The GF land surface albedo product based on the high-spatial-and-temporal-resolution BRDF priori-knowledge and its preliminary validation
- Vol. 27, Issue 3, Pages: 738-747(2023)
Published: 07 March 2023
DOI: 10.11834/jrs.20231717
扫 描 看 全 文
浏览全部资源
扫码关注微信
Published: 07 March 2023 ,
扫 描 看 全 文
游冬琴,闻建光,唐勇,刘强,钟守熠,韩源,宫宝昌,仲波,吴善龙,柳钦火.2023.基于高时空分辨率BRDF先验知识的高分卫星地表反照率产品及其初步验证.遥感学报,27(3): 738-747
You D Q, Wen J G,Tang Y, Liu Q, Zhong S Y, Han Y, Gong B C, Zhong B, Wu S L and Liu Q H. 2023. The GF land surface albedo product based on the high-spatial-and-temporal-resolution BRDF priori-knowledge and its preliminary validation. National Remote Sensing Bulletin, 27(3):738-747
地表反照率是地表辐射能量平衡中的关键因子。利用高分卫星数据生产地表反照率产品,将有效地支撑局地尺度的遥感监测应用。但高分卫星数据反演反照率面临着角度信息不足难以获取BRDF特性的难题。本文利用高分一号卫星,基于低分辨率多角度信息获取时空分布的BRDF先验知识来反演高分卫星数据BRDF,进而估算反照率,生成了高分卫星全国地表反照率产品,并分析了产品的时空特征和基于地面测量数据验证了产品精度。主要利用黑河、怀来、东北遥感试验站多个观测点长时间序列地面观测进行直接验证,地表覆盖类型包括玉米作物,海棠、水杉、油松等林地以及草地,而在冬季其覆盖则转变为裸土或冰雪等。产品的时空动态变化基本捕捉了地表的变化特征,与地面站点数据时间序列特征吻合度较高。产品在植被覆盖的结果普遍较好,而在裸土和冰雪条件下精度则有所降低,总体均方根误差为0.05,相对精度80.24%,基本满足应用需求。验证结果表明,本文利用更为精细的具有时空分布特征(高时空分辨率)的BRDF先验知识有效地反演了高分数据反照率产品。反照率产品精度直接受到辐射定标、几何定位、大气校正、云识别、算法等精度影响,高分卫星反照率产品算法的适用性和产品的精度还需要更充分的验证和分析。
Land surface albedo is a critical parameter in radiation and energy budget. Using GF satellite data to produce the land surface albedo is beneficial for local-scale environmental monitoring.
The challenge beneath the albedo estimation from the GF satellite data is the inadequate angular information
which complicates the BRDF inversion and the albedo derivation based on BRDF. We use the high spatial-and-temporal-resolution priori-knowledge BRDF database obtained from coarse spatial resolution multiangular information to help describe the GF BRDF features. Then
the GF albedo is estimated from the derived GF BRDF. The algorithm is applied in GF-1 data to generate the land surface albedo product in China. First
this algorithm and the production are introduced briefly. Then
the spatial-temporal features are evaluated by qualitative analysis and quantitative validation. In the validation
a long time series of field-measured albedo from the sites of different land covers is used. It includes the cropland (maize) in the Daman site from the Heihe remote sensing test site located in the northwest of China
the forest (Chaenomeles
metasequoia
Chinese pine) in the Huailai test remote sensing site located in the north of China
and the grass in the Dongbei remote sensing test site located in the northeast of China. These sites would be covered by bare soil or snow in winter. In this study
we preliminarily evaluate the algorithm feasibility in albedo production and product precision.
The time series comparisons of the field measurements and the GF product present good agreement for different sites over 1 year to 2 years. For over 1-or 2-year time-continuous comparisons
the land surface status is changed driven by the phenology (vegetation growing cycle). Thus
this finding reveals the feasibility of the algorithm based on the spatial-temporal distributed BRDF a priori knowledge. The total root mean square error is 0.05
with a relative accuracy of 80.24%
which meets the application requirement.
Therefore
this algorithm is feasible for the albedo estimation from the GF data. The validation results show a good agreement between the field measurements and the product. However
the remote sensing common products from GF satellite data have not been initiated long enough. Thus
evaluating the GF satellite data is still needed. Besides the algorithm itself
the albedo accuracy is directly affected by the land surface reflectance product’s precision
which may introduce uncertainties from the geometric and radiometric calibration
atmospheric correction
and even cloud production. Therefore
much work should be done to evaluate this product and clarify the effects of those factors. In this way
the algorithm and albedo production can be improved.
