Remote sensing monitoring and transport path analysis of an intense dust weather in northern China in 2021
- Vol. 27, Issue 8, Pages: 1821-1833(2023)
Published: 07 August 2023
DOI: 10.11834/jrs.20232153
扫 描 看 全 文
浏览全部资源
扫码关注微信
Published: 07 August 2023 ,
扫 描 看 全 文
叶洽,郑小慎,赵尚玉.2023.2021年中国北部特大沙尘天气的遥感监测与路径分析.遥感学报,27(8): 1821-1833
Ye Q,Zheng X S and Zhao S Y. 2023. Monitoring and transport path analysis of an intense dust weather process in 2021. National Remote Sensing Bulletin, 27(8):1821-1833
2021年3月中旬,中国北部地区遭遇了近十年来最强的一次沙尘天气。本文利用多源卫星和PM
10
浓度数据对此次沙尘天气过程进行了水平、垂直方向动态监测,并通过HYSPLIT模式前向、后向轨迹的聚类分析了沙尘的来源及传输路径,结果表明:(1)2021年3月14日至18日,中国20个省市和渤黄海近岸海域均受到沙尘影响,其中西北、华北、东北地区部分省市出现沙尘暴,华中、华东部分省市和渤黄海近岸海域受轻度沙尘天气影响。(2)14日至15日的沙尘主要源自蒙古国中部,16日至18日的沙尘则更多来自中国内蒙古中西部和新疆维吾尔自治区中部。沙尘传输路径可以分为西北路、北路、西路3支。(3)沙尘的输送高度主要为对流层低层1—3 km与对流层中高层3—10 km,高于“三北防护林”等生态环境工程的风沙拦截高度。多源卫星产品和数值模式相结合,为中国沙尘天气的预报预警以及沙尘污染的区域联防联控提供了科学参考。
Northern China was hit by a strong dust storm with unprecedented intensity and influence around the middle of March 2021. In this study
the horizontal and vertical dynamic development and the transport path of this dust event were investigated using multi-source satellite observations
PM
10
concentration data
and the HYSPLIT model.
FY-4A/AGRI DST can efficiently identify dust in cloudless weather
FY-4A/AGRI IDDI-BK can semi-quantitatively characterize dust intensity
and SP-5/TROMI UVAI has the advantage of detecting dust under clouds. Therefore
in this paper
both DST and IDDI-BK were used to identify the affected area and the intensity characteristics of the dust event. UVAI data were also used to supplement the under-cloud dust information that may have been missed by DST. After obtaining the horizontal distribution characteristics
this paper continues analyzed the vertical distribution height of dust using CALIPSO VFM data. The transport path of dust was also described by using the forward- and back-trajectory analyses of the HYSPLIT model and trajectory clustering.
The severe dust storm first appeared in central Mongolia on March 14. Widespread dust storms appeared over central and western Inner Mongolia
central Gansu
Ningxia
northern Shaanxi
northern Shaanxi
Hebei
Jilin
northwestern Liaoning
and northwestern Heilongjiang on March 15. From March 16 to 18
the coverage of the extreme dust storm in northern China narrowed westward
while a strong dust storm continued to strike western Inner Mongolia and central Gansu. A huge dust storm then attacked central Xinjiang
and a light dust storm affected parts of central and east China as well as the coastal waters of the Bohai and Yellow Seas. On March 18
the dust storm disappeared.
Results show that central Mongolia is the main source of the dust storms over northern China between March 14 and 15 and that both central Xinjiang and central and western Inner Mongolia are the major contributors to the widespread dust storms that were reported from March 16 to 18. The dust transport routes are primarily separated into three branches
namely
northwest road
west road
and north road. The dust conveyance height is mostly concentrated at 1 km—3 km and 3 km—10 km
both of which are above the dust interception height of ecological environment projects
including the Three-North Shelter Forest Program. A combination of multi-source satellite products and numerical models can provide as a scientific reference for forecasting dust storms and for the regional joint prevention of dust pollution.
