Tropospheric NO2 changes in global typical regions during the COVID-19 pandemic from GF-5 EMI observations
- Vol. 27, Issue 8, Pages: 1807-1820(2023)
Published: 07 August 2023
DOI: 10.11834/jrs.20231787
扫 描 看 全 文
浏览全部资源
扫码关注微信
Published: 07 August 2023 ,
扫 描 看 全 文
程良晓,陶金花,王雅鹏,余超,林军,陈良富.2023.GF-5 EMI观测新冠疫情期间全球典型地区NO2柱浓度变化.遥感学报,27(8): 1807-1820
Cheng L X,Tao J H,Wang Y P,Yu C,Lin J and Chen L F. 2023. Tropospheric NO2 changes in global typical regions during the COVID-19 pandemic from GF-5 EMI observations. National Remote Sensing Bulletin, 27(8):1807-1820
中国“高分五号”(GF-5)卫星上搭载的痕量气体差分吸收光谱仪(EMI)是第一台设计用于大气痕量气体的探测的高光谱载荷。本文首次基于EMI NO
2
观测结果分析全球NO
2
污染典型区域在新冠疫情期间的NO
2
浓度变化情况。结果表明EMI载荷捕捉到了2020年1—3月,中国东部(-13.6%)、欧洲(-10.2%)、伊朗(-7.9%)和韩国(-13%)等大部分地区NO
2
柱浓度区域均值的明显下降趋势。不论是同年封锁前后的比较,还是2020年封锁期间与2019年同期的比较,都能够看到EMI NO
2
柱浓度明显的下降。NO
2
柱浓度下降的主要原因是疫情期间采取的限制性措施导致的交通和工业活动排放大幅减少。EMI NO
2
观测结果与国际同类成熟载荷OMI和TROPOMI观测结果的相关性大于0.97,在区域和城市尺度上EMI与OMI和TROPOMI的平均相对差异分别小于13%和9%。本研究结果体现了EMI在全球NO
2
污染变化监测的能力和实际应用价值,为中国后续痕量气体探测载荷的研制和应用提供参考。
The novel coronavirus (COVID-19) has been declared a global pandemic in December 2019. To curb the spread of the virus
countries and regions around the world have adopted lockdown measures
which resulted in sharp reductions in their social and economic activities and significantly reduced the concentration of pollutants in their atmosphere. The environmental trace gases monitoring instrument (EMI) onboard the Chinese GaoFen-5 (GF-5) satellite is the first hyperspectral sensor designed for monitoring atmospheric trace gases. This study analyzed the tropospheric nitrogen dioxide (NO
2
) changes in typical global areas during the COVID-19 pandemic based on EMI NO
2
observations. To evaluate the application potential of EMI NO
2
this study compared the emission reductions monitored by EMI NO
2
with that monitored by OMI and TROPOMI NO
2
products. Eastern China
Europe
Iran
and South Korea were selected as the main research areas. The study period covered January 1 to March 31 in 2019 and 2020 and was divided into multiple sub-windows according to the differences in the outbreak and lockdown times in these regions. The comparison of regional-time-averaged EMI NO
2
in 2019 and 2020 reveals that the EMI captured obvious NO
2
reduction trends in most areas of Eastern China (-13.6%)
Europe (-10.2%)
Iran (-7.9%)
and South Korea (-13%) from January 1 to March 24. The average relative deviation of EMI NO
2
reduction percentage from OMI and TROPOMI is less than 12.3% in Eastern China and 13% in Europe. The EMI NO
2
significantly decreased before and after lockdowns in the same year or in the same period between these two years. To further evaluate the quantitative expression ability of EMI in urban-scale NO
2
emission reduction
the emission reductions of EMI NO
2
in several typical cities were calculated and compared with OMI and TROPOMI. The NO
2
reductions from EMI are highly consistent with those from OMI and TROPOMI. The averaged relative differences between EMI and OMI (TROPOMI) in the regional and urban scales are less than 13% and 9%
respectively. In addition to GF-5
the hyperspectral observation satellite (GF-5B) launched on September 7
2021 and the atmospheric environment monitoring satellite (DQ1) launched on April 16
2022 are also equipped with an EMI sensor. Preliminary results show that these satellites have good data quality and a detection capability comparable with that of GF-5(01) EMI. Other satellites that are planned to be launched
such as high-precision greenhouse gas detection satellite (DQ2) and GF-5 replacement satellite (GF501A)
will also be equipped with an EMI sensor to continue monitoring polluting gases in the world and to provide a new source of data for global pollution monitoring. This study assesses the ability and practical application value of EMI in global NO
2
monitoring and provides a reference for the development and application of similar instruments.