高分一号反照率BRDF先验知识高分遥感共性产品生产
GF-1albedoBRDFpriori-knowledgeGF remote sensing common products production
Bojinski S, Verstraete M, Peterson T C, Richter C, Simmons A and Zemp M. 2014. The concept of essential climate variables in support of climate research, applications, and policy. Bulletin of the American Meteorological Society, 95(9): 1431-1443 [DOI: 10.1175/BAMS-D-13-00047.1http://dx.doi.org/10.1175/BAMS-D-13-00047.1]
GCOS. 2011. Systematic observation requirements for satellite-based products for climate, 2011: update, supplemental details to the satellite-based component of the “Implementation Plan for the Global Observing System for Climate in Support of the UNFCCC” GCOS-154. GCOS Implementation Plan. https://climate.esa.int/sites/default/files/gcos-154.pdfhttps://climate.esa.int/sites/default/files/gcos-154.pdf
He D D, Jiao Z T, Dong Y D, Zhang X N, Ding A X, Yin S Y, Cui L and Chang Y X. 2019. Preliminary verification of Landsat satellite albedo from airborne WIDAS data. Journal of Remote Sensing, 23(1): 53-61
何丹丹, 焦子锑, 董亚冬, 张小宁, 丁安心, 尹思阳, 崔磊, 常雅轩. 2019. 机载WIDAS数据的Landsat卫星反照率初步验证. 遥感学报, 23(1): 53-61 [DOI: 10.11834/jrs.20198007http://dx.doi.org/10.11834/jrs.20198007]
He T, Liang S L, Wang D D, Cao Y F, Gao F, Yu Y Y and Feng M. 2018. Evaluating land surface albedo estimation from Landsat MSS, TM, ETM+, and OLI data based on the unified direct estimation approach. Remote Sensing of Environment, 204: 181-196 [DOI: 10.1016/j.rse.2017.10.031http://dx.doi.org/10.1016/j.rse.2017.10.031]
He T, Liang S L, Wang D D, Chen X N, Song D X and Jiang B. 2015. Land surface albedo estimation from Chinese HJ satellite data based on the direct estimation approach. Remote Sensing, 7(5): 5495-5510 [DOI: 10.3390/rs70505495http://dx.doi.org/10.3390/rs70505495]
Jiao Z T, Hill M J, Schaaf C B, Zhang H, Wang Z S and Li X W. 2014. An anisotropic flat index (AFX) to derive BRDF archetypes from MODIS. Remote Sensing of Environment, 141: 168-187 [DOI: 10.1016/j.rse.2013.10.017http://dx.doi.org/10.1016/j.rse.2013.10.017]
Jiao Z T, Zhang X N, Bréon F M, Dong Y D, Schaaf C B, Román M, Wang Z S, Cui L, Yin S Y, Ding A X and Wang J D. 2018. The influence of spatial resolution on the angular variation patterns of optical reflectance as retrieved from MODIS and POLDER measurements. Remote Sensing of Environment, 215: 371-385 [DOI: 10.1016/j.rse.2018.06.025http://dx.doi.org/10.1016/j.rse.2018.06.025]
Kimes D S and Sellers P J. 1985. Inferring hemispherical reflectance of the earth’s surface for global energy budgets from remotely sensed nadir or directional radiance values. Remote Sensing of Environment, 18(3): 205-223 [DOI: 10.1016/0034-4257(85)90058-6http://dx.doi.org/10.1016/0034-4257(85)90058-6]
Liang S L. 2004. Quantitative Remote Sensing of Land Surfaces. New Jersey: John Wiley and Sons.