沙尘天气过程FY-4A遥感监测沙源地传输路径
dust weather processFY-4Aremote sensing monitoringdust sourcetransmission path
Albani S and Mahowald N M. 2019. Paleodust insights into dust impacts on climate. Journal of Climate, 32(22): 7897-7913 [DOI: 10.1175/JCLI-D-18-0742.1http://dx.doi.org/10.1175/JCLI-D-18-0742.1]
Ali M A, Nichol J E, Bilal M, Qiu Z F, Mazhar U, Wahiduzzaman M, Almazroui M and Islam M N. 2020. Classification of aerosols over Saudi Arabia from 2004-2016. Atmospheric Environment, 241: 117785 [DOI: 10.1016/j.atmosenv.2020.117785http://dx.doi.org/10.1016/j.atmosenv.2020.117785]
Attiya A A and Jones B G. 2022. An extensive dust storm impact on air quality on 22 November 2018 in Sydney, Australia, using satellite remote sensing and ground data. Environmental Monitoring and Assessment, 194(6): 432 [DOI: 10.1007/s10661-022-10080-1http://dx.doi.org/10.1007/s10661-022-10080-1]
Fang L, Wang S P, Yu T, Gu X F, Zhang X Y, Wang W H and Ren S L. 2016. Changes in aerosol optical and micro-physical properties over Northeast Asia from a severe dust storm in April 2014. Remote Sensing, 8(5): 394 [DOI: 10.3390/rs8050394http://dx.doi.org/10.3390/rs8050394]
Filonchyk M. 2022. Characteristics of the severe March 2021 Gobi desert dust storm and its impact on air pollution in China. Chemosphere, 287: 132219 [DOI: 10.1016/j.chemosphere.2021.132219http://dx.doi.org/10.1016/j.chemosphere.2021.132219]
Guan L, Zhang T and Li X. 2021. Analysis of the March 2021 atmospheric circulation and weather. Meteorological Monthly, 47(6): 767-772
关良, 张涛, 李鑫. 2021. 2021年3月大气环流和天气分析. 气象, 47(6): 767-772 [DOI: 10.7519/j.issn.1000-0526.2021.06.012http://dx.doi.org/10.7519/j.issn.1000-0526.2021.06.012]
Hammer M S, Martin R V, Li C, Torres O, Manning M and Boys B L. 2018. Insight into global trends in aerosol composition from 2005 to 2015 inferred from the OMI ultraviolet aerosol index. Atmospheric Chemistry and Physics, 18(11): 8097-8112 [DOI: 10.5194/acp-18-8097-2018http://dx.doi.org/10.5194/acp-18-8097-2018]
Hu W J, Ma L, Wu X Q and Zhang K B. 2021. Dust storms forward trajectories and influence range over the Mu Us Desert. Acta Scientiarum Naturalium Universitatis Pekinensis, 57(6): 1161-1171
胡雯婕, 马莉, 吴秀芹, 张克斌. 2021. 毛乌素沙地上空沙尘暴的前向轨迹及其影响范围. 北京大学学报(自然科学版), 57(6): 1161-1171 [DOI: 10.13209/j.0479-8023.2021.089http://dx.doi.org/10.13209/j.0479-8023.2021.089]
Hu X Q, Lu N M and Zhang P. 2007. Remote sensing and detection of dust storm in China using the thermal bands of geostationary meteorological satellite. Journal of Applied Meteorological Science, 18(3): 266-275
胡秀清, 卢乃锰, 张鹏. 2007. 利用静止气象卫星红外通道遥感监测中国沙尘暴. 应用气象学报, 18(3): 266-275 [DOI: 10.3969/j.issn.1001-7313.2007.03.002http://dx.doi.org/10.3969/j.issn.1001-7313.2007.03.002]
Huang L, Zhu P, Xiao T, Cao W and Gong G L. 2018. The sand fixation effects of three-north shelter forest program in recent 35 years. Scientia Geographica Sinica, 38(4): 600-609