遥感高分五号EMIOMITROPOMINO2反演新冠疫情NO2减排
remote sensingGF-5EMIOMITROPOMINO2 retrievalCOVID-19NO2 reduction
Bauwens M, Compernolle S, Stavrakou T, Müller J F, van Gent J, Eskes H, Levelt P F, van der A R, Veefkind J P, Vlietinck J, Yu H and Zehner C. 2020. Impact of coronavirus outbreak on NO2 pollution assessed using TROPOMI and OMI observations. Geophysical Research Letters, 47(11): e2020GL087978 [DOI: 10.1029/2020gl087978http://dx.doi.org/10.1029/2020gl087978]
Beirle S, Hörmann C, Jöckel P, Liu S, de Vries M P, Pozzer A, Sihler H, Valks P and Wagner T. 2016. The STRatospheric Estimation Algorithm from Mainz (STREAM): estimating stratospheric NO2 from nadir-viewing satellites by weighted convolution. Atmospheric Measurement Techniques, 9(7): 2753-2779 [DOI: 10.5194/amt-9-2753-2016http://dx.doi.org/10.5194/amt-9-2753-2016]
Boersma K F, Eskes H J and Brinksma E J. 2004. Error analysis for tropospheric NO2 retrieval from space. Journal of Geophysical Research: Atmospheres, 109(D4): D04311 [DOI: 10.1029/2003JD003962http://dx.doi.org/10.1029/2003JD003962]
Broomandi P, Karaca F, Nikfal A, Jahanbakhshi A, Tamjidi M and Kim J R. 2020. Impact of COVID-19 event on the air quality in iran. Aerosol and Air Quality Research, 20(8): 1793-1804 [DOI: 10.4209/aaqr.2020.05.0205http://dx.doi.org/10.4209/aaqr.2020.05.0205]
Bucsela E J, Krotkov N A, Celarier E A, Lamsal L N, Swartz W H, Bhartia P K, Boersma K F, Veefkind J P, Gleason J F and Pickering K E. 2013. A new stratospheric and tropospheric NO2 retrieval algorithm for nadir-viewing satellite instruments: applications to OMI. Atmospheric Measurement Techniques, 6(10): 2607-2626 [DOI: 10.5194/amt-6-2607-2013http://dx.doi.org/10.5194/amt-6-2607-2013]
Burrows J P, Weber M, Buchwitz M, Rozanov V, Ladstätter-Weiβenmayer A, Richter A, DeBeek R, Hoogen R, Bramstedt K, Eichmann K U, Eisinger M and Perner D. 1999. The global ozone monitoring experiment (GOME): mission concept and first scientific results. Journal of the Atmospheric Sciences, 56(2): 151-175 [DOI: 10.1175/1520-0469(1999)056<0151:TGOMEG>2.0.CO;2http://dx.doi.org/10.1175/1520-0469(1999)056<0151:TGOMEG>2.0.CO;2]
Cheng L X, Tao J H, Valks P, Yu C, Liu S, Wang Y P, Xiong X Z, Wang Z F and Chen L F. 2019. NO2 retrieval from the environmental trace gases monitoring instrument (EMI): preliminary results and intercomparison with OMI and TROPOMI. Remote Sensing, 11(24): 3017 [DOI: 10.3390/rs11243017http://dx.doi.org/10.3390/rs11243017]
Cheng L X, Tao J H, Yu C, Zhang Y, Fan M, Wang Y P, Chen Y L, Zhu L L, Gu J B and Chen L F. 2021a. Tropospheric NO2 column density retrieval from the GF-5 EMI data. National Remote Sensing Bulletin, 25(11): 2313-2325
程良晓, 陶金花, 余超, 张莹, 范萌, 王雅鹏, 陈元琳, 朱莉莉, 顾坚斌, 陈良富. 2021a. 高分五号大气痕量气体差分吸收光谱仪对流层NO2柱浓度遥感反演研究. 遥感学报, 25(11): 2313-2325 [DOI: 10.11834/jrs.20210303http://dx.doi.org/10.11834/jrs.20210303]
Cheng L X, Tao J H, Zhou H J, Yu C, Fan M, Wang Y P, Wang Z B and Chen L F. 2021b. Evaluations of environmental trace gases monitoring instrument (EMI) level 1 data. Spectroscopy and Spectral Analysis, 41(12): 3881-3886
