and IASI. IEEE Transactions on Geoscience and Remote Sensing, 51(10): 5008-5018 [DOI: 10.1109/TGRS.2013.2275871http://dx.doi.org/10.1109/TGRS.2013.2275871]
Li Z S. 2018. Development of ultra large shielded door for infrared calibration in simulated space environment. Vacuum, 55(5): 66-70
李志胜. 2018. 空间环境下超大型红外定标用辐射屏蔽门的研制. 真空, 55(5): 66-70 [DOI: 10.13385/j.cnki.vacuum.2018.05.14http://dx.doi.org/10.13385/j.cnki.vacuum.2018.05.14]
Lu N M, Ding L, Zheng X B, Ye X, Li C R, Lü D R, Zhang P, Hu X Q, Zhou C H, You Z, Fang J C, Gong J Y, Jiang X W, Li J J, Ma L L and Xu N. 2020. introduction of the radiometric benchmark satellite being developed in China for remote sensing. Journal of Remote Sensing, 24(6): 672-680
卢乃锰, 丁雷, 郑小兵, 叶新, 李传荣, 吕达仁, 张鹏, 胡秀清, 周成虎, 尤政, 房建成, 龚建雅, 蒋兴伟, 李建军, 马灵玲, 徐娜. 2020. 中国空间辐射测量基准技术. 遥感学报, 24(6): 672-680 [DOI: 10.11834/jrs.20200011http://dx.doi.org/10.11834/jrs.20200011]
Sheng Y C, Dun X, Jin W Q, Guo Y X, Zhou F and Xiao S. 2019. Review of on-orbit radiometric calibration technology used in infrared remote sensors. Infrared and Laser Engineering, 48(9): 904001
盛一成, 顿雄, 金伟其, 郭一新, 周峰, 肖思. 2019. 星上红外遥感相机的辐射定标技术发展综述. 红外与激光工程, 48(9): 904001 [DOI: 10.3788/IRLA201948.0904001http://dx.doi.org/10.3788/IRLA201948.0904001]
Song J. 2019. Research on the Traceability and the On-Orbit Emissivity Measurement Method of Space Primary Standard Blackbody. Shanghai: University of Chinese Academy of Sciences (Shanghai Institute of Technical Physics, Chinese Academy of Sciences)
宋健. 2019. 空间基准黑体辐射源溯源技术及在轨发射率测量技术研究. 上海: 中国科学院大学(中国科学院上海技术物理研究所)
Song J, Hao X P, Ding L, Li K and Sun J P. 2019. Development of reduced background vacuum infrared hyperspectral radiance temperature standard facility. Infrared and Laser Engineering, 48(10): 1004001
宋健, 郝小鹏, 丁雷, 李凯, 孙建平. 2019. 真空低背景红外高光谱亮温计量标准装置研制. 红外与激光工程, 48(10): 1004001 [DOI: 10.3788/IRLA201948.1004001http://dx.doi.org/10.3788/IRLA201948.1004001]
Wu Y, Zhu Z Z, Fang Y H, Zhang L L, Yang W K, Tao M Q and Ning Z Q. 2019. Radiation calibration method using uncooled long-wave infrared spectrometer. Acta Optica Sinica, 39(9): 0904001
吴越, 朱之贞, 方勇华, 张蕾蕾, 杨文康, 陶孟琪, 宁志强. 2019. 非制冷型长波红外光谱仪的辐射定标方法. 光学学报, 39(9): 0904001 [DOI: 10.3788/AOS201939.0904001http://dx.doi.org/10.3788/AOS201939.0904001]
Xiong X X, Butler J, Chiang K, Efremova B, Fulbright J, Lei N, Mcintire J, Oudrari H, Sun J Q, Wang Z P and Wu A S. 2014. VIIRS on-orbit calibration methodology and performance. Journal of Geophysical Research: Atmospheres, 119(9): 5065-5078 [DOI: 10.1002/2013JD020423http://dx.doi.org/10.1002/2013JD020423]
Xu J K. 2000. The contamination control of “ZY-1” FM1 infrared multi-spectrum scanner in the radiation calibration test in simulation space environment. Spacecraft Environment Engineering, (2): 17-19
徐加宽. 2000. "ZY-1"FM1 红外多光谱扫描仪在模拟空间环境下辐射定标试验的污染控制. 航天器环境工程, (2): 17-19
Yang Y K, Li H, Sun L, Du Y M, Cao B, Liu Q H and Zhu J S. 2019. Land surface temperature and emissivity separation from GF-5 visual and infrared multispectral imager data. Journal of Remote Sensing, 23(6): 1132-1146
杨以坤, 历华, 孙林, 杜永明, 曹彪, 柳钦火, 朱金山. 2019. 高分五号全谱段光谱成像仪地表温度与发射率反演. 遥感学报, 23(6): 1132-1146 [DOI: 10.11834/jrs.20198053http://dx.doi.org/10.11834/jrs.20198053]
Zhang Y, Qi G L and Rong Z G. 2006. Radiation Calibration Model and Method of Satellite Infrared Remote Sensors. Beijing: Science Press
张勇, 祁广利, 戎志国. 2006. 卫星红外遥感器辐射定标模型与方法. 北京: 科学出版
相关文章
相关作者
相关机构