黄麟, 祝萍, 肖桐, 曹巍, 巩国丽. 2018. 近35年三北防护林体系建设工程的防风固沙效应. 地理科学, 38(4): 600-609 [DOI: 10.13249/j.cnki.sgs.2018.04.014http://dx.doi.org/10.13249/j.cnki.sgs.2018.04.014]
Iraji F, Memarian M H, Joghataei M and Malamiri H R G. 2021. Determining the source of dust storms with use of coupling WRF and HYSPLIT models: a case study of Yazd province in central desert of Iran. Dynamics of Atmospheres and Oceans, 93: 101197 [DOI: 10.1016/J.DYNATMOCE.2020.101197http://dx.doi.org/10.1016/J.DYNATMOCE.2020.101197]
Kim M H, Omar A H, Tackett J L, Vaughan M A, Winker D M, Trepte C R, Hu Y X, Liu Z Y, Poole L R, Pitts M C, Kar J and Magill B E. 2018. The CALIPSO version 4 automated aerosol classification and lidar ratio selection algorithm. Atmospheric Measurement Techniques, 11(11): 6107-6135 [DOI: 10.5194/amt-11-6107-2018http://dx.doi.org/10.5194/amt-11-6107-2018]
Kotsyfakis M, Zarogiannis S and Patelarou E. 2019. The health impact of Saharan dust exposure. International Journal of Occupational Medicine and Environmental Health, 32(6): 749-760 [DOI: 10.13075/ijomeh.1896.01466http://dx.doi.org/10.13075/ijomeh.1896.01466]
Li J, Wong M S, Lee K H, Nichol J and Chan P W. 2021. Review of dust storm detection algorithms for multispectral satellite sensors. Atmospheric Research, 250: 105398 [DOI: 10.1016/j.atmosres.2020.105398http://dx.doi.org/10.1016/j.atmosres.2020.105398]
Li Y. 2018. Operational application of Fengyun satellite in dust weather monitoring. Satellite Application, (11): 24-28
李云. 2018. 风云卫星在沙尘天气监测中的业务应用. 卫星应用, (11): 24-28 [DOI: 10.3969/j.issn.1674-9030.2018.11.008http://dx.doi.org/10.3969/j.issn.1674-9030.2018.11.008]
Liu J, Ding J L, Rexiding M, Li X H, Zhang J Y, Ran S, Bao Q L and Ge X Y. 2021. Characteristics of dust aerosols and identification of dust sources in Xinjiang, China. Atmospheric Environment, 262: 118651 [DOI: 10.1016/j.atmosenv.2021.118651http://dx.doi.org/10.1016/j.atmosenv.2021.118651]
Liu Q H. 2018. Monitoring methods of dust in China based on satellite data. Infrared, 39(10): 33-39
刘清华. 2018. 基于卫星资料的中国沙尘天气监测方法. 红外, 39(10): 33-39 [DOI: 10.3969/j.issn.1672-8785.2018.10.006http://dx.doi.org/10.3969/j.issn.1672-8785.2018.10.006]
Lu X, Mao F Y, Pan Z X, Gong W, Wang W, Tian L Q and Fang S H. 2018. Three-dimensional physical and optical characteristics of aerosols over central China from long-term CALIPSO and HYSPLIT data. Remote Sensing, 10(2): 314 [DOI: 10.3390/rs10020314http://dx.doi.org/10.3390/rs10020314]
Ma S Q, Zhang X L, Gao C, Tong D Q, Xiu A, Wu G J, Cao X Y, Huang L, Zhao H M, Zhang S C, Ibarra-Espinosa S, Wang X, Li X L and Dan M. 2019. Multimodel simulations of a springtime dust storm over northeastern China: implications of an evaluation of four commonly used air quality models (CMAQ v5.2.1, CAMX v6.50, CHIMERE v2017r4, and WRF-CHEMv3.9.1). Geoscientific Model Development, 12(11): 4603-4625 [DOI: 10.5194/gmd-12-4603-2019http://dx.doi.org/10.5194/gmd-12-4603-2019]