程良晓, 陶金花, 周海金, 余超, 范萌, 王雅鹏, 王志宝, 陈良富. 2021b. 星载痕量气体差分吸收光谱仪1级数据质量评价. 光谱学与光谱分析, 41(12): 3881-3886 [DOI: 10.3964/j.issn.1000-0593(2021)12-3881-06http://dx.doi.org/10.3964/j.issn.1000-0593(2021)12-3881-06]
Choi S, Lamsal L N, Follette-Cook M, Joiner J, Krotkov N A, Swartz W H, Pickering K E, Loughner C P, Appel W, Pfister G, Saide P E, Cohen R C, Weinheimer A J and Herman J R. 2020. Assessment of NO2 observations during DISCOVER-AQ and KORUS-AQ field campaigns. Atmospheric Measurement Techniques, 13(5): 2523-2546 [DOI: 10.5194/amt-13-2523-2020http://dx.doi.org/10.5194/amt-13-2523-2020]
Georgoulias A K, van der A R J, Stammes P, Boersma K F and Eskes H J. 2019. Trends and trend reversal detection in 2 decades of tropospheric NO2 satellite observations. Atmospheric Chemistry and Physics, 19(9): 6269-6294 [DOI: 10.5194/acp-19-6269-2019http://dx.doi.org/10.5194/acp-19-6269-2019]
Griffin D, Zhao X Y, McLinden C A, Boersma F, Bourassa A, Dammers E, Degenstein D, Eskes H, Fehr L, Fioletov V, Hayden K, Kharol S K, Li S M, Makar P, Martin R V, Mihele C, Mittermeier R L, Krotkov N, Sneep M, Lamsal L N, Linden M T, Geffen J V, Veefkind P and Wolde M. 2019. High-resolution mapping of nitrogen dioxide with TROPOMI: first results and validation over the canadian oil sands. Geophysical Research Letters, 46(2): 1049-1060 [DOI: 10.1029/2018gl081095http://dx.doi.org/10.1029/2018gl081095]
Ju M J, Oh J and Choi Y H. 2021. Changes in air pollution levels after COVID-19 outbreak in Korea. Science of the Total Environment, 750: 141521 [DOI: 10.1016/j.scitotenv.2020.141521http://dx.doi.org/10.1016/j.scitotenv.2020.141521]
Kanniah K D, Zaman N A F K, Kaskaoutis D G and Latif M T. 2020. COVID-19’s impact on the atmospheric environment in the Southeast Asia region. Science of the Total Environment, 736: 139658 [DOI: 10.1016/j.scitotenv.2020.139658http://dx.doi.org/10.1016/j.scitotenv.2020.139658]
Karaer A, Balafkan N, Gazzea M, Arghandeh R and Ozguven E E. 2020. Analyzing COVID-19 impacts on vehicle travels and daily nitrogen dioxide (NO2) levels among florida counties. Energies, 13(22): 6044 [DOI: 10.3390/en13226044http://dx.doi.org/10.3390/en13226044]
Levelt P F, Joiner J, Tamminen J, Veefkind J P, Bhartia P K, Zweers D C S, Duncan B N, Streets D G, Eskes H, Van Der A R, McLinden C, Fioletov V, Carn S, De Laat J, DeLand M, Marchenko S, McPeters R, Ziemke J, Fu D J, Liu X, Pickering K, Apituley A, Abad G G, Arola A, Boersma F, Miller C C, Chance K, De Graaf M, Hakkarainen J, Hassinen S, Ialongo I, Kleipool Q, Krotkov N, Li C, Lamsal L, Newman P, Nowlan C, Suleiman R, Tilstra L G, Torres O, Wang H Q and Wargan K. 2018. The Ozone Monitoring Instrument: overview of 14 years in space. Atmospheric Chemistry and Physics, 18(8): 5699-5745 [DOI: 10.5194/acp-18-5699-2018http://dx.doi.org/10.5194/acp-18-5699-2018]
Liu H R, Liu C, Xie Z Q, Li Y, Huang X, Wang S S, Xu J and Xie P H. 2016. A paradox for air pollution controlling in China revealed by “APEC Blue” and “Parade Blue”. Scientific Reports, 6: 34408 [DOI: 10.1038/srep34408http://dx.doi.org/10.1038/srep34408]