Liu Q H,Wen J G,Zhou X,Zhao J,Li Z Y,Li X,Ma M G,Wang W Z,Liao X H,Liu S M,Fan W J,Xiao Q,Zhong B,Li J,Xin X Z,Li L,Jia L,Gao Z H,Jin J D,Liang S,Xin J,Liao C J and Wu Y R. 2023. Technique system of remote sensing product generation and validation of GF common products. National Remote Sensing Bulletin,27(3):544-562
柳钦火,闻建光,周翔,赵坚,李增元,李新,马明国,王维真,廖小罕,刘绍民,范闻捷,肖青,仲波,李静,辛晓洲,李丽,贾立,高志海,金家栋,梁师,邢进,廖楚江,吴一戎.2023.高分遥感共性产品生成和真实性检验技术体系.遥感学报,27(3):544-562 [DOI:10.11834/jrs.20235022http://dx.doi.org/10.11834/jrs.20235022]
Masson-Delmotte V, Zha P, Pirani A, Connors S L, S Péan B C, Caud N, Chen Y, Goldfarb L, Gomis M I, Huang M, Leitzell K, Lonnoy E, Matthews B R J, Maycock T K, Waterfield T, Yelekçi O, Yu R and B Z. 2021. IPCC, 2021: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press
Peng S, Wen J G, Xiao Q, You D Q, Dou B C, Liu Q and Tang Y. 2017. Multi-staged NDVI dependent snow-free land-surface shortwave albedo narrowband-to-broadband (NTB) coefficients and their sensitivity analysis. Remote Sensing, 9(1): 93 [DOI: 10.3390/rs9010093http://dx.doi.org/10.3390/rs9010093]
Roujean J L, Leroy M and Deschamps P Y. 1992. A bidirectional reflectance model of the Earth's surface for the correction of remote sensing data. Journal of Geophysical Research: Atmospheres, 97(D18): 20455-20468 [DOI: 10.1029/92JD01411http://dx.doi.org/10.1029/92JD01411]
Shuai Y M, Masek J G, Gao F and Schaaf C B. 2011. An algorithm for the retrieval of 30-m snow-free albedo from Landsat surface reflectance and MODIS BRDF. Remote Sensing of Environment, 115(9): 2204-2216 [DOI: 10.1016/j.rse.2011.04.019http://dx.doi.org/10.1016/j.rse.2011.04.019]
Sun Y L, Zhang X, Shuai T, Shang K and Feng S N. 2015. Radiometric normalization of hyperspectral satellite images with spectral angle distance and Euclidean distance. Journal of Remote Sensing, 19(4): 618-626
孙艳丽, 张霞, 帅通, 尚坤, 冯淑娜. 2015. 光谱角—欧氏距离的高光谱图像辐射归一化. 遥感学报, 19(4): 618-626 [DOI: 10.11834/jrs.20154176http://dx.doi.org/10.11834/jrs.20154176]
Wang L L, Zhu W Q, Jiang N, Mou M J and Liu J H. 2012. Evaluation of distance measure methods for vegetation index time-series data. Journal of Remote Sensing, 16(3): 644-662
王伶俐, 朱文泉, 姜楠, 牟敏杰, 刘建红. 2012. 植被指数时序数据距离测度方法评价. 遥感学报, 16(3): 644-662 [DOI: 10.11834/jrs.20121154http://dx.doi.org/10.11834/jrs.20121154]
Wanner W, Li X and Strahler A H. 1995. On the derivation of kernels for kernel-driven models of bidirectional reflectance. Journal of Geophysical Research: Atmospheres, 100(D10): 21077-21089 [DOI: 10.1029/95JD02371http://dx.doi.org/10.1029/95JD02371]
Wen J G, Dou B C, You D Q, Tang Y, Xiao Q, Liu Q and Qinhuo L. 2017. Forward a small-timescale BRDF/albedo by multisensor combined BRDF inversion model. IEEE Transactions on Geoscience and Remote Sensing, 55(2): 683-697 [DOI: 10.1109/TGRS.2016.2613899http://dx.doi.org/10.1109/TGRS.2016.2613899]
You D Q, Wen J G, Xiao Q, Liu Q, Liu Q H, Tang Y, Dou B C and Peng J J. 2015. Development of a high resolution BRDF/albedo product by fusing airborne CASI reflectance with MODIS daily reflectance in the oasis area of the Heihe River Basin, China. Remote Sensing, 7(6): 6784-6807 [DOI: 10.3390/rs70606784http://dx.doi.org/10.3390/rs70606784]
Zhang H, Jiao Z T, Dong Y D, Huang X Y, Li J Y and Li X W. 2013. An algorithm for retrieval albedo from BRDF archetype. Journal of Remote Sensing, 17(6): 1475-1491
张虎, 焦子锑, 董亚冬, 黄兴英, 李佳悦, 李小文. 2013. 基于BRDF原型反演地表反照率. 遥感学报, 17(6): 1475-1491 [DOI: 10.11834/jrs.20133022http://dx.doi.org/10.11834/jrs.20133022]
Zhang K, Zhou H M, Wang J D and Xue H Z. 2014. Estimation and validation of high spatio-temporal resolution albedo by fusing Landsat ETM+and MODIS data. Journal of Remote Sensing, 18(3): 497-517
张开, 周红敏, 王锦地, 薛华柱. 2014. 融合Landsat ETM+和MODIS数据估算高时空分辨率地表短波反照率. 遥感学报, 18(3): 497-517 [DOI: 10.11834/jrs.20143147http://dx.doi.org/10.11834/jrs.20143147]
Zhong B, Yang A X, Liu Q H, Wu S L, Shan X J, Mu X H, Hu L F and Wu J J. 2021. Analysis ready data of the Chinese GaoFen satellite data. Remote Sensing, 13(9): 1709 [DOI: 10.3390/rs13091709http://dx.doi.org/10.3390/rs13091709]
相关文章
相关作者
相关机构