Merchant C and Embury O. 2020. Adjusting for desert-dust-related biases in a climate data record of sea surface temperature. Remote Sensing, 12(16): 2554 [DOI: 10.3390/rs12162554http://dx.doi.org/10.3390/rs12162554]
Qor-El-Aine A, Béres A and Géczi G. 2022. Dust storm simulation over the Sahara desert (Moroccan and Mauritanian regions) using HYSPLIT. Atmospheric Science Letters, 23(4): e1076 [DOI: 10.1002/asl.1076http://dx.doi.org/10.1002/asl.1076]
Shi Z L, Zhang X B and Zhang R C. 2022. Use of radionuclides to trace sand and dust sources of the March 15, 2021 dust storm event. Journal of Desert Research, 42(2): 1-5
史忠林, 张信宝, 张润川. 2022. 2021年“3·15”沙尘暴沙尘来源核素示踪研究. 中国沙漠, 42(2): 1-5 [DOI: 10.7522/j.issn.1000-694X.2021.00102http://dx.doi.org/10.7522/j.issn.1000-694X.2021.00102]
Stein A F, Draxler R R, Rolph G D, Stunder B J B, Cohen M D and Ngan F. 2015. NOAA's HYSPLIT atmospheric transport and dispersion modeling system. Bulletin of the American Meteorological Society, 96(12): 2059-2077 [DOI: 10.1175/BAMS-D-14-00110.1http://dx.doi.org/10.1175/BAMS-D-14-00110.1]
Tan S C, Li J W, Che H Z, Chen B and Wang H. 2017. Transport of East Asian dust storms to the marginal seas of China and the southern North Pacific in spring 2010. Atmospheric Environment, 148: 316-328 [DOI: 10.1016/j.atmosenv.2016.10.054http://dx.doi.org/10.1016/j.atmosenv.2016.10.054]
Tao M H, Chen L F, Wang J, Wang L L, Wang W C, Lin C Q, Gui L, Wang L C, Yu C and Wang Y. 2022. Characterization of dust activation and their prevailing transport over East Asia based on multi-satellite observations. Atmospheric Research, 265: 105886 [DOI: 10.1016/j.atmosres.2021.105886http://dx.doi.org/10.1016/j.atmosres.2021.105886]
Tao M H, Gui L, Li R, Wang L L, Liang S W, Li Q J, Wang L C, Yu C and Chen L F. 2021. Tracking prevailing dust aerosol over the air pollution in central China with integrated satellite and ground observations. Atmospheric Environment, 253: 118369 [DOI: 10.1016/j.atmosenv.2021.118369http://dx.doi.org/10.1016/j.atmosenv.2021.118369]
Tian H J, Liu X S, Sun T and Pan H X. 2019. Ideas on development of a smart sandstorm monitoring system. Forest Resources Management, 3: 54-56, 112
田海静, 刘旭升, 孙涛, 潘红星. 2019. 沙尘暴智慧监测体系构建的思考. 林业资源管理, (3): 54-56, 112 [DOI: 10.13466/j.cnki.lyzygl.2019.03.010http://dx.doi.org/10.13466/j.cnki.lyzygl.2019.03.010]
Torres O, Jethva H, Ahn C, Jaross G and Loyola D G. 2020. TROPOMI aerosol products: evaluation and observations of synoptic-scale carbonaceous aerosol plumes during 2018-2020. Atmospheric Measurement Techniques, 13(12): 6789-6806 [DOI: 10.5194/amt-13-6789-2020http://dx.doi.org/10.5194/amt-13-6789-2020]