Marchenko S, Krotkov N A, Lamsal L N, Celarier E A, Swartz W H and Bucsela E J. 2015. Revising the slant column density retrieval of nitrogen dioxide observed by the Ozone Monitoring Instrument. Journal of Geophysical Research: Atmospheres, 120(11): 5670-5692 [DOI: 10.1002/2014JD022913http://dx.doi.org/10.1002/2014JD022913]
Metya A, Dagupta P, Halder S, Chakraborty S and Tiwari Y K. 2020. COVID-19 lockdowns improve air quality in the South-East Asian regions, as seen by the remote sensing satellites. Aerosol and Air Quality Research, 20(8): 1772-1782 [DOI: 10.4209/aaqr.2020.05.0240http://dx.doi.org/10.4209/aaqr.2020.05.0240]
Mijling B, van der A R J, Boersma K F, Van Roozendael M, De Smedt I and Kelder H M. 2009. Reductions of NO2 detected from space during the 2008 Beijing Olympic Games. Geophysical Research Letters, 36(13): L13801 [DOI: 10.1029/2009gl038943http://dx.doi.org/10.1029/2009gl038943]
Qian Y Y, Luo Y H, Si F Q, Zhou H J, Yang T P, Yang D S and Xi L. 2021. Total ozone columns from the environmental trace gases monitoring instrument (EMI) using the DOAS method. Remote Sensing, 13(11): 2098 [DOI: 10.3390/rs13112098http://dx.doi.org/10.3390/rs13112098]
Siddiqui A, Halder S, Chauhan P and Kumar P. 2020. COVID-19 pandemic and city-level nitrogen dioxide (NO2) reduction for urban centres of India. Journal of the Indian Society of Remote Sensing, 48(7): 999-1006 [DOI: 10.1007/s12524-020-01130-7http://dx.doi.org/10.1007/s12524-020-01130-7]
Sillman S, Logan J A and Wofsy S C. 1990. The sensitivity of ozone to nitrogen oxides and hydrocarbons in regional ozone episodes. Journal of Geophysical Research: Atmospheres, 95(D2): 1837-1851 [DOI: 10.1029/JD095iD02p01837http://dx.doi.org/10.1029/JD095iD02p01837]
Tan P H, Chou C, Liang J Y, Chou C C K and Shiu C J. 2009. Air pollution “holiday effect” resulting from the Chinese New Year. Atmospheric Environment, 43(13): 2114-2124 [DOI: 10.1016/j.atmosenv.2009.01.037http://dx.doi.org/10.1016/j.atmosenv.2009.01.037]
Tao J H, Fan M, Gu J B and Chen L F. 2020. Satellite observations of the return-to-work over China during the period of COVID-19. National Remote Sensing Bulletin, 24(7): 824-836
陶金花, 范萌, 顾坚斌, 陈良富. 2020. 新冠病毒疫情期间复工复产卫星遥感监测. 遥感学报, 24(7): 824-836 [DOI: 10.11834/jrs.20200098http://dx.doi.org/10.11834/jrs.20200098]
Tian H Y, Liu Y H, Li Y D, Wu C H, Chen B, Kraemer M U G, Li B Y, Cai J, Xu B, Yang Q Q, Wang B, Yang P, Cui Y J, Song Y M, Zheng P, Wang Q Y, Bjornstad O N, Yang R F, Grenfell B T, Pybus O G and Dye C. 2020. An investigation of transmission control measures during the first 50 days of the COVID-19 epidemic in China. Science, 368(6491): 638-642 [DOI: 10.1126/science.abb6105http://dx.doi.org/10.1126/science.abb6105]
van Geffen J H G M, Boersma K F, Van Roozendael M, Hendrick F, Mahieu E, De Smedt I, Sneep M and Veefkind J P. 2015. Improved spectral fitting of nitrogen dioxide from OMI in the 405-465 nm window. Atmospheric Measurement Techniques, 8(4): 1685-1699 [DOI: 10.5194/amt-8-1685-2015http://dx.doi.org/10.5194/amt-8-1685-2015]
van Geffen J H G M, Eskes H J, Boersma K F, Veefkind J P. 2018. TROPOMI ATBD of the total and tropospheric NO2 data products. In. De Bilt, the Netherlands: Royal Netherlands Meteorological Institute (KNMI).