Wang G Q and Shen X. 2018. The FY-4 radiometer imager and the application of its data in the satellite meteorology. Chinese Journal of Nature, 40(1): 1-11
王淦泉, 沈霞. 2018. 风云四号辐射成像仪及其数据在卫星气象中的应用. 自然杂志, 40(1): 1-11 [DOI: 10.3969/j.issn.0253-9608.2018.01.001http://dx.doi.org/10.3969/j.issn.0253-9608.2018.01.001]
Wang S G, Yuan W and Shang K Z. 2006. The impacts of different kinds of dust events on PM10 pollution in northern China. Atmospheric Environment, 40(40): 7975-7982 [DOI: 10.1016/j.atmosenv.2006.06.058http://dx.doi.org/10.1016/j.atmosenv.2006.06.058]
Wang X M, Hua T and Che H Z. 2020. Temporal variation of dust aerosol pollution in northern China. Arabian Journal of Geosciences, 13(3): 108 [DOI: 10.1007/s12517-020-5073-xhttp://dx.doi.org/10.1007/s12517-020-5073-x]
Winker D M, Pelon J, Coakley J A, Ackerman S A, Charlson R J, Colarco P R, Flamant P, Fu Q, Hoff R M, Kittaka C, Kubar T L, Le Treut H, Mccormick M P, Mégie G, Poole L, Powell K, Trepte C, Vaughan M A and Wielicki B A. 2010. The CALIPSO mission: a global 3D view of aerosols and clouds. Bulletin of the American Meteorological Society, 91(9): 1211-1230 [DOI: 10.1175/2010BAMS3009.1http://dx.doi.org/10.1175/2010BAMS3009.1]
Wu S Q and Ma X Y. 2020. Analysis of dust vertical and horizontal distribution during dust events in northwest China based on FY-4A, MODIS and CALIPSO satellite data. Acta Scientiae Circumstantiae, 40(8): 2892-2901
吴硕秋, 马晓燕. 2020. 利用风云四、MODIS及CALIPSO卫星资料分析西北沙尘过程的垂直和水平分布特征. 环境科学学报, 40(8): 2892-2901 [DOI: 10.13671/j.hjkxxb.2020.0093http://dx.doi.org/10.13671/j.hjkxxb.2020.0093]
Yang L L, Zhang S W, Huang Z W, Yang Y P, Wang L N, Han W Y and Li X Y. 2021. Characteristics of dust events in China from 2015 to 2020. Atmosphere, 12(8): 952 [DOI: 10.3390/atmos12080952http://dx.doi.org/10.3390/atmos12080952]
Yang X J, Zhang Q, Ye P L, Qin H J, Xu L L, Ma L and Gong C S. 2021. Characteristics and causes of persistent sand-dust weather in mid-March 2021 over northern China. Journal of Desert Research, 41(3): 245-255
杨晓军, 张强, 叶培龙, 秦豪君, 徐丽丽, 马莉, 巩崇水. 2021. 中国北方2021年3月中旬持续性沙尘天气的特征及其成因. 中国沙漠, 41(3): 245-255 [DOI: 10.7522/j.issn.1000-694X.2021.00062http://dx.doi.org/10.7522/j.issn.1000-694X.2021.00062]
Yao W R, Che H Z, Gui K, Wang Y Q and Zhang X Y. 2020. Can MERRA-2 reanalysis data reproduce the three-dimensional evolution characteristics of a typical dust process in East Asia? A case study of the dust event in May 2017. Remote Sensing, 12(6): 902 [DOI: 10.3390/rs12060902http://dx.doi.org/10.3390/rs12060902]
Zhang P, Wang C J, Chen L, Bai W G, Qi C L and Qi J. 2018. Current status of satellite-based dust aerosol remote sensing and some issues to be concerned. Meteorological Monthly, 44(6): 725-736
张鹏, 王春姣, 陈林, 白文广, 漆成莉, 齐瑾. 2018. 沙尘气溶胶卫星遥感现状与需要关注的若干问题. 气象, 44(6): 725-736 [DOI: 10.7519/j.issn.1000-0526.2018.06.001http://dx.doi.org/10.7519/j.issn.1000-0526.2018.06.001]
相关文章
相关作者
相关机构