Veefkind J P, Aben I, McMullan K, Förster H, de Vries J, Otter G, Claas J, Eskes H J, De Haan J F, Kleipool Q, Van Weele M, Hasekamp O, Hoogeveen R, Landgraf J, Snel R, Tol P, Ingmann P, Voors R, Kruizinga B, Vink R, Visser H and Levelt P F. 2012. TROPOMI on the ESA Sentinel-5 Precursor: a GMES mission for global observations of the atmospheric composition for climate, air quality and ozone layer applications. Remote Sensing of Environment, 120: 70-83 [DOI: 10.1016/j.rse.2011.09.027http://dx.doi.org/10.1016/j.rse.2011.09.027]
Virghileanu M, Săvulescu I, Mihai B A, Nistor C and Dobre R. 2020. Nitrogen dioxide (NO2) pollution monitoring with Sentinel-5P satellite imagery over europe during the coronavirus pandemic outbreak. Remote Sensing, 12(21): 3575 [DOI: 10.3390/rs12213575http://dx.doi.org/10.3390/rs12213575]
Wang X H, Xu Y Z, Zhang C X, Wu Y, Sun Z P and Liu C. 2021. Spatial-temporal variation of tropospheric NO2 concentration in Pearl River Delta based on EMI observations. Journal of Atmospheric and Environmental Optics, 16(3): 197-206
王肖汉, 徐翼洲, 张成歆, 吴跃, 孙中平, 刘诚. 2021. 基于EMI观测的珠三角地区对流层NO2柱浓度时空变化特征分析. 大气与环境光学学报, 16(3): 197-206 [DOI: 10.3969/j.issn.1673-6141.2021.03.004http://dx.doi.org/10.3969/j.issn.1673-6141.2021.03.004]
Wang X Y and Zhang R H. 2020. How did air pollution change during the COVID-19 outbreak in China?. Bulletin of the American Meteorological Society, 101(10): E1645-E1652 [DOI: 10.1175/bams-d-20-0102.1http://dx.doi.org/10.1175/bams-d-20-0102.1]
Wang Y P, Tao J H, Cheng L X, Yu C, Fan M, Zhang Y, Chen Y L, Zhu L L, Gu J B and Chen L F. 2021. Feasibility analysis and preliminary results of formaldehyde retrieval based on environmental trace gases monitoring instrument onboard GF-5 satellite. National Remote Sensing Bulletin, 25(10): 2040-2052
王雅鹏, 陶金花, 程良晓, 余超, 范萌, 张莹, 陈元琳, 朱莉莉, 顾坚斌, 陈良富. 2021. 高分五号大气痕量气体差分吸收光谱仪甲醛反演可行性分析及初步结果. 遥感学报, 25(10): 2040-2052 [DOI: 10.11834/jrs.20210302http://dx.doi.org/10.11834/jrs.20210302]
Wang Z, Uno I, Yumimoto K, Itahashi S, Chen X S, Yang W Y and Wang Z F. 2021. Impacts of COVID-19 lockdown, Spring Festival and meteorology on the NO2 variations in early 2020 over China based on in-situ observations, satellite retrievals and model simulations. Atmospheric Environment, 244: 117972 [DOI: 10.1016/j.atmosenv.2020.117972http://dx.doi.org/10.1016/j.atmosenv.2020.117972]
Witte J C, Schoeberl M R, Douglass A R, Gleason J F, Krotkov N A, Gille J C, Pickering K E and Livesey N. 2009. Satellite observations of changes in air quality during the 2008 Beijing Olympics and Paralympics. Geophysical Research Letters, 36(17): L17803 [DOI: 10.1029/2009gl039236http://dx.doi.org/10.1029/2009gl039236]
Xia C Z, Liu C, Cai Z N, Zhao F, Su W J, Zhang C X and Liu Y. 2021. First sulfur dioxide observations from the environmental trace gases monitoring instrument (EMI) onboard the GeoFen-5 satellite. Science Bulletin, 66(10): 969-973 [DOI: 10.1016/j.scib.2021.01.018http://dx.doi.org/10.1016/j.scib.2021.01.018]
Yan H H, Wang W H and Zhang X Y. 2019. Ozone column retrieved from GF-5 satellite environmental trace gas monitoring instrument. Aerospace Shanghai, 36(S2): 199-203, 209
闫欢欢, 王维和, 张兴赢. 2019. 高分五号卫星大气痕量气体差分吸收光谱仪臭氧总量反演方法研究. 上海航天, 36(S2): 199-203, 209 [DOI: 10.19328/j.cnki.1006-1630.2019.S.030http://dx.doi.org/10.19328/j.cnki.1006-1630.2019.S.030]
Yang D S, Zeng Y, Luo Y H, Zhou H J, Si F Q and Liu W Q. 2021. Monitoring Australia’s forest fires based on EMI remote sensing NO2 technology. Journal of Atmospheric and Environmental Optics, 16(3): 207-214
杨东上, 曾议, 罗宇涵, 周海金, 司福祺, 刘文清. 2021. 基于EMI遥感NO2技术监测澳洲森林火灾活动. 大气与环境光学学报, 16(3): 207-214 [DOI: 10.3969/j.issn.1673-6141.2021.03.005http://dx.doi.org/10.3969/j.issn.1673-6141.2021.03.005]
Yue X, Lei Y D, Zhou H, Liu Z, Letu H S, Cai Z N, Lin J T, Jiang Z H and Liao H. 2020. Changes of anthropogenic carbon emissions and air pollutants during the COVID-19 epidemic in China. Transactions of Atmospheric Sciences, 43(2): 265-274
乐旭, 雷亚栋, 周浩, 刘竹, 胡斯勒图, 蔡兆男, 林金泰, 江志红, 廖宏. 2020. 新冠肺炎疫情期间中国人为碳排放和大气污染物的变化. 大气科学学报, 43(2): 265-274 [DOI: 10.13878/j.cnki.dqkxxb.20200408010http://dx.doi.org/10.13878/j.cnki.dqkxxb.20200408010]
Zhang C X, Liu C, Chan K L, Hu Q H, Liu H R, Li B, Xing C Z, Tan W, Zhou H J, Si F Q and Liu J G. 2020. First observation of tropospheric nitrogen dioxide from the Environmental Trace Gases Monitoring Instrument onboard the GaoFen-5 satellite. Light: Science and Applications, 9(1): 66 [DOI: 10.1038/s41377-020-0306-zhttp://dx.doi.org/10.1038/s41377-020-0306-z]
Zhang C X, Liu C, Wang Y, Si F Q, Zhou H J, Zhao M J, Su W J, Zhang W Q, Chan K L, Liu X, Xie P H, Liu J G and Wagner T. 2018. Preflight evaluation of the performance of the Chinese environmental trace gas monitoring instrument (EMI) by spectral analyses of nitrogen dioxide. IEEE Transactions on Geoscience and Remote Sensing, 56(6): 3323-3332 [DOI: 10.1109/TGRS.2018.2798038http://dx.doi.org/10.1109/TGRS.2018.2798038]
Zhao M J, Si F Q, Zhou H J, Wang S M, Jiang Y and Liu W Q. 2018. Preflight calibration of the Chinese environmental trace gases monitoring instrument (EMI). Atmospheric Measurement Techniques, 11(9): 5403-5419 [DOI: 10.5194/amt-11-5403-2018http://dx.doi.org/10.5194/amt-11-5403-2018]
Zhao R, Zhang C X, Wu Y, Sun Z P and Liu C. 2021. Analysis of spatio-temporal variations of tropospheric nitrogen dioxide in the North China Plain based on EMI. Journal of Atmospheric and Environmental Optics, 16(3): 186-196
赵冉, 张成歆, 吴跃, 孙中平, 刘诚. 2021. 基于EMI观测华北平原对流层NO2的时空变化研究. 大气与环境光学学报, 16(3): 186-196 [DOI: 10.3969/j.issn.1673-6141.2021.3.003http://dx.doi.org/10.3969/j.issn.1673-6141.2021.3.003]
Zhao X, Shen N C, Li L J, Wu G F, Tao J and Zhao W J. 2021. Analysis of changes and factors influencing air pollutants in the Beijing-Tianjin-Hebei region during the COVID-19 pandemic. Environmental Science, 42(3): 1205-1214
赵雪, 沈楠驰, 李令军, 武高峰, 陶静, 赵文吉. 2021. COVID-19疫情期间京津冀大气污染物变化及影响因素分析. 环境科学, 42(3): 1205-1214 [DOI: 10.13227/j.hjkx.202007249http://dx.doi.org/10.13227/j.hjkx.202007249]
Zheng B, Tong D, Li M, Liu F, Hong C P, Geng G N, Li H Y, Li X, Peng L Q, Qi J, Yan L, Zhang Y X, Zhao H Y, Zheng Y X, He K B and Zhang Q. 2018. Trends in China’s anthropogenic emissions since 2010 as the consequence of clean air actions. Atmospheric Chemistry and Physics, 18(19): 14095-14111 [DOI: 10.5194/acp-18-14095-2018http://dx.doi.org/10.5194/acp-18-14095-2018]
相关文章
相关作者
相